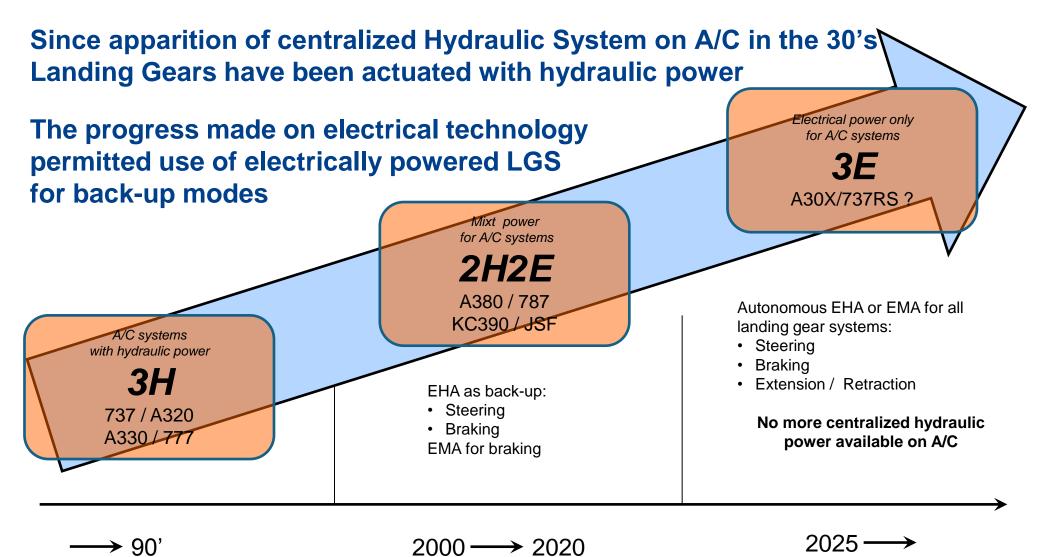
Recent Advances and Future Electrical Landing Gear Systems

ICAS Workshop – Cape town 02/09/2013

AGENDA

- 1. Historic Hydraulic Landing Gear Systems and move toward more electric
- 2. Recent advances on EHA technology for Steering and Extension/Retraction Systems (example of the nose landing gear)
- 3. Recent advances on EMA technology for Landing Gear Systems:
 - Braking System
 - Extension/Retraction System
 - Steering System

4. The future of Electrical Landing Gears


1 / CONFIDENTIAL / 02/09/13 / MBD R&T

/01/ Historic Landing Gear Systems

2 / CONFIDENTIAL / 02/09/13 / MBD R&T

HISTORIC LANDING GEAR SYSTEMS

3 / CONFIDENTIAL / 02/09/13 / MBD R&T

This document and the information herein are proprietary to Messier-Bugatti-Dowty, They must not be copied or communicated to a third party without the prior written authorization of Messier-Bugatti-Dowty.

SAFRAN Messier-Bugatti-Dowty

/02/

Recent advances on EHA technology for steering and Extension/Retraction Systems

4 / CONFIDENTIAL / 02/09/13 / MBD R&T

EHA TECHNOLOGY ALREADY IN SERVICE

Technology certified on A380 for back-up modes

- Braking/Steering : LEHGS (Local Electro-Hydraulic Generation System)
- \Rightarrow MBD responsible for the whole system
 - The Motor Pump is pressure controlled, filling a reservoir (constant speed / sense of rotation)
 - The reservoir provides the hydraulic supply to braking or steering control valves (DDV, EHSV) in case of failure of the normal mode

Motor Pump Sub-Assembly

5 / CONFIDENTIAL / 02/09/13 / MBD R&T

System EHA demonstration completed on real NLG (Steering + Extension / Retraction of LG & doors)

E/R Manifold + Power Electronics

Motor-Pump + Steering Manifold + Fluid reservoir

6 / CONFIDENTIAL / 02/09/13 / MBD R&T

IMPROVEMENT OF LIFE POTENTIAL FOR MAIN COMPONENTS

EHA (Electro-Hydrostatic Actuation) : already certified technology on backup modes.

Objective is to make EHA technology reliable enough for normal mode application during A/C full life

Extensive studies have been made on Pumps Geometry, Material, Treatments:

- Life potential of pumps already doubled, final goal is to meet 150 000 FH endurance
- Robustness to fluid pollution will be demonstrated

7 / CONFIDENTIAL / 02/09/13 / MBD R&T

/03.1/ Recent advances on EMA technology for Braking System

8 / CONFIDENTIAL / 02/09/13 / MBD R&T

ELECTRICAL BRAKING SYSTEM DEMONSTRATION ON A/C

→ EABS A340 ELECTRIC BRAKE

- Braking System Qualification (EMA, EBC, adapted BSCU)
- Economical assessment : weight, maintenance
- Flight tests in 2008: Performance Validation

→ BOEING 787 DREAMLINER

- Large project management for Electric Technology
- Technical optimization (incl. Power consumption)
- Maturity and Robustness demonstration
- Specification, conception & qualification tests
- DO160 / DO254 / DO178 Certification
- EIS on 787-8 since August 2012

ELECTRICAL BRAKING SYSTEM EMA TECHNOLOGY

Technology Assessment

10/

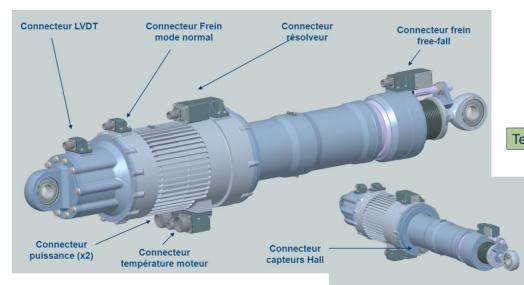
- System weight to be slightly higher in Electric than in Hydraulic (depending on the A/C size)
- Reliability will remain lower at equipment level
- Better availability is reached at system level

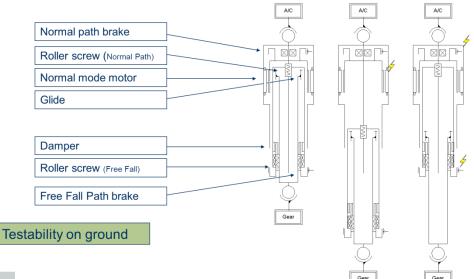
LRU health monitoring Very high dispatch based on architecture design and reconfiguration capability

- Eased installation and maintenance (plug & play system) Decrease of the A/C assembly cost and of the maintenance costs
- Braking performances are comparable in Electric and in Hydraulic

/03.2/

Recent advances on EMA technology for Extension/Retraction System




11 / CONFIDENTIAL / 02/09/13 / MBD R&T

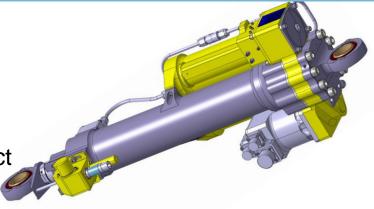
Direct Drive Duplex Actuator for E/R

→ Mains characteristics / Schematics

- Dual screw \rightarrow jam tolerant
- Direct Drive on normal path
- High torque / Low speed motor
- Electromagnetic damping in emergency

Fully duplex configuration lead to overweight actuators – need to find alternative solution

12 / CONFIDENTIAL / 13th December 2012 / Systems Division covered by TAA 369 dated 11 October 2011


Simplex Jam Tolerant Actuator for E/R

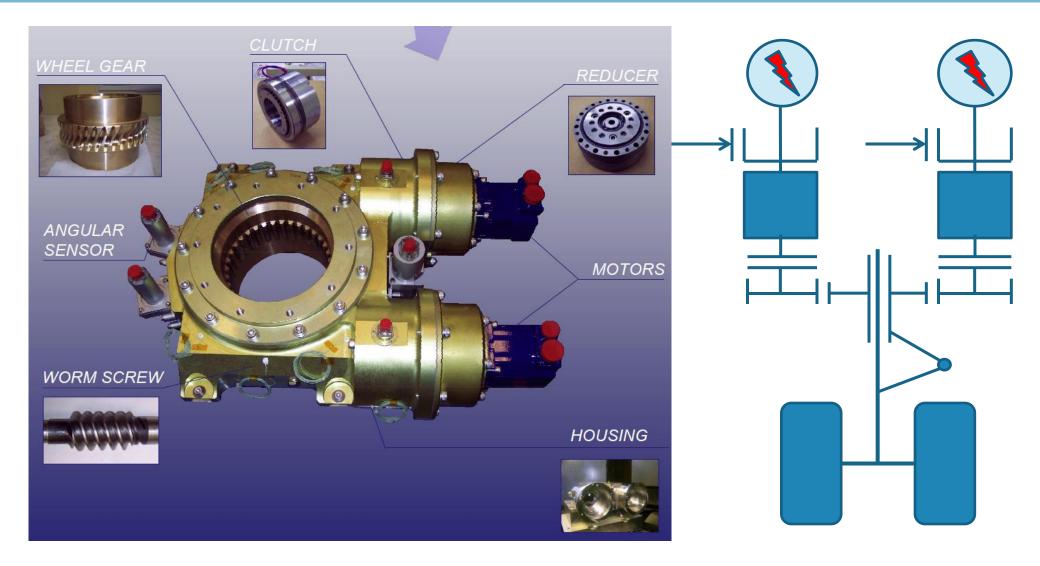
Mains characteristics:

- Simplex mechanical transmission
- Jam tolerant in extension
- Hydraulic passive damping / Wet actuator
- LG architecture optimized to permit unlock and retract from single EMA

Achievements:

- Low weight EMA Prototype available
- Component level tests:
 - Rollerscrew/axial bearing over temperature
 - Electric motor
- Actuator level test:
 - Normal and Emergency mode
- System level tests on real LG expected end-2013

13 / CONFIDENTIAL / 13th December 2012 / Systems Division covered by TAA 369 dated 11 October 2011


/03.3/

Recent advances on EMA technology for Steering System

14 / CONFIDENTIAL / 02/09/13 / MBD R&T

FIRST TRIAL – FULLY REDUDANT STEERING EMA

15 / CONFIDENTIAL / 13th December 2012 / Systems Division covered by TAA 369 dated 11 October 2011

SECOND TRIAL - PROMISING CONCEPT TESTS FROM COMPONENT TO REAL LANDING GEAR

Tests successfully completed:

- Components tested separately:
 - Motor (dedicate loading rig)
 - Harmonic Drive (over Temperature)
 - Torque limiter (Static / Dynamic tests)
- Actuator tested on real landing gear:
 - Full load / speed spectrum
 - Full actuator characterisation and good model correlation
 - Cold Temperature test campaign

Next step is to address weight optimisation and realistic test for shimmy and flat tire landing

16 / CONFIDENTIEL / 2012 March the 29th / SE/TAE

/04/ The future of Electrical Landing Gears

17 / CONFIDENTIAL / 02/09/13 / MBD R&T

THE FUTURE OF ELECTRICAL LANDING GEARS

- 1. Completion of robustness demonstration of EHA technology & Entry Into Service for LG Systems in normal mode
- 2. Cumulate experience in service for Electrical Braking System & Optimize next generation architecture
- 3. Qualify/Certify the new Electrical Green Taxiing function for Short Range aircraft application
- 4. Mature Simplex Extension / Retraction EMA to compete with EHA weight for all electric aircraft application
- 5. Demonstrate weight effective steering EMA solution compliant with Shimmy and Flat tire landing requirements

