Challenges of Advanced Propulsion Systems Development for Future Civil Air Transport

Large civil aircraft engines for the future Evolution and revolution

Professor Ric Parker CBE, FREng

Director of research & Technology, Rolls-Royce

9 September 2014

ICAS Conference 2014 St Petersburg, Russia

© 2014 Rolls-Royce plc

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc.

This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies.

Trusted to deliver excellence

Rolls-Royce product sectors

Civil Aerospace

Our engines keep up 400,000 people in the air at any one time

Defence Aerospace

160 armed forces around the world depend on our engines

Marine

30,000 commercial and naval vessels use our marine equipment

Power Systems

Reciprocating engines for propulsion and distributed energy systems

Nuclear

Design authority for the Royal Navy's naval nuclear plant

Notable Propulsion-Enabled "Firsts"

Modern Day Example – Trent XWB

Rolls-Royce's latest engine

• Certified: February 7, 2013

• First flight: June 14, 2013

Delivery to first customer Q4 2014

World's Quietest and Most Efficient Engine

Meeting the Challenges with Modern Technology

Key Technologies

Recent Advanced Propulsion System Studies

NASA N+2 Environmentally Responsible Aviation (ERA) Project

Future Concepts – Greener Aircraft

NASA N+2 Environmentally Responsible Aviation (ERA) Project Advanced Vehicle Concept Studies

Fuelburn

Noise

Emissions

All are still very much at the concept stage working on Vision 20 EIS

NASA N+2 Goal

-50% Fuel Burn

-42 dB

-75% NO_X

Fuelburn Noise Emissions

More-Electrical Aircraft Architecture

Generate, Distribute, and Consume energy in an effective and efficient manner

Distributed Electrical Aerospace Propulsion (DEAP)

- UK Technology Strategy Board and Industry funded project
- Partners: Airbus Innovation Works, Rolls-Royce and University of Cranfield;
- Key innovative technologies for
 - improved fuel economy
 - reduced exhaust emission
 - reduced noise emissions
- Distributed Electrical Propulsion (DP)
- Boundary Layer Ingestion (BLI);

Future IPS Concepts – Fully Distributed

"E-Thrust" - Electrical Distributed Propulsion System

Better Power for a Changing World