The Future of Propulsion

Highlights from ISABE 2017

Professor Ric Parker
President ISABE

with Ibrahim Eryilmaz
Cranfield University

International Society for Air Breathing Engines
Agenda

• ISABE 2017, Manchester
• The Future of Propulsion
 • Commitments
 • Enabling Technologies
• ISABE 2017 Highlights
 • Words from Keynotes
 • Words from Presenters
• Electric propulsion (Rolls-Royce)
• Next Conference - ISABE 2019, Canberra
ISABE 2017, Manchester - Economy, Efficiency & Environment

Hosted by Rolls-Royce and UK Organising Committee

Co-hosted by Cranfield University

Supported by

Manchester City Council

Sponsored by

Rolls-Royce

Manchester City Council

Honeywell

Canada

ITP

UNSW

GKN Aerospace

NASA

GE

SAFRAN

Manchester Central Convention Complex

The city where The Honourable Charles Rolls met Sir Henry Royce

ICAS 2018 – Belo Horizonte
Highlights from ISABE 2017 - Manchester
ISABE 2017, Manchester - Economy, Efficiency & Environment

- 370 registered participants
- 18 keynotes
Interactivity and Interactive parallel sessions

- 248 papers

Panel discussions + Q&A
The Future of Propulsion - Commitments

- CO₂ emissions 75% ↓*
- NOₓ emissions 90% ↓*
- Noise emissions 65% ↓*
- 0 emissions taxi
- Integrated systems engineering
- Certification cost 50% ↓

Innovation

- Air traffic management 25M flights/year
- EU travel within 4 hours
- Arrivals within 1 minute

Market

- EU Flightpath - 2050

Environment

- NOₓ emissions 90% ↓*
- CO₂ emissions 75% ↓*

Research

- Technology Network
- Universities & Industry
- Public & Private

Safety

- Accidents 80% ↓
- Manned/unmanned vehicles together

*reductions w.r.t 2000

ICAS 2018 – Belo Horizante
Highlights from ISABE 2017 - Manchester
The Future of Propulsion – Enabling Technologies

- UHBR engine sizing - Integrity and installation challenges
- Cycle innovations – variable cycles
- Manufacturing - Additive manufacturing & fast prototyping
- Virtual engine design systems
- Integrated aircraft and propulsion system design
 - Boundary layer ingestion
- Electrification (Separate presentation)
 - More electric aircraft
 - Electric augmented
 - Hybrid electric
 - Electric propulsion
From Keynotes – Safran Aircraft Engines

2018 LEAP-1C entering into service
• Certified by EASA & FAA

By additive manufacturing
• 20% reduction in engine parts by 2025

Powering COMAC 919
• Narrow body, 2 engine aircraft

Green taxiing®
• 2-4 % fuel burn reduction
From Keynotes – Rolls-Royce

Global Partnership
• 31 University Technology Centres
• 14 Research Centres and other Partnerships

UltraFan® gearbox
• The world’s most powerful gearbox has run to max. power

DaVinci
Design and Validate in the Computer Investment
• Less testing, better quality, lower cost
From Keynotes – Airbus

Existing product improvements – on track
 • Design for Additive Layer Manufacturing
 • 5% waste material
 • up to 50% potential weight saving

New configurations
 • Hybrid electric propulsion

Better integration and architecture – BLADE: Breakthrough Laminar Aircraft Demonstrator in Europe
 • 2017 – Flight tests on Airbus A340

Towards Urban Air Mobility
 • Pioneering role in opening the market
From Keynotes – Cranfield AIRC & DARTeC

• AIRC
 • A £35m investment by Cranfield, HEFCE, Rolls Royce and Airbus
 • Surrogate airframer for Rolls-Royce & surrogate component supplier for Airbus

• DARTeC
 • A £65m investment by Cranfield, HEFCE, Thales, SAAB, Boeing UK, Raytheon, Monarch Ltd
From Keynotes – Aerospace Technology Institute

UK Aerospace programme roles

ATI Portfolio by Value Stream

Impact of New Technologies – Case

Advanced Wing Assembly
- Right first tie assembly
- Cost & lead time reduction

Harsh Environment Electronics
- 250 °C capable environment

AMRC Titanium Casting
- World’s largest Ti casting facility
- £15M investment
From Keynotes – Clean Sky Joint Undertaking

A public-private partnership- A focal point in European Aviation

- 14 Industrial leaders & EU Commission
- €1.8Bn EU funding, 4B € total cost, >800 participants

Contra-Rotating Open Rotor, SAFRAN
- Ground test demonstrator
- Compliant with the new noise standards
- Offering 30% ↓ in fuel burn compared to 2000

Geared turbofan demonstrator, MTU
- New systems for a more electric engine
- All electric VGV actuator
From Presenters – Boundary Layer Ingestion

View of the RAPRO2 BLI experimental system in the L1 wind tunnel - ONERA

- Distorted fan flow
- Less drag on fuselage and nacelle
- BLI reduces global power needed
- Less fuel to drive the fan

Power coefficient as a function of the global axial force CT-CD

Power_{Exp} No BLI

Power_{Exp} With BLI

Fan Exit Po

Po No BLI

Po With BLI

ICAS 2018 – Belo Horizonte
Highlights from ISABE 2017 - Manchester
Installation challenge, system sizing and synthesis

- Optimized pylon & nacelle geometry and wing shape
 - Straight (low) wing, gull wing, truss braced wing

Impact on landing systems length and weight

- FAA minimum ground clearance ≥ 9in
- Minimum allowable roll angle ≥ 8 degrees
From Presenters – UHBR Engine Sizing

- VPF- No thrust reverser
- Less landing gear ↑ with a slimmer nacelle to accommodate UHBR
- opt. FPR ~1.3-1.35 - VPGF < FPGF

- High wing
- No ground clearance constraint
- High span - gate compatibility issues
- Further fuel burn ↓ - opt. FPR<1.2
From Presenters – Manufacturing

EOS GmbH & Universität der Bundeswehr
• Compressor vane with pressure probes - Additive Manufacturing, DMLS

Rolls-Royce Advance3
• Critical long lead time parts - Fast Make SCUs
• Intercase cast in sub-sections and bolted
• Blisk stages machined from solid and Electron Beam welded

CastBond™ HP-NGVs
• Cooling capability
From Presenters – Virtual Engine Design Systems

3-D transient dynamic sub-systems modelling, LS-DYNA

AECC Ltd.
• Fan shaft is connected
• Stress under FBO loads

Cranfield Rolls-Royce UTC
• Shaft failure – no connection
• Turbine overspeed

ICAS 2018 – Belo Horizonte
Highlights from ISABE 2017 - Manchester

18
From Presenters – Cycle Innovations

Candidate technologies for year 2050 engines – qualitative assessment

- Intercooling
- Recuperation
- Variable geometry
 - VIGVs for IP and HP compressors
 - Variable pitch fan
- Secondary combustion

- Topping cycles - pressure rise combustion
 - Pulse-detonation combustors
 - Piston engines
- Bottoming cycles
 - Use the core exhaust as heat input
 - S-CO₂

Reverse flow core turbofan engine architecture with several features
From Presenters – Cycle Innovations

The variable cycle engine – quantitative assessment

- 3 spool mixed flow turbofan
- Variable fan IGV
- Variable compressors
- Variable turbines
- Variable mixer
- Variable nozzle

- MTU cycle code
 - Thermodynamics
- Meanline code
 - Flowpath design
- Preliminary mechanical design tool
 - Weight prediction

![Graph showing SFC improvement with various cases: Reference (Basis), VCE (No adjustment losses), VCE (With adjustment losses).](image)

- Reference (Basis)
- VCE (No adjustment losses) with a 7.9% improvement
- VCE (With adjustment losses) with a 1.3% improvement

ICAS 2018 – Belo Horizonte
Highlights from ISABE 2017 - Manchester

© Cranfield University
20
From Presenters – Noise Reduction

The NASA Aircraft Noise Reduction Sub-project
• Acoustic liner technology
• Propulsion airframe aeroacoustics

Over-The-Rotor Liner (Acoustic Casing Treatment)
• Casing grooves over the fan tip
• Groves have porosity to allow communication between unsteady flow and absorbers

Challenges
• Fan losses, already solved: to be published soon
• Fabrication
From Presenters – Turbo-Electric Propulsion

Techno-economic and environmental risk assessment (TERA) of NASA's N+3-X aircraft
- TERA methodology by Cranfield
- Boundary layer ingestion
- Turbomachinery
- Aircraft performance
- Economic modelling

Improvements w.r.t improved baseline aircraft (IBA) derived from Boeing 777-200LR

60% fuel reduction target
List of References

- ISABE 2017 keynote, Ian Gray, Cranfield University AIRC
- ISABE 2017 keynote, Charles Champion, Airbus
- ISABE 2017 keynote, Jerome Bonini, Safran Aircraft Engines
- ISABE 2017 keynote, Paul Stein, Rolls-Royce plc
- ISABE 2017 keynote, Simon Weeks, Aerospace Technology Institute UK
- ISABE 2017 keynote, Jean-François Brouckaert, Clean Sky Joint Undertaking
- ISABE-2017-22536, G. Billonnet, O. Atinault and R. Grenon, Assessment of the Fan Simulation for quantifying the Boundary Layer Ingestion benefits on an Experimental Propulsion System
- ISABE-2017-22529, S. Bindl, F. Kern, R. Niehuis, Additive Manufacturing of a Compressor Vane with Multi-Hole Pressure Probes
- ISABE-2017-22705, A. Geer, The Rolls-Royce Advance3 Project – Proving our Future Core
- ISABE-2017-22675, S. Hu, X. Chai, Application of Sub-Modelling Technique for Whole Engine Transient Dynamic Analysis
- ISABE-2017-22704, C. Hennig, F. Grauer, Challenges of Preliminary Aircraft Engine Design with Variable Cycle Technology
Electric propulsion

Professor Ric Parker – Special Advisor

ICAS 2018 – Belo Horizante
Electrification

- Micro-grids
- Hybrid Trains
- Hybrid Ships
- E-Fan X
New directions for aviation through electrical power

<table>
<thead>
<tr>
<th>Products</th>
<th>Military</th>
<th>Personal Mobility</th>
<th>Hybrid Turboprop</th>
<th>Helicopter Replacement</th>
<th>Hybrid Turbofan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>Capability</td>
<td>Capability (time)</td>
<td>Local Environmental Impact</td>
<td>Capability & Safety</td>
<td>Efficiency</td>
</tr>
<tr>
<td>Timing</td>
<td>Now</td>
<td>~2020s</td>
<td>>2025</td>
<td>>2025</td>
<td>>2030</td>
</tr>
</tbody>
</table>

Personal Air Taxi image © Airbus, Helicopter Replacement Image courtesy of Aurora Flight Sciences - a Boeing Company
Electric Propulsion Benefits

Hybrid Electric Propulsion Transforms Aircraft Design Space

- **Efficiency**
 - High levels of efficiency
 - Allows energy-use optimisation

- **Capability**
 - High level of control
 - Easily configurable
 - Propulsion airframe integration
 - Novel architectures

- **Emissions**
 - Zero local emissions
 - Potentially lower levels of noise

- **Maintenance**
 - Single engine, increased redundancy
 - Power Management control to reduce wear
Growing electrical capability

Data for “aerospace grade” technology
How might it impact aviation?

Incremental
(Electrification)

Disruptive
(Electric propulsion)

Incremental
More electric Aircraft
Electrical content increasing
Electrical technology advancing
Electrical enhancement - BLI

Disruptive
New airframe and/or transport concepts could appear
Scope of supply may change
New entrants may appear in market
Disruption in short/medium travel.

Short Range

<table>
<thead>
<tr>
<th>1-4 pax</th>
<th>Personal Transport</th>
<th>Time Saver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Congestion Beater</td>
<td>Convenience Option</td>
</tr>
</tbody>
</table>

Medium Range

<table>
<thead>
<tr>
<th>4-20 pax</th>
<th>Regional VTOL</th>
<th>VTOL unlocks new Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Local Commuter</td>
<td>Potential to take share of small business jet market</td>
</tr>
</tbody>
</table>

Long Range

<table>
<thead>
<tr>
<th>20-100 pax</th>
<th>Regional Hybrid</th>
<th>Alternative to rail and current aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Economic advantage over new Rail Infrastructure</td>
<td>Ability to operate closer to destination than conventional aircraft</td>
</tr>
</tbody>
</table>
Disruption in short/medium travel.

A shift in transport mode
Enabling innovative civil aerospace and defence operations

- Reduced operating cost
- Reduced emissions
- Reduced aircraft noise
- Flexibility in vehicle propulsion integration
- Flexibility to energy source
It’s not just about the airplane...

New policies on transportation subsidies
Digital ticketing
New physical and cyber security systems
Minimalist city airport design
Security pre-clearance
Ground Infrastructure
Dynamic air traffic management
Single pilot operation
Mobility as a service
New aircraft types (STOL, low noise)

Revolution in regional transport
Technology Development

Rolls-Royce Electrical – Hybrid Technologies
- Parallel Hybrid
- Series Hybrid
- Turbo-electric distributed propulsion

Focus on Technology Advancement and Demonstrators for Early Product Opportunities

More Electric Engine
- Starter-Generator
- Electric Accessories
- Secondary Aircraft Systems Electrification

Full system Electrification (Turbo-Electric, no energy storage)
- Starter-Generator
- Electric Accessories
- Secondary Aircraft Systems Electrification
- Propulsion Electrification

Partial system hybridization (Parallel) – combined engine + energy storage
- Starter-Generator
- Electric Accessories
- Secondary Aircraft Systems Electrification

Full system hybridization (series, larger energy storage)
- Starter-Generator
- Electric Accessories
- Secondary Aircraft Systems Electrification
- Propulsion Electrification (Pure Electric Thrust)
Electrically enhanced larger aircraft – aft body BLI*

*Boundary Layer Ingestion
Hybrid short-range regional aircraft
Hybrid regional demonstrator
Airbus, Roll-Royce Siemens
Hybrid MoM
Airbus, Rolls-Royce

E-Thrust
Key challenges

Electric and Hybrid Electric propulsion are poised to reshape the aerospace industry

Systems Integration

The ability to integrate mechanical, electrical and thermal systems

- Safety & certification
- Electro mechanical integration
- Cooling
- Control
- Corona discharge

Component Technology

The ability to design high performance, high integrity components

- Lightweight, high power density machines
- High temperature electrical materials
- Fault tolerant power electronics
Next Conference – ISABE 2019, Canberra