Manufacturing and Certification of Composite Primary Structures for Civil and Military Aircrafts

A R Upadhya
Director
Council of Scientific and Industrial Research
National Aerospace Laboratories, Bangalore, India

ICAS Biennial Workshop on “Advanced Materials & Manufacturing – Certification & Operational Challenges”
Stockholm, Sweden, 5th September 2011
CSIR- NAL's Mission

★ Development of national strengths in aerospace sciences and technologies

Infrastructure, facilities and expertise
In-house, Grant-in-aid, Sponsored projects

★ Advanced technology solutions to national aerospace programmes

Fighter aircraft, gas turbine engines, defense systems, defense services, launch vehicles and satellites, space systems
Sponsored projects

★ Civil aeronautics development (since 1990s)

Design and development of small and medium-sized civil aircraft - Promote a vibrant Indian civil aviation industry
Government funding, Industry partnership

Core competence at NAL spans practically the whole aerospace sector
CONCEPT TO CERTIFICATION

NAL’S CORE
STRENGTH IN
COMPOSITES

CUTTING-EDGE RESEARCH

PROCESS
DEVELOPMENT

DESIGN &
ANALYSIS

MANUFACTURING

STRUCTURAL
TESTING

STRUCTURAL
REPAIR

NON-
DESTRUCTIVE
EVALUATION

ADVANCED
RESEARCH

STRUCTURAL
HEALTH
MONITORING
Evolution of Composites at NAL

Initial Development:
- Bridge Deck Plates,
- Radome Development,
- DO-228 Rudder with DLR Germany

- 2 Seater HANSA
- 14 Seater SARAS
- 90-110 Seater NCA
- LCA- Tejas

Timeline:
- 1980-90
- 1993
- 2001
- 2004
- 2017
NAL’s HANSA, A Light All-Composite Trainer Aircraft

- **Length overall**: 25 ft (7.6m)
- **Wing span**: 34.35 ft (10.47m)
- **Empty weight**: 550 Kg
- **All-up weight**: 750 kg
- **Usable fuel capacity**: 85 litres

Two-bladed constant speed Hoffmann propeller of diameter 1730mm.

Performance

- **Stall speed with 20° flaps**: 43 KIAS
- **Max. cruise speed**: 96 KIAS
- **Max. rate of climb**: 650 ft/ min
- **Endurance**: 4 hours
- **Landing distance**: 1770 ft (540 m)
- **Take-off distance**: 1355 ft (415 m)

Rotax 914F3 (turbo charged engine with 100 BHP max. continuous power @ 5500 rpm)

Certified under JAR-VLA in 2000
Advanced Technology Features

- HINGELESS MAIN ROTOR
- ARIS- 6 DEGREE OF FREEDOM
- INTEGRATED DYNAMIC SYSTEM
- ADVANCED COCKPIT
- EXTENSIVE USE OF COMPOSITES
- CRASHWORTHY CREW SEATS
- MODERN ENGINE WITH FADEC
- BEARINGLESS TAIL ROTOR
India makes it to Global Composites Scene with LCA- Tejas Program

Courtesy: Boeing
LCA - ROLES & SALIENT FEATURES

Air Defence Roles
- Point Intercept
- Escort
- Air Superiority

Offensive Air Support
- Close Air Support
- Interdiction

Maritime Reconnaissance and Strike

Operational Mass: 9000 Kgs
Max. Mach No.: 1.8
Max. War Load: 4500 Kgs
Max. Altitude: 15 Kms
TECHNOLOGIES

Unstable Configuration
- High Agility & Maneuverability
- Control laws
- Advanced Carefree Maneuverability

Advanced Materials
- Composite Wing, Fin, Elevons, Fuselage, Rudder, Doors & Hatches
- Reduced Weight
- Increased Life
- Reduced Signature

Flat Rated Engine
- Easy Role Change

Digital Fly By Wire Flight Control System

Advanced Avionics
- Easy Role Change

Stealth
- RCS
- IR

Multi Mode Radar
- Advanced Sensors

Glass Cockpit
- Reduced Pilot Load

General Systems
- Carbon brake disc
- 4000 PSI Hyd System
- ECS for tropical Climate
- Utility systems
Composites in the LCA Airframe

- Significant reduction in weight
- Significant reduction in part count
- Elimination of costly fasteners by using cobonded-cocured technology
- Improvement in fatigue life
- Reduction in signature

Use of composites in LCA Airframe

- CFC: 45%
- Al-alloys: 43%
- Steels: 4.5%
- Ti-alloys: 5%
- Others: 2.5%
Structural Optimization of Composite Wing Skins for Stress, Buckling, Aeroelasticity and Technological Constraints
Composite Parts made for LCA-Tejas by NAL

45% by weight in composites
Benefits of Integration through Cocuring

CSIR-NAL has developed Cocuring technology within the country for Light Combat Aircraft (LCA-Tejas) and SARAS aircraft

- No holes - No stress concentration
- Increased stiffness of structure
- Better aerodynamic surface
- Reduced assembly time
- Weight saving
- No fuel leakage
NAL developed composites parts in LCA Tejas

- Integral rib-skin cocured construction
- Resulted in weight savings of 35% and a 20% weight reduction in modified rudder
- Fabrication done using prepregs with a hybridization of tooling technologies like tape winding and dissolvable core technology
- Cost reduced by about 30%
NAL developed composites parts in LCA Tejas

- Fuselage Top Skin
- Air Channel Dividing Wall
- Co-cured CFC Circular Duct
LCA CFC Wing Assembly
Feature Level Testing for LCA

- Fatigue testing for 5 life cycle
- Environmental aging
- Static testing under Hot Wet

CFC-CFC joint

CFC-Metal joint I

CFC-Metal joint II

L-Joint, BLK#18

Spar-3 pt. bending

Spar opening

Y-Joint, Circular Duct

Skin

Skin-Spar Joint

T-Shear

Stiffener
WING ROOT FITTING BOX - DRY ASSEMBLY & FINAL ASSEMBLY

WING BUCKLING TEST BOX

WING FUEL TANK SEALING TEST BOX

O/B Elevon test box

- Fatigue and burst pressure testing of Drop Tank Nose cone
Testing of LCA Wing

- Flexible test rig to simulate stiffness effects
- Isostatic equilibrium system
- Instrumented reactions
 Simultaneous external & reaction loading
Development of a Light Transport Aircraft

14 seater multi-role LTA - SARAS

- Hybrid (metal + composite) airframe
- CFC flaps, control surfaces, fairings
- P&WC PT6A-67A turbo-prop engine
 - 1200 SHP
- 2.65φ (5 bladed) constant speed propeller

- Max. cruise speed : 550 km / h
- Max. cruise altitude : 9 km
- Max. R/C, ISA, SL : 700 m / min.
- Endurance : ~ 5h
- T.O. distance, ISA, SL : 700 m
- Landing distance, ISA, SL : 850 m

Design to meet FAR-23 requirements
1. **AS4/ 914 Prepreg materials from Hexcel composites Pvt Ltd; 180 deg C curing systems; Dry $T_g = 175$ deg C**

2. **Unidirectional fabric from Hexcel Composites and Resin from Axson France for the VERITY process; 80 deg C cure followed by 180 deg C post cure: Dry T_g of 145 deg C**

3. **Rohacell foam for stringers and access covers**

VERITY process mechanical properties within 2% of prepreg properties
Composite Parts in SARAS Aircraft

- Radome
- Front Top Skin
- Horizontal Stabilizer
- Elevator
- Wing
- Floor Board
- Inboard Flap
- Outboard Flap
- Aileron
- Rear Pressure Bulk Head
- Fin

New Processing Technology: VERITY

35% by weight in composites
HT Components of SARAS

Cocured Inter Spar Box with Bottom Skin With 2 Spars, 11 Ribs, 7 Stringers

Size: 5.5mx 1m

Cocured Top Skin with Stringers

<table>
<thead>
<tr>
<th></th>
<th>Metal</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>92 Kg</td>
<td>70 Kg (24%)</td>
</tr>
<tr>
<td>No. of parts</td>
<td>243</td>
<td>11</td>
</tr>
<tr>
<td>No. of Fasteners</td>
<td>10,500</td>
<td>2900</td>
</tr>
</tbody>
</table>

HT Tip Cocured with Stringers
Horizontal Tail aft box

<table>
<thead>
<tr>
<th></th>
<th>Metal</th>
<th>Composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>32.0 kgs.</td>
<td>24.0 kgs.</td>
</tr>
<tr>
<td>No. of parts</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>No. of fasteners</td>
<td>5200</td>
<td>Nil</td>
</tr>
<tr>
<td>Assembly</td>
<td>4 weeks</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Dimensions: 5.5mx1m. The skin is cocured with stringers, ribs and spars.
Tooling Concepts

Basic outer CFC Mould

Internal Flexible tools

Skin stringer Integration

Skin stringer spar Integration

Final bag for curing
Vertical Tail of SARAS

Cocured Inter Spar Box with 6 Spars and a Mid Rib

Size: 2.8mx1.8m

<table>
<thead>
<tr>
<th></th>
<th>Metal</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of IS Box</td>
<td>65 Kg</td>
<td>50 Kg (23%)</td>
</tr>
<tr>
<td>No. of parts</td>
<td>130</td>
<td>01</td>
</tr>
<tr>
<td>No. of Fasteners</td>
<td>1100</td>
<td>0</td>
</tr>
<tr>
<td>Total VT weight</td>
<td>126 Kg</td>
<td>101Kg (20%)</td>
</tr>
</tbody>
</table>
Cocured CFC Pressure Bulkhead of SARAS

1.8 m diameter dome having a depth of 175 mm, with thickness varying from 1.2 to 3.00 mm
Accuracy of outer contour and gusset spacing = +/- 0.5 mm

<table>
<thead>
<tr>
<th></th>
<th>Metal</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>34 Kg</td>
<td>17 Kg (50%)</td>
</tr>
<tr>
<td>No. of Fasteners</td>
<td>700</td>
<td>0</td>
</tr>
</tbody>
</table>
All the above were fabricated using Prepregs and Autoclave Moulding Technology

Challenge: How to cut costs???

One solution- Liquid Moulding Technology
LCM and its Variants

- RTM (Resin transfer moulding)
- RIM (Resin injection moulding)
- VARTM (vacuum assisted resin transfer moulding)
 - SCRIMP (Seeman composite resin infusion moulding process)
 - DCVRTM (Double chamber vacuum resin transfer moulding)
 - FASTRAC (Fast remotely activated channels)
- RFI (Resin Film Infusion)
- SRI M (Structural reaction injection moulding)

VERITy (Vacuum enhanced resin infusion technology)
Developed by NAL
VERITy Process

Reinforcement

Mould

Resin infusion

Resin impregnates fibers under vacuum

Vacuum pump

Consolidation Under 1 Bar
External Pressure and Vacuum

Cured part

Vacuum pump
Development of Integrated Wing Structures at NAL using VERITY Process

SARAS Wing: Substructure Details
Building Block Approach for Composite Wing of SARAS Aircraft

Full Scale Test
- Test Box with Skin & Spar Splices
- Lightning Test Box

Sub-Component Level
- Skin Splice
- Spar Splice
- Bird Impact Test On Leading Edge

Feature Level
- T Pull Strength
- Single Lap Bearing Test
- L-Angle Opening Test

Component Level
- Tension/ Compression/ Shear Strength
- Un-notched
- Blunt Notch

Element Level (Tests at RT & ETW)

Coupon Level (Tests at RT, ETW & CTA)
Box Level Studies using VERITY: SARAS Wing Test Box

Structural Details of Wing Test Box

Cocured bottom box

Assembled box undergoing Static Testing
Flow Sensor Development
Fibre Optic Flow Sensor

<table>
<thead>
<tr>
<th>Process</th>
<th>Sensor – 1</th>
<th>Sensor – 2</th>
<th>Sensor – 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>After Embedment</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Before Infusion</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>Resin crossed Sensor – 1</td>
<td>c</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>Resin crossed Sensor - 2</td>
<td>c</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>Resin crossed Sensor - 3</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>
ResinVI EW Software Development

- LabVI EW & MATLAB based modular code development for real time resin flow.
- Enables sequential infusion based on *NetSense* feedback.
- Resin arrival time information important for future infusion strategy and modeling.
- Low cost reusable sensor & modular open system architecture system.
SARAS Wing Components made using VERITY

Top Skin 6mx2m Inner Side

Thickness varies from 1.7 mm to 8.6 mm
Thickness of hat stringer is 1.36 mm
Centre Top Skin

1) 48 parts cocured
2) 41 Kgs
3) Complex ribs
SARAS Outboard Wing: Integrated Wing Concepts
Cocured Coinfused Wing Bottom Skin with Substructure

Cocured Ribs and Stringers

@ 300 parts Cocured in one shot

Cocured Spar with Gussets

Cocured Rib with Gussets
Tool Design

Infusion Strategy

- Infusion strategy plays a key role, especially in components where the thickness and geometry of a component varies from section to section and a lot of features are to be co-cured.

- In large structures, sequential and/or parallel infusion strategies need to be employed, as there is a limited time available to complete the infusion.

Vacuum Bagging Technology

- This is yet another aspect that needs to be dealt with in order to get a complex co-cured component that meets the required specifications of compaction and dimensions.

- Care has to be taken to avoid any ‘Bridging’ at the radius and proper vacuum communication needs to be maintained throughout the cure of the component to ensure proper consolidation of the part.
Fabrication Methodology

Cocured Component

Master Model

Finished Master Model

Mould Layup

Preform Layup & assembly

Finished Mould

Internal Tool Development

Resin Infusion using VERITY

Locator Development
Trial Assembly of Wing
Manufacturing & Assembly Issues

1) Tool corrections for spring forward behaviour of composites is trail and error method and difficult for complex composite parts.

2) Thickness growth -2% to +8% in composites are lead to assembly fitment problems.

3) Maintaining the fiber direction during the lay up of complex component is difficult issue.

4) Out of plane loads are important when laminate is assembled with mechanical fasteners. If fastener pulling forces are too high, Composites experience delaminate & possible loss of structural integrity.

5) Presence of ply drops ,lap joints (BD Composites) and their variability in thickness results in higher thickness shim when mating with machined metallic members during the assembly.
Operational Issues with composite Structure

1) Removal of Panels: As composite have low wear resistance as compared to metal, holes are elongating as panels are removed frequently. In case of fuel tanks, fuel is leaks due to this elongates. Remedial: Use metallic sleeves/bushes for these holes

2) Delaminations are occurring during drilling & other machining operations even for minor deviation in the process like improper support during drilling and direct drilling of higher diameter holes.

3) As composites are brittle, even minor deviations in the contour is difficult during assembly.

4) The inspection time required for composite structures is more as compared to metallic structures. It is difficult to inspect the delamination/damages other than through the ultrasonic inspection. Some impact damage are noticed only during schedule maintenance period.
Operational Issues with composite Structure

5) More precautions have to taken while walking on composite parts like wing as it leads to delamination/ debonding when there is local hard points.

6) Edge damages are occurs frequently when composites doors/panel are removed from the aircraft & during installation.

7) Fuel leaks are occurring during the service (1-2 years) due to resin starvation zones even though it is cleaned structurally.

8) Modification of composite structures due to operation requirements like installation of new equipments etc, is difficult as compared to metal.
Damage Tolerance Studies towards certification
Aspects

- Damage threats & classification
- Aspects of damage tolerant design
- Airworthiness requirements
- Structure substantiation
 - Building block approach
 - Test Sequence/Protocol
Damage Threats

- Processing anomalies and in-process handling damages
- In-service damages: E.g. Tool drops, ground vehicle impacts, bird strikes, runway debris, uncontained engine rotor failure etc.
- Environmental damages: E.g. Hail, Lightning strike, Moisture ingress, UV radiation etc.
- IATA survey: Ground handling and moisture intrusion are most common sources of damage
Damage classification

- **Barely visible impact damage (BVID)**
 - Small damages that may not be found during inspection
 - Typical dent depth 0.5 to 1 mm
- **Visible impact damage (VID) and penetrations**
- **Scratches, gouges, surface and coating inspections**
- **Fluid and moisture ingress**
- **Delamination, debonds etc.**
- **Thermal damage; Chemical damage; Others**
Why should we care about impact damage?

- Laminated composites have very low shear strength, hence are susceptible to impact damage.
- Invisible internal delamination and BVID are most detrimental and lead to low allowable load/strain in design.
- Impact damage is accommodated by limiting the design strain - leading to significant conservativeness.
- Safety & economical reasons - damage has to be detected and repaired during inspection and maintenance.
Typical Energy Levels for Projectile Impact

<table>
<thead>
<tr>
<th>Description</th>
<th>Energy (J)</th>
<th>Mass (g)</th>
<th>Velocity (m/s)</th>
<th>Circumstances</th>
</tr>
</thead>
<tbody>
<tr>
<td>tool drop</td>
<td>6</td>
<td>330</td>
<td>6+</td>
<td>Maintenance work</td>
</tr>
<tr>
<td>removable element drop</td>
<td>4</td>
<td>220</td>
<td>6+</td>
<td>Cargo handling</td>
</tr>
<tr>
<td>maintenance component</td>
<td>16</td>
<td>910</td>
<td>6+</td>
<td>Maintenance work</td>
</tr>
<tr>
<td>hail (up to 51 mm diameter)</td>
<td>43</td>
<td>62</td>
<td>37.3</td>
<td>Take-off and landing, flight, taxiing</td>
</tr>
<tr>
<td>bird strike</td>
<td>3.8-81 (kJ)</td>
<td>1800</td>
<td>65-300</td>
<td>Take-off and landing, flight</td>
</tr>
<tr>
<td>runway debris</td>
<td>2-40</td>
<td>9</td>
<td>20-94</td>
<td>Take-off and landing, flight, taxiing</td>
</tr>
<tr>
<td>concentrated load</td>
<td>50</td>
<td>-</td>
<td>Static</td>
<td>Maintenance, cargo handling</td>
</tr>
</tbody>
</table>

Courtesy: Impact on aircraft, Marcílio Alves et.al.
Aspects of Damage Tolerant Design

- **Residual strength capability**
 - Residual strength of several damage scenarios to be demonstrated after application of repeated loading

- **Damage growth characterization**
 - “No initiation – No growth” approach is usually adopted

- **Usual design practices**
 - Multiple/Redundant load paths
 - Materials with slow crack growth rates
 - Design for good inspectability
Development of Composite Structural Repairs & Validation

- Design, Fabrication, Testing and Validation of Composite Repair Schemes
 6 types of composite materials & 4 types of adhesives tested at RT & HTW
 15 Types of repairs on Monolithic, Stiffened and Sandwich structures

Repair & Testing of CFC T-Stiffened Panel

Specimens tested: 400 Nos
Panels tested: 55 Nos
Civil Aviation Authorities

<table>
<thead>
<tr>
<th>Federal Aviation Administration (FAA)</th>
<th>European Aviation Safety Agency (EASA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Aviation Regulations (FAR)</td>
<td>Certification Specifications (CS)</td>
</tr>
<tr>
<td>Airworthiness Directives (AD)</td>
<td>Airworthiness Directives (AD)</td>
</tr>
<tr>
<td>Advisory Circulars (AC)</td>
<td></td>
</tr>
</tbody>
</table>
Compliance to FAR/ CS

- Allowable damage that may go undetected
 - (DUL residual strength; No growth for minimum of 2 service lives)

- Damage detected by field inspection
 - (DLL residual strength; No growth until 2 inspection intervals)

- Discrete source damage known to pilot
 - (Continued safe-flight; “get-home” loads)

- All damage that lowers strength below DUL must be repaired when found

- Any damage that is repaired must withstand DUL and not impair safe operation of the aircraft for its lifetime
Damage Tolerance Test Protocol

Acceptable Manufacturing Defects

Panel → Strain Survey at 60% DLL

Fatigue Loads One Life

Panel → Strain Survey at 60% DLL

Introduce BVID

Strain Survey at DUL

Monitor Damage during Static & Fatigue Testing

Fatigue Loads One Life

Panel → Strain Survey at DUL

Fatigue: Two Inspection Interval

Repair VID

Fatigue: Two Inspection Interval

Panel → Strain Survey at DLL

Panel

Strain Survey at DLL

Fatigue: Two Inspection Interval

Strain Survey at 60% DLL

Panel
The Next Design Philosophy???

- Design Philosophies
 - Safe-life
 - Fail-safe
 - Damage tolerance

- Structural Health Monitoring (SHM)
 - Sensors can be embedded in the structure
 - Attained certain degree of maturity and field trials started
 - Can we go for a SHM based design?
 - Is it possible to build a light weight and damage tolerant structure using this philosophy?
 - What are the Issues?
Benefits of Structural Health Monitoring

- ‘Condition-based maintenance’ or ‘maintenance-on-demand’
 - Lower maintenance costs
 - Higher availability of aircraft

- Prognostic capabilities of SHM
 - Better fleet management leading to better resource utilization

- SHM-based design
 - Move away from Damage Tolerance design philosophy
 - Lower weight, lower operating costs
Strain Variation During Take-off

- FBG 130 L
- FBG 130 R
- FBG 190 L
- FBG 190 R
- FBG 250 L
- FBG 250 R

Strain (microstrain)

Time (secs)
Strain Variation During Flight Maneuvers

- FBG 130 L
- FBG 130 R
- FBG 190 L
- FBG 190 R
- FBG 250 L
- FBG 250 R

Levels:
- 3g
- 2g
- 1.5g
- Level Flight
Flight Trial of SHM system on Nishant UAV

- A successful flight trial of SHM system was conducted on Nishant UAV on October 28, 2010 at 12:15 PM at Kolar.
- The UAV was flown for more than two hours as per the flight plan starting from catapult launch, various flight maneuvers and recovered as per parachute recovery.

- More than 6GB of FBG sensor data throughout the flight was acquired.
- Challenge: Large volume flight data processing and load estimation
- QuickVIEW software was developed
 - Temperature compensation with Push-Pull topology
 - Sensor data integration with flight data (pitch, yaw, roll etc.)
 - On-site data view and load estimation using ANN based load estimator.
Flight Data Analysis Results

Parachute

R

Catapult

Launch

Recovery

SHM of Nishant UAV Using Fiber Optic Sensors
Wind Tunnel Tests

Wind tunnel tests have been carried out at different wind velocities of 25, 35 & 42m/s

SMA actuated trim-tab remained stable in the deflected condition under the wind load.
Concluding remarks

Challenge is to reduce cost

- Aerospace materials & associated design and manufacturing processes must be optimized in an integrated manner to deliver cost efficient products.
- Environmental effects and issues of recycling to be addressed.
- Advanced striker aircrafts being developed which will fly at higher mach nos: hence need composites to meet higher temperatures.
- Stealth technology is a major area of research → New materials and nano coatings.
Concluding remarks

- Need to reduce maintenance costs and have fully online SHM systems
- Smart materials/structures for morphing
- FML for energy absorption need to be fully developed
- ‘Mechanic friendly’ repair technology to be established
- Better understanding of damage tolerance: more robust failure theories – will enable faster certification
- All fields of Engineering likely to use more composites – challenge is higher efficiency at a lower cost
Thank you