Challenges of Advanced Propulsion Systems Development for Future Civil Air Transport

Large civil aircraft engines for the future
Evolution and revolution

Professor Ric Parker CBE, FREng
Director of research & Technology, Rolls-Royce

9 September 2014
ICAS Conference 2014
St Petersburg, Russia

© 2014 Rolls-Royce plc
The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc.
This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of its subsidiary or associated companies.

Trusted to deliver excellence
Rolls-Royce product sectors

Civil Aerospace
Our engines keep up 400,000 people in the air at any one time

Defence Aerospace
160 armed forces around the world depend on our engines

Marine
30,000 commercial and naval vessels use our marine equipment

Power Systems
Reciprocating engines for propulsion and distributed energy systems

Nuclear
Design authority for the Royal Navy's naval nuclear plant
Modern Day Example – Trent XWB

- Rolls-Royce’s latest engine
 - Certified: February 7, 2013
 - First flight: June 14, 2013
 - Delivery to first customer Q4 2014

World’s Quietest and Most Efficient Engine
Meeting the Challenges with Modern Technology

Inlet mass flow 1200kg/s

HP compressor inlet pressure 11 bar
Temperature 350°C

HP compressor outlet pressure 50 bar
Temperature 700°C

Turbine entry temperature 1700°C

IP turbine outlet temperature 900°C

Thrust 40 tons

Combustion chamber 7lb/sec of fuel
Product evolution

Trent XWB

World’s most efficient engine

Advance

<table>
<thead>
<tr>
<th>Technology EIS Readiness</th>
<th>2020+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Ratio</td>
<td>11+</td>
</tr>
<tr>
<td>Overall Pressure Ratio</td>
<td>60+</td>
</tr>
<tr>
<td>Efficiency relative to Trent 700</td>
<td>20%+</td>
</tr>
</tbody>
</table>

Rolls-Royce
Product evolution

Trent XWB

World’s most efficient engine

<table>
<thead>
<tr>
<th>Technology EIS Readiness</th>
<th>2020+</th>
<th>2025+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Ratio</td>
<td>11+</td>
<td>15+</td>
</tr>
<tr>
<td>Overall Pressure Ratio</td>
<td>60+</td>
<td>70+</td>
</tr>
<tr>
<td>Efficiency relative to Trent 700</td>
<td>20%+</td>
<td>25%+</td>
</tr>
</tbody>
</table>
Key Technologies

- Lightweight CTi Fan System & Externals
- Additive Layer Manufacturing
- Controls, EHM & Systems Integration
- Advanced Manufacturing Research Centres
- Advance Core Architecture
- Lean Burn Combustor
- Virtual Engine (High Performance Computing)
- Aerothermal Excellence
- VHBR Enablers

Key Benefits
- Fuel Burn
- Environment
- Maintenance
- Lifecycle Cost
Product evolution

Trent XWB

World’s most efficient engine

- Integrated Propulsion System
- Lightweight LPT System
- Hollow Ti Fan System
- 3 Stage Turbine Core

Advance

- Integrated Propulsion System
- Lightweight LPT System
- CTi Fan System
- Advance Core

UltraFan™

- Integrated Slim Line Nacelle (No Thrust Reverser)
- Geared Multi Stage IPT System
- Variable Pitch CTi Fan System
- Advance Core
Product evolution

<table>
<thead>
<tr>
<th>Technology EIS Readiness</th>
<th>2020+</th>
<th>2025+</th>
<th>Airframe Dependant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Ratio</td>
<td>11:1+</td>
<td>15:1+</td>
<td>50:1+</td>
</tr>
<tr>
<td>Overall Pressure Ratio</td>
<td>60:1+</td>
<td>70:1+</td>
<td>70:1+</td>
</tr>
<tr>
<td>Eff relative to Trent 700</td>
<td>20%+</td>
<td>25%+</td>
<td>30%+</td>
</tr>
</tbody>
</table>

World’s most efficient engine
Recent Advanced Propulsion System Studies

NASA N+2 Environmentally Responsible Aviation (ERA) Project

Northrop Grumman
Boeing
Lockheed Martin

The S-Curve of Technology Cycles

Aircraft Engines

Innovation:
- Evolutionary
- Disruptive

What's Next?
Lot of cash, little improvement
Multiple Rapid Incremental Component & System Improvements

Capability or Value

Time or Investment $

Brayton Turbofan
Brayton Turbojet
Otto cycle IC

Major Tech Obstacles Overcome

NASA “N3-X” Distributed Turbo-Electric Propulsion System

Rolls-Royce
Future Concepts – Greener Aircraft

NASA N+2 Environmentally Responsible Aviation (ERA) Project
Advanced Vehicle Concept Studies

All are still very much at the concept stage working on Vision 20 EIS

<table>
<thead>
<tr>
<th>NASA N+2 Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50% Fuel Burn</td>
</tr>
<tr>
<td>-42 dB</td>
</tr>
<tr>
<td>-75% NOx</td>
</tr>
</tbody>
</table>

Lockheed Martin
Northrop Grumman
Boeing

Copyright © 2013 Rolls-Royce, plc All rights reserved.
More-Electrical Aircraft Architecture

Generate, Distribute, and Consume energy in an effective and efficient manner

- Hybrid AC and DC Primary Distribution Systems
- Remote Power Distribution System
- Power Conversion
- Variable Frequency Generation
- Liquid cooling of Conversion and Motor Controllers
- Aft E/E Bay
- Forward E/E Bay
- APU Starter / Generator System
- Current Return Network
- Electric Engine Start
- Adjustable Speed Motors and Motor Controllers
- Electric Wing Ice Protection
- Conventional Ground Power Sources
- Elimination of Pneumatic Bleed System
Distributed Electrical Aerospace Propulsion (DEAP)

- UK Technology Strategy Board and Industry funded project

- Partners: Airbus Innovation Works, Rolls-Royce and University of Cranfield;

- Key innovative technologies for
 - improved fuel economy
 - reduced exhaust emission
 - reduced noise emissions

- Distributed Electrical Propulsion (DP)
- Boundary Layer Ingestion (BLI);
Future IPS Concepts – Fully Distributed

“E-Thrust” - Electrical Distributed Propulsion System

- Single Advanced Gas Turbine
- Electrically-Powered Fans
- Energy Storage

Benefits*

- Emissions:
 - CO2: -75%
 - NOx: -90%
- Noise: -65%

*Compared to year 2000 standards
Better Power for a Changing World