THEORETISCHE UNTERSUCHUNGEN ÜBER DEN EINFLUSS VON BESCHLEUNIGUNG, VERZÖGERUNG UND ATMOSPHÄRENSCHICHTUNG AUF DEN FLUGZEUGKNALL

by

Roland Stuff
Institut für theoretische Gasdynamik
Deutsche Versuchsanstalt für Luft- und Raumfahrt
Aachen, Germany

The Sixth Congress of the International Council of the Aeronautical Sciences
DEUTSCHES MUSEUM, MÜNCHEN, GERMANY/SEPTEMBER 9-13, 1968

Preis: DM 2.00
Übersicht

I. Einleitung

Das Problem der räumlichen Stoßwellenausbreitung ist zunächst nicht hinsichtlich der Druckwelle selbst, sondern nur hinsichtlich ihres geometrischen Ortes theoretisch behandelt worden, weil hierfür akustische Methoden genügen, so von Prandtl (1) schon im Jahre 1938. Mit der "Theorie zweiter Ordnung" von van Dyke (2), (3), (4) lässt sich die Strömung um Rotationskörper berücksichtigen, doch nicht in großen Entfernungen vom Körper und liefert keine Verdichtungstöße, erst Whitman (8) und Oswatitsch (5) gelang es, Theorien zu entwickeln, die sich auf Verdichtungstößen in großer Entfernung vom Störzentr um in einer homogenen Atmosphäre anwenden lassen. Bei beiden Verfahren sind bereits einige Probleme auf analytischem Weg gelöst worden, so z.B. (6), (7), (8), (9), (10), (11), (12), (13), (14), (15). Das Charakteristikenverfahren von Oswatitsch nach (5) hat Stuff in (16) im Hinblick auf Verdichtungstöße beschleunigter oder verzögerter Rotationskörper in einer homogenen Atmosphäre modifiziert.

In der vorliegenden Arbeit wird das nach (16) modifizierte Charakteristikenverfahren (5) benutzt, weil in der isothermen Atmosphäre aufgrund der konstanten Schallgeschwindigkeit die Gleichungen der charakteristischen Flächen formal mit denjenigen der homogenen Atmosphäre übereinstimmen. Die Atmosphäreenschichtung macht sich nur über ein Schwereglied in der Wellengleichung bemerkbar, wie Schrödinger (17) bereits 1917 zeigte. Mit der angegebenen Methode erhält man Formeln sowohl für die Knallstärke in großer Entfernung vom Flugkörper als auch für den Abstand zwischen Kopf- und Schwanzwelle.

II. Allgemeine Theorie

Das Charakteristikenverfahren

Bei der von Oswatitsch in (5) dargestellten Methode handelt es sich um eine Theorie kleiner Störungen mit unabhängigen Veränderlichen, die auf charakteristischen Flächen konstant sind. In dieser Arbeit ist der Parameter dieser Störungen das Dickenverhältnis. Ort koordinaten und Zeitkoordinaten

\[x = x_0 + x_1 + x_2 \quad t = t_0 + t_1 + t_2 + \ldots \quad j \]

und Zustandsgrößen

\[u_x = u_{x_1} + u_{x_2} + \ldots \quad u_2 = u_{x_1} + u_{x_2} + \ldots \quad \]

werden nach dem Störparameter entwickelt. Die Koordinate \(t \) stellt das Produkt aus Zeit und Ruhe schallgeschwindigkeit \(c_0 \) dar und ist wie alle Koordinaten durch Division mit der Körperlänge \(C \) dimensionlos gemacht worden. Die Geschwindigkeiten hingegen sind mit der Ruhe schallgeschwindigkeit dimensionlos gemacht worden. Die Koordinaten \(x_0, x_1, x_2 \) beschreiben den Charakteristikenraum, die Koordinaten \(x, z, t \) hingegen den physikalischen Raum. Der Charakteristikenraum entspricht dem physikalischen Raum, wenn die Störkoordinaten \(x_1, x_2, t \) verschwinden. Diese Störkoordinaten werden nach dem Verfahren von Oswatitsch ermittelt. Im Charakteristikenraum breiten sich die Störungen mit der Schallgeschwindigkeit der ungestörten Strömung aus. Die Charakteristiken und Bicharakteristiken sind in diesem Raum in Falle der homogenen und der isothermen Atmosphäre differential. Orale, Vorausgesetzt wird, dass sich die Neigung der charakteristischen Flächen nicht aber ihre Lage im gestörten Raum nur wenig von derjenigen im ungestörten unterschiedet. Anstatt mit Charakteristikenflächen kann man wie in dieser Arbeit mit \(x, y, z \)-Flächen arbeiten, deren Schnitte die Bicharakteristiken ergeben. Diese Flächen werden in folgenden auch als Bicharakteristikenflächen bezeichnet. Es lassen sich zunächst die ersten Näherungen der Zustandsgrößen und also dann aus der Integration der Neigungsbedingungen die Störkoordinaten und mit diesen Störkoordinaten das
1. Einleitung. In der mathematischen Theorie für die Parameter des von Schallpunkt ausgehenden Schallkegels wird die akustische Störfront als Tangente der Schallkegel betrachtet. Die Spitze des Schallkegels sei der Punkt \((t_0, x_0, z_0)\) mit der zugehörigen Impulszahl \(K_0\). Der Kegel berührt die Einhüllende in einer Geraden, die gleichzeitig in den Normalenrichtungen liegt. Die akustische Störfront liegt innerhalb der Fläche der Kegelspitze und der Ruheschallgeschwindigkeit. In Schnitten \(t_0 = \text{konst.}\) ergibt sich die Neigung der Einhüllenden aus

\[
\frac{dz}{dx} = \frac{1}{\sqrt{M^2 - 1}} \tag{II.7}
\]

und ihre Krümmung \(K_p\) aus

\[
K_p = \frac{B}{[M^2 - 1 - B(x_0 - x_p)]} \tag{II.8}
\]

Man erkennt an (II.8), daß für

\[
B(x_0 - x_p) = M^2 - 1 \tag{II.9}
\]

der Henne von (II.3) und damit der Krümmungsradius verschwinden. Das Bild der akustischen Störfront in Schnitten \(t_0 = \text{konst.}\) erscheint an dieser Stelle als Schnabelspitze. Beide Seiten der Schnabelspitze haben eine gemeinsame Tangente, die Schnabeltangente. Sie ist gleichzeitig die Tangente des von Schallquellen ausgehenden Machkegels. Die Normalenebene zur akustischen Störfront wird von der jeweiligen Tangente des Machkegels mit der einhüllenden Fläche und der Achse desselben Machkegels aufgespannt. Der Schnitt der Normalenebene mit den Bicharakteristikenflächen \(\mu, \gamma\) ist konstant, lege die Bicharakteristiken \(\mu, \gamma\) konstant fest. Da nur in diesen Normalenebenen gerechnet wird, hängt das Problem nicht mehr von den drei unabhängigen Variablen \(x, y, z\), sondern von den zwei unabhängigen Variablen \(\mu, \gamma\) und den für die jeweilige Normalenebene und den dazu gehörigen Machkegel konstanten Parameter \(t_0\), ab. Die Bicharakteristikenflächen \(\mu = \text{konst.}\) werden so gewählt, daß die Bicharakteristiken \(\mu = \text{konst.}\) in der Normalenebene einen rechten Winkel mit den Bicharakteristiken \(\gamma = \text{konst.}\) einschließen.

Bezeichnet man mit \(N_0\) die Koordinate auf der Normalen, welche von der Spitze des jeweiligen Machkegels zählt, so erhält man für die ursprünglichen Koordinaten \((x_0, z_0, t_0)\) die nächste Reihenglied der Zustandsgrößen wechselseitig berechnen. Aus der Faltung der \(\mu, \gamma\)-Flächen im \(x, y, z\)-Raum ergeben sich mit der Friesischen Formel die Verdichtungsstöße.

Modifizierung des Charakteristikenverfahrens

In diesem übernommenen Charakteristikenverfahren soll lediglich eine andere Wahl der unabhängigen Veränderlichen getroffen werden. Damit wird erreicht, daß man statt mit den drei Flächen \(\mu, \gamma, z\) nur mit den Flächen \(\mu, \gamma, t\) arbeitet. Zu diesem Ziel führen zwei Beziehungen.

2. Nach dem Charakteristikenverfahren von Oswaltisch unterscheiden sich die Normalenebenen von Machkegeln, die mit ihrer Spitze auf die Schallwelle sind von Einhüllenden von Machkegeln. Zunächst wird nur die Flächen \(= \text{konst.}\) und \(\mu, \gamma = \text{konst.}\) für die 31-terebene durch die Akustik stößt sich in Normalenebenen gerechnet wird, die Flächen \(= \text{konst.}\) genauer als die akustische Störfront bezeichnet. Die akustischen Störfronten von Kopf- und Schwanzwelle sind Einhüllende von Machkegeln, die mit ihrer Spitze auf die Bahn des Körpers und \(c_0\) die Ruheschallgeschwindigkeit. Die Verdichtungsstoßflächen liegen im physikalischen \(x, y, t\)-Raum in der Nähe derjenigen Charakteristikenfläche - sie sei im folgenden als "akustische Störfront" bezeichnet - welche das Stoßgebiet im Charakteristikenraum \(x_0, y_0, t_0\)-Raum begrenzt. Aufgrund der Beziehungen 1 und 2 kann man deshalb in Normalenebenen zur akustischen Störfront rechnen. Zunächst wird nur die \(x_0, z_0\)-Ebene senkrecht unter dem Flugkörper betrachtet. Die akustischen Störfronten von Kopf- und Schwanzwelle sind Einhüllende von Machkegeln, die mit ihrer Spitze auf die Bahn der Körperspitze zeigen.

Die Spitze des Machkegels sei der Punkt \((t_p, x_p, z_p)\) mit der zugehörigen Flugmachzahl \(M_p\). Dann läßt sich die akustische Störfront nach der mathematischen Theorie für die Parameterdarstellung einhüllender Flächen beschreiben.

\[
(x_0 - x_p)^2 + z_0^2 - (t_0 - t_p)^2 = 0 \tag{II.3}
\]

(Gleichung des Machkegels)

\[
(x_0 - x_p)M_p - (t_0 - t_p) = 0 \tag{II.4}
\]

Hierbei ist

\[
x_p = t_p + \frac{B}{2} t_p^2 \tag{II.5}
\]

\[
M_p = 1 + B t_p
\]

Der Beschleunigungsbeiwert hat im Falle einer Beschleunigung einen positiven und im Falle einer Versuchung einen negativen Wert.

Der dimensionslose Beschleunigungsbeiwert \(B\) errechnet sich aus

\[
B = \frac{\beta}{t_0} \tag{II.6}
\]

Hierin ist \(\beta\) die tatsächliche dimensionsbehaftete Beschleunigung, \(I\) ist die Länge des Flugkörpers und \(c_0\) die Ruheschallgeschwindigkeit.

Der Beschleunigungsbeiwert hat im Falle einer Beschleunigung einen positiven und im Falle einer Versuchung einen negativen Wert.

Der dimensionslose Beschleunigungsbeiwert \(B\) errechnet sich aus

\[
B = \frac{\beta}{t_0} \tag{II.6}
\]

Hierin ist \(\beta\) die tatsächliche dimensionsbehaftete Beschleunigung, \(I\) ist die Länge des Flugkörpers und \(c_0\) die Ruheschallgeschwindigkeit.

Jeder Machkegel berührt die Einhüllende in einer Geraden, die gleichzeitig in der Bicharakteristikenfläche \(\gamma = 0\) liegt.

In Schnitten \(t_0 = \text{konst.}\) ergibt sich die Neigung der Einhüllenden aus

\[
\frac{dz}{dx} = \frac{1}{\sqrt{M^2 - 1}} \tag{II.7}
\]

und ihre Krümmung \(K_p\) aus

\[
K_p = \frac{B}{[M^2 - 1 - B(x_0 - x_p)]} \tag{II.8}
\]

Man erkennt an (II.8), daß für

\[
B(x_0 - x_p) = M^2 - 1 \tag{II.9}
\]

der Henne von (II.3) und damit der Krümmungsradius verschwindet. Das Bild der akustischen Störfront in Schnitten \(t_0 = \text{konst.}\) erscheint an dieser Stelle als Schnabelspitze. Beide Seiten der Schnabelspitze haben eine gemeinsame Tangente, die Rückkehrtangente. Sie ist gleichzeitig die Tangente des von Schallquellen ausgehenden Machkegels.

Die Normalenebene zur akustischen Störfront wird von der jeweiligen Tangente des Machkegels mit der einhüllenden Fläche und der Achse desselben Machkegels aufgespannt. Der Schnitt der Normalenebene mit den Bicharakteristikenflächen \(\mu, \gamma\) ist konstant, lege die Bicharakteristiken \(\mu, \gamma\) konstant fest. Da nur in diesen Normalenebenen gerechnet wird, hängt das Problem nicht mehr von den drei unabhängigen Variablen \(x, y, z\), sondern von den zwei unabhängigen Variablen \(\mu, \gamma\) und den für die jeweilige Normalenebene und den dazu gehörigen Machkegel konstanten Parameter \(t_0\), ab. Die Bicharakteristikenflächen \(\mu = \text{konst.}\) werden so gewählt, daß die Bicharakteristiken \(\mu = \text{konst.}\) in der Normalenebene einen rechten Winkel mit den Bicharakteristiken \(\gamma = \text{konst.}\) einschließen.

Bezeichnet man mit \(N_0\) die Koordinate auf der Normalen, welche von der Spitze des jeweiligen Machkegels zählt, so erhält man für die ursprünglichen Koordinaten \((x_0, z_0, t_0)\) die nächsten Reihenglieder der Zustandsgrößen wechselseitig berechnen. Aus der Faltung der \(\mu, \gamma\)-Flächen im \(x, y, z\)-Raum ergeben sich mit der Friesischen Formel die Verdichtungsstöße.
\[X_0 - X_p = \frac{1}{M_p} N_0 \]
\[z_0 = N_0 \frac{1}{M_p} \sqrt{M_p^2 - 1} \]
\[t_0 = t_0 \]

Es treten jetzt nur noch die beiden Koordinaten \(N_0 \), \(t_0 \) und der Parameter \(t_p \) auf (Gl. II.10).

Die Bicharakteristikenebenen an der akustischen Stoßfront der Kopfwelle folgen aus
\[2 \mu = (t_0 - t_p) + N_0 \]
\[2 \nu = (t_0 - t_p) - N_0 \]

Die Zeit \((t_0 - t_p)\) zählt dabei von der Spitze des Nachkegels.

Berücksichtigt man, dass in einem gegenüber der Luft ruhenden Koordinatensystem gerechnet wird, so erhält man die Gewichtsbedingungen aus der Arbeit von Gavatitsch (5) rezeptmäßi, indem man die \(x_0 \)-Koordinate durch die \(N_0 \)-Koordinate ersetzt.

\[N_0 - t_1 = \int \left[u_{N}(s;x) + c(s,x) \right] ds + K_\nu (\nu) \]
\[\mu \]
\[N_0 + t_1 = \int \left[u_{N}(s;\nu) - c(s,\nu) \right] ds + K_\mu (\mu) \]
\[\nu \]

Hierbei ist mit (II.5)
\[M(\tau) = M_p + \beta (\tau - t_p) \]
\[(II.13) \]

mit (II.10) ist
\[\sqrt{(t_0 - \tau)^2 - z_0^2} = \]
\[= \sqrt{(t_0 - \tau - (\tau - t_p))^2 - N_0^2 \frac{M_p^2 - 1}{M_p^2}} \]

Die infolge der Verschiebung der Normalenebene in gestörten gegenüber den ungestörten Raum auftretende Störkoordinate in Tangentialrichtung zur Stoßfront ist von höherer Ordnung klein, dies ergibt sich aus einer Fehlerabschätzung und auch aus Rechnungen von Schneider (14).

Grundgleichungen

Unter der Voraussetzung kleiner Störungen lassen sich die Grundgleichungen vereinfachen. Man erhält dann folgendes Gleichungssystem.

\[\frac{1}{\rho_p} \left[\frac{\partial u_1}{\partial t_0} + u_1 \frac{\partial \rho}{\partial x_0} \right] + \frac{\partial u_2}{\partial x_0} + \frac{\partial u_1}{\partial y_0} + \frac{\partial u_2}{\partial z_0} = 0 \]

Erhaltung der Bewegungsgröße

\[\frac{\partial u_1}{\partial t_0} = - \frac{1}{\rho_p} \frac{\partial \rho}{\partial x_0} \]
\[\frac{\partial u_2}{\partial t_0} = - \frac{1}{\rho_p} \frac{\partial \rho}{\partial z_0} \]
\[(II.16) \]

Erhaltung der Energie

\[\frac{1}{\rho_p} \left[\frac{\partial \rho}{\partial t_0} + \frac{\partial \rho}{\partial x_0} \right] = \]
\[= \frac{1}{\rho_p} \left[\frac{\partial \rho}{\partial t_0} + \frac{\partial \rho}{\partial z_0} \right] \]

mit der Grundgleichung der statischen Meteorologie

\[\frac{1}{\rho_p} \frac{\partial \rho}{\partial z_0} = - \frac{g \rho}{c_0^2} \]
\[(II.18) \]

\(g \) ist dabei die Erdbeschleunigung.
Es wird nun die Größe \(\alpha \) eingeführt

\[\alpha = \frac{g \rho}{\rho_0} = \frac{2 \mu \rho}{c_0^2} \]
\[(II.19) \]
ist das Verhältnis der spezifischen Wärmen bei konstantem Druck und konstantem Volumen. Die Größe \(\alpha \) ist damit ein sehr kleiner Wert von der Größenordnung des Quotienten aus Körperlänge und Höhe der isothermen Atmosphäre.

In Analogie zu einer Arbeit von Schrödinger (17) wird folgender Ansatz gemacht

\[
\begin{align*}
\tilde{U}_{ix} &= \frac{\Phi}{x_0 y_0 z_0} \tilde{U}_x \\
\tilde{U}_{iy} &= \frac{\Phi}{x_0 y_0 z_0} \tilde{U}_y \\
\tilde{U}_{iz} &= \frac{\Phi}{x_0 y_0 z_0} \tilde{U}_z
\end{align*}
\]

Unter Vernachlässigung von Gliedern der Ordnung \(\alpha^2 \) gewinnt man aus dem obigen folgenden Gleichungssystem

\[
\begin{align*}
\frac{\partial^2 \tilde{U}_x}{\partial t^2} &= -\frac{2}{x_0} \frac{\partial \tilde{U}_x}{\partial x_0} \\
\frac{\partial^2 \tilde{U}_y}{\partial t^2} &= -\frac{2}{y_0} \frac{\partial \tilde{U}_y}{\partial y_0} \\
\frac{\partial^2 \tilde{U}_z}{\partial t^2} &= -\frac{2}{z_0} \frac{\partial \tilde{U}_z}{\partial z_0}
\end{align*}
\]

Die Bedingung der Kontinuität ergibt

\[
\frac{1}{x_0} \frac{\partial \tilde{F}}{\partial t_0} = \frac{\Phi}{x_0 y_0 z_0} \left\{ \frac{\partial \tilde{U}_x}{\partial t_0} + \frac{2}{x_0} \frac{\partial \tilde{U}_x}{\partial x_0} \right\}
\]

wobei \(\tilde{F} / \partial t_0 \) eine Abkürzung für den folgenden Ausdruck sein soll

\[
\frac{\partial \tilde{F}}{\partial t_0} = -\left\{ \frac{\partial \tilde{U}_x}{\partial x_0} + \frac{\partial \tilde{U}_y}{\partial y_0} + \frac{\partial \tilde{U}_z}{\partial z_0} \right\}
\]

Das Gleichungssystem stimmt nun formal vollkommen mit demjenigen von Schrödinger (17) überein. Den retardierten Potential einer isentropen Strömung entsprechend wird die Funktion

\[
\tilde{F} = \frac{1}{4 \pi} \frac{(\tilde{t}_0 - \tilde{t})}{\sqrt{\tilde{t}_0^2 + \tilde{y}_0^2 + \tilde{z}_0^2}}
\]

Die Ableitungen von \(\tilde{F} \) nach \(x_0, y_0 \) und \(z_0 \) (\(\tilde{F}_0, \tilde{y}_0, \tilde{z}_0 \)) stellen die Richtungskosinus der Teilfront dar.

Es läßt sich nun zeigen, daß folgender Ansatz das Gleichungssystem mit der erwünschten Genauigkeit erfüllt.

\[
\begin{align*}
\frac{\partial \tilde{F}}{\partial t_0} &= -\frac{1}{\tilde{t}_0} \frac{\partial \tilde{F}}{\partial t_0} \\
\tilde{U}_x &= \frac{\partial \tilde{F}}{\partial x_0} + \frac{2}{x_0} \alpha \left(1 - \frac{\tilde{R}_0^2}{\tilde{r}_0^2}\right) F \\
\tilde{U}_y &= \frac{\partial \tilde{F}}{\partial y_0} + \frac{2}{y_0} \alpha \tilde{R}_0 \tilde{R}_0 F \\
\tilde{U}_z &= \frac{\partial \tilde{F}}{\partial z_0} + \frac{2}{z_0} \alpha \tilde{R}_0 \tilde{R}_0 F
\end{align*}
\]

Hierbei sind ebenfalls Glieder der Ordnung \(\alpha^2 \) und bei den mit \(\alpha \) multiplizierten Schwebanteilen noch zusätzlich Glieder der Ordnung \(\sqrt{\tilde{r}_0^2} \) vernachlässigt worden.

Die letzte Einschränkung ist deshalb zulässig, weil sich der mit \(\alpha \) multiplizierte Schwebanteil erst in großer Entfernung \(\tilde{r}_0 \) vom Flugkörper bemerkbar macht.

Formal entspricht damit die Ausbreitung einer Kugelwelle der von Schrödinger in (17) behandelten ebenen Welle.

Bei einer kontinuierlichen Quellsenkenverteilung auf der \(x_0 \)-Achse ergibt sich die Funktion \(F \) zu

\[
F = -\frac{1}{4 \pi} \int_{-\infty}^{\infty} \frac{(\tilde{t}_0 - \tilde{t})}{\sqrt{\tilde{t}_0^2 + \tilde{y}_0^2 + \tilde{z}_0^2}} \, d\tilde{t}
\]

Die Funktion \(F \) hat also dieselbe Form wie das retardierte Potential einer isentropen Strömung, in ihr sind keine Schwebanteile vorhanden. Diese Schwebanteile treten in
wesentlichen in der e-Potenz des Ansatzes (II.20) auf. Wie Frankl in (13) gezeigt hat, ist die momentane Quellstärke \(f \) gleich dem Produkt aus Anströmgeschwindigkeit \(c_0 M(\tau) \) und der Ableitung der Querschnittsflächenverteilung \(S'(\tau, \varphi) \) des Flugkörpers.

\[
f(\tau, \varphi) = c_0 M(\tau) S'(\tau, \varphi) \quad \text{(II.26)}
\]

mit

\[
\tau = \tau_0 - \sqrt{(\xi - \xi_0)^2 + \eta^2 + \eta_0^2} \quad \text{(II.27)}
\]

Verdichtungsstoß

Aus der Arbeit (6) von Oswatitsch lassen sich die benötigten Gleichungen für ein-dimensionale instationäre Stoße teils direkt übernehmen, teils einfach ableiten.

Der Verdichtungsstoß liegt für \(\varphi = \varphi_0 \) bei Werten von \(\mu \) und \(\nu \), welche der Bedingung

\[
\frac{\nu}{\mu} \ll 1 \quad \text{(II.28)}
\]

genügen.

Mit den Bicharakteristiken aus (II.11) und unter der Bedingung (II.28) ergibt sich die Beziehung

\[
U_{1N} = \frac{2}{\kappa-1} C_1 \quad \text{(II.29)}
\]

\[
U_{1N} = e^{-\frac{\xi}{\xi_0}} (-\frac{\varphi}{\xi_0} \frac{\partial F}{\partial \xi_0})
\]

Mit der entsprechenden Gleichung aus (6) erhält man ferner unter der Bedingung (II.28) die Stoßneigung der Kopfwelle. Ihre Differentialgleichung lautet:

\[
\frac{d\nu}{d\mu} = \frac{2}{\kappa+1} \frac{U_{1N}}{1 + \frac{\partial F}{\partial \nu}} \quad \text{(II.30)}
\]

Aus den Neigungsbedingungen (II.12) folgt mit (II.28) und (II.29)

\[
N_1 = -t_1
\]

\[
N_1 = \frac{2}{\kappa+1} \int_{\mu_0}^{\mu} U_{1N} (\xi, \eta) d\xi + k(\nu)
\]

Das Verhältnis aus Drucksprung \(p-p_0 = p_1 \) und dem lokalen Ruhedruck \(p_0 \) folgt aus

\[
\frac{p_1}{p_0} = 2e \quad \text{U}_{1N}
\]

Mit (II.10) und (II.11) findet man für \(U_{1N} \) an der Kopfwelle als erstes Glied einer Entwicklung nach (II.28):

\[
U_{1N} = -\frac{A}{2} e^{-\frac{\xi}{\xi_0}} \left[\frac{\sqrt{M_0^2-1}}{M_0} \cos \theta \omega - \frac{2}{M_0} \frac{\partial F}{\partial \nu} \right]
\]

\[
\text{d}F \quad \text{d} \nu
\]

\[
\text{c_0}
\]

Der Winkel \(\theta \) ist dabei die Neigung der Flugbahn. \(\theta \) wird von der Horizontalen nach oben positiv gemessen. Der Winkel \(\theta \) charakterisiert die betrachtete Ebene. In der Ebene senkrecht unterhalb der Flugbahn ist \(\theta = 0 \).

III. Stoßwellen an einer beschleunigten Parabelbogenspindel

Es sei lediglich das Verhalten der Kopfwelle einer beschleunigten Parabelbogenspindel ausführlich dargestellt. Alle anderen Verdichtungsstoße an der Parabelbogenspindel lassen sich analog berechnen. Zwischen Körperspitze und der Rückkehr tangenten

\[
0 < \theta \mu < M_0 (M_0^2 - 1) \quad \text{(III.1)}
\]

folgt mit (II.25) und (II.28) die Funktion

\[
F = -c_0 \left[\frac{2}{3} \eta M_0^3 \frac{\sqrt{M_0^2-1}}{M_0} \cdot \frac{1}{\nu^2} \left(\frac{\xi^2 - \frac{\eta^2}{3} M_0^2 + \frac{\eta^2}{3} M_0^2}{\nu^2 M_0^2} \right) \right]
\]

\[
\nu^2 \left(\frac{4}{3} - \frac{8}{3} M_0 + \frac{6}{5} \frac{\eta^2}{M_0^2} \right) \quad \nu^2
\]
Setzt man

\[F_1(\mu) = \int e^{-\frac{\mu}{\sqrt{\frac{M_0^2 - 1}{M_0^2}}} \left(\frac{1}{M_0^2} \mid \frac{\mu^2}{M_0^2} \right)} \frac{d\mu}{\sqrt{\frac{M_0^2 - 1}{M_0^2}}} \] (III.3)

\[F_2(\nu) = \sqrt{\nu \left(1 - 8\nu M_0 + \frac{64}{5} \nu^2 M_0^2\right)} \]

\[C = \frac{\omega}{4} \frac{M_0^2}{\nu} \]

so erhält man aus der Priemischen Formel (II.30) die Differentialgleichung

\[\frac{d\gamma}{d\mu} = \frac{C F_2(\nu) F_1'(\mu)}{1 - 2 CF_1(\mu) F_2(\nu)} \] (III.4)

Die Lösung lautet

\[F_1(\mu) = \frac{1}{C} \sqrt{\int F_2(\nu) d\nu} \] (III.5)

Die Werte für \(\gamma \) genügen der Ungleichung

\[0 < 2\nu M_0 < \frac{1}{8} (5 - \sqrt{5}) \] (III.6)

Hierbei ist \(2\nu M_0 = \frac{1}{8} (5 - \sqrt{5}) \) der Wert der neutralen Machlinie.

Die Störkordinate in Normalenrichtung zum Verdichtungsstoß folgt mit (II.51) zu

\[N_1 = t_1 = 2C F_2(\nu) F_1(\mu) \] (III.7)

Das Abklingverhalten der Verdichtungsstoße

In großer Entfernung von der

\[\frac{\rho_1}{\rho_0} = 2 \rho_1 (\frac{\nu}{M_0}) = \frac{1}{8} \frac{1}{(5 - \sqrt{5})} \] (III.8)

\[F_2'(\mu) \frac{\sqrt{\nu}}{\sqrt{F_1(\mu)}} d\nu \] (III.9)

mit

\[Y_n = \frac{A}{2M_0} = \frac{A}{8} (5 - \sqrt{5}) \]

Die Verdichtungsstoße hinter der Rückkehrtangenten

Man erkennt, dass die Störgeschwindigkeiten an der Stelle der Rückkehrtangenten

\[\frac{M_0^2 - 1}{M_0^2} = \frac{B M_0}{M_0} \] (III.10)

eine integrable Singularität aufweisen. In unmittelbarer Nähe der Rückkehrtangenten liefert die Formel für den Verdichtungsstoß keine brauchbaren Ergebnisse. Es wird über die Singularität hinweg integriert, um den Verdichtungsstoß in einem großen Abstand hinter der Rückkehrtangenten zu bestimmen.

Mit den Substitutionen

\[\int \frac{d\mu}{\sqrt{\frac{M_0^2 - 1}{M_0^2}}} = \frac{1}{\sqrt{5}} \int \left(\frac{1}{\sqrt{\frac{M_0^2 - 1}{M_0^2}}} \right) d\mu \]

\[F_1(\mu_R) = \int e^{-\frac{\mu}{\sqrt{\frac{M_0^2 - 1}{M_0^2}}} \left(\frac{1}{M_0^2} \mid \frac{\mu^2}{M_0^2} \right)} \frac{d\mu}{\sqrt{\frac{M_0^2 - 1}{M_0^2}}} \]

\[F_2(\mu) = \int e^{-\frac{\mu}{\sqrt{\frac{M_0^2 - 1}{M_0^2}}} \left(\frac{1}{M_0^2} \mid \frac{\mu^2}{M_0^2} \right)} d\mu \]

\[F_3(\nu) = \sqrt{\nu \left(1 - 8\nu M_0 + \frac{64}{5} \nu^2 M_0^2\right)} \] (III.11)
\[F_4(v) = \sqrt{\frac{1-2yM_0^2}{2M_0}} \cdot \left\{ 1 - 4(1-2yM_0) + \frac{16}{5}(1-2yM_0)^2 \right\} \]

\[C = \frac{M_0^3 y}{2} \frac{\gamma + 1}{4} \]

erhält man im Bereich

\[\mu > \frac{M_0(M_0^2-1)}{B} \] (III.12)

für

\[N_1 = -t_1 \] (III.13)

\[N_2 = 2c F_4(v)F_3(\mu) + + 2c F_3(v)F_4(\mu_0) \]

und als Lösung der Differentialgleichung

\[C F_2(\mu) = \frac{\gamma}{y=0} \left[1-F_3(v)F_4(\mu_0) \right] F_4(v) d\nu \]

wobei die Werte für \(\gamma \) der Ungleichung

\[0 < 2\gamma M_0 < \frac{4}{3}(3-\sqrt{5}) \] (III.15)

\[\frac{\rho_e}{\rho_0} = \frac{8\gamma}{\gamma + 1} \frac{\sqrt{\gamma}}{F_2(\mu)} \cdot \sqrt{\int_{0}^{\gamma} \left[1-F_3(v)F_4(\mu) \right] F_4(v) d\nu} \]

(III.16)

mit \(\nu_n \) aus

\[2M_0 \nu_n = \frac{4}{8} \left(3 - \sqrt{5} \right) \] (III.17)

IV. Stoßwellen an einer verzögerten Parabelbogenspindel

Für den Fall der verzögerten Parabelbogenspindel lassen sich die Formeln (III.3), (III.4), (III.5), (III.6), (III.7), (III.8), (III.9) direkt übernehmen. Die Beschleunigung in diesen Formeln hat dann einen negativen Wert.

V. Stoßwellen an einer Parabelbogenspindel im stationären Überschall

Auch für diesen Fall lassen sich die Formeln (III.3), (III.4), (III.5), (III.6), (III.7), (III.8), (III.9) direkt übernehmen. Der Beschleunigungsbewert verschwindet. Das Integral \(F_4(\mu) \) vereinfacht sich deshalb zu der Form

\[F_1(\mu) = \int_{\mu_0}^{\mu} \frac{e^{-\frac{\mu}{\gamma} \left[\frac{\nu}{\gamma-1} \right]}}{\sqrt{\mu \left[M_0^2-1 \right]}} d\nu \]

(V.1)

VI. Schlußbetrachtung

In vielen Arbeiten über den Flugzeugknall wurde bisher die Atmosphärenschichtung lediglich dadurch berücksichtigt, daß man zum Beispiel die Druckstörung der homogenen Atmosphäre mit der geometrischen Mittel aus Ruhe- und Druck im Erd- boden dividierte. Die expliziten Formeln (III.13) und (III.16) zeigen jedoch, daß dieses Verfahren nicht immer für die isotherme Atmosphäre gute Resultate liefert. Für die Störgrößenentwicklung läßt es sich zwar anwenden, in den Verdichtungsstoß geht jedoch über die Formel (II.30) auch noch die Störkoordinate ein. Die dargestellte Theorie erlaubt es darüber hinaus, Verdichtungsstoß- stöße beschleunigter, verzerrter und stationär fliegender Rotationskörper mit nach oben oder unten geneigter Flugbahn, einschlie-
lich des Einflusses der Atmosphärenschich-
tung in allen Ebenen zu berechnen, welche
die Bahn des Flugkörpers enthalten.

Literatur

(1) Prandtl, L.
Über die Schallausbreitung bei rasch
bewegten Körpern.
(Vortrag Deutsche Akademie Luftfahrt-
Forschung 1938) Ges. Abhandl. (Springer
Verlag 1961), S.1059-1070

(2) Van Dyke, M.D.
Second-order slender-body theory.
Axisymmetric Flow.
NACA TN 4281 (1958)

(3) Van Dyke, M.D.
A study of second-order supersonic flow
theory.
NACA Rep. 1081 (1952)

(4) Van Dyke, M.D.
First- and second-order theory of super-
sonic flow past bodies of revolution.
J.Aero.Sci. 13(1951), S.161-179

(5) Oswatitsch, K.
Die Wellenausbreitung in der Ebene bei
kleinen Störungen.
Archivum Mechaniki Stosowaney 14 (1962)
3/4, S.621-637

(6) Oswatitsch, K.
Das Ausbreiten von Wellen endlicher
Amplitude.

(7) Oswatitsch, K.
Der Stoßwellenknall beim Überschall-
flug.
Vortrag zum vierten Kongreß des Inter-
national Council of the Aeronautical
Sciences, Paris (1964)

(8) Whitham, G.B.
The flow pattern of a supersonic pro-
jectile.
Comm.Pure and Appl.Mech. (1952), S.301-
348

(9) Whitham, G.B.
On the propagation of weak stock waves.
J.Fluid Mech.1 (1956), S.290-318

(10) Rao, P.S.
Supersonic Bangs - Part I.
The Aeronautical Quarterly, Vol.VII/1,
(1956), S.21-44

(11) Rao, P.S.
Supersonic Bangs - Part II.
The Aeronautical Quarterly, Vol.VII/2,
(1956), S.135-152

(12) Rothmann, H.
Analytische Untersuchung der Ausbrei-
tung von Kugel- und Zylinderwellen.
DLR-Forschungsbericht Nr.280 (1963)

(13) Rothmann, H.
Das asymptotische Verhalten von Kugel-
und Zylinderwellen.
DLR-Forschungsbericht 66-38 (1966)

(14) Schneider, W.
Analytische Berechnung achsensymmetri-
ischer Überschallströmungen mit Stößen.
DLR-Bericht Nr.275 (1963)

(15) Schneider, W.
Theoretische Untersuchung zur Ausbrei-
tung der Druckwelle an Geschossen im
Hinblick auf die Knallbelästigung.
Als DLR-Forschungsbericht in Vorberei-
tung

(16) Stuff, R.
Analytische Berechnung von Verdichtungs-
stoßen beschleunigter oder verzögter
Rotationskörper.
Als DLR-Forschungsbericht in Vorbe-
reitung.

(17) Schrödinger, E.
Zur Akustik der Atmosphäre.
Physikalische Zeitschr. Nr.19, 18.
Jahrg. (1917), S.445-453

(18) Frankl, F.J.
Effect of the Acceleration of Elongated
Bodies of Revolution upon the Resistance
in Compressible Flow.
NACA TM Nr.1230 (1949)
(Übersetzung aus dem Russischen Prikl.
Mat.1.Mekk., Vol.10, Nr.4 (1946)