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Abstract

Non-linear numerical analysis of large stiffened
structures subjected to local buckling has a com-
putational cost that prevents its achievement, es-
pecially in an industrial framework. This paper
deals with strategies to enable such challenging
computation. Existing domain decomposition
and model order reduction methods, with their
contribution to post-buckling analysis, are first
recalled. A domain decomposition strategy with
non-linear reduced localization for post-buckling
analysis is then proposed in order to address large
refined models without compromising computa-
tional performance. A comparative study is fi-
nally presented in the case of flat stiffened panel
and the computing gains are discussed.

1 Introduction

One of the main non-linearities that arise in aero-
nautical structures such as airplane fuselages is
the local buckling of the skin between stiffeners.
Whereas this phenomenon does not lead to the
global failure, the non-linear response implies a
stress redistribution in the structure. Therefore
the detection of the local damages is linked to the
prediction of local post-buckling. The debonding
of the stiffeners is for instance one of the local
damages that may occur as a consequence of lo-
cal post-buckling [3].

The finite element (FE) analysis of the

large stiffened structures subjected to local post-
buckling and the evaluation of the local dam-
ages criterion [4] requires a refined modeling, re-
sulting in a high number of degrees of freedom
(d.o.f.). In addition, the non-linear behavior in-
creases the cost of the solution procedure, thus
going beyond the capacity of the hardware re-
sources in terms of data storage and/or of allow-
able CPU time.

On one hand, the buckling phenomenon is
partially predictable in the sense that eigenvalue
analysis supplies the critical load and the approx-
imated shape of each buckling mode. On the sec-
ond hand, the localness of the post-buckling of
large stiffened structures concentrates the main
non-linearities in some areas. These two char-
acteristics led engineers and researchers to the
development of computational strategies based
on either the use of the knowledges of the phe-
nomenon or its localness. Classical global-local
approaches enable the computation of refined
models but the complex interactions between the
local and global scales prevent their use with-
out compromising the accuracy of the solution.
For this reason this paper focuses on the compu-
tational strategies that guarantee the accuracy of
the solution.

In a first section, the existing computational
strategies for post-buckling analysis of large
structures are presented. Attention is paid espe-
cially to those based on domain decomposition
and model reduction techniques which principles
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are recalled to make this paper self-contained.
From an analysis of the main weaknesses of

the aforementioned strategies, a new one is pro-
posed in a second section.

In the last section, behaviour and perfor-
mances are investigated in the application of the
strategy to a flat stiffened panel.

2 Post-buckling of large stiffened structures:
Existing computational strategies

Recent works on analytical or semi-analytical
methods for the study of post-buckling of stiff-
ened panels [17, 5, 16] allow efficient preliminary
design phases. Nevertheless the needs for accu-
racy and flexibility in the sizing phases of aircraft
structures lead to the use of non-linear finite ele-
ment models. For this reason this paper focuses
on the strategies relating to the solution of finite
element discretized problems. The finite element
modeling of large stiffened structures results in
the following equilibrium equation:

K(q)q = Fext (1)

In the case of non-linear behaviour, like lo-
cal post-buckling, the equilibrium is linearized
and solved iteratively according to the Newton-
Raphson solution algorithm [8]:

KT(q)∆q = R (2)

As the number of d.o.f. increases, the direct solu-
tion of the system (2) becomes more expensive.
Contrary to the global-local approaches, model
reduction techniques and domain decomposition
methods are two strategies that enable the com-
putation of an accurate solution of large non-
linear finite element problems. A brief descrip-
tion of these strategies is provided in this section.

2.1 Reduced Order Modeling

Model reduction techniques are widely used in
the framework of modal analysis [6]. Although
they have been introduced in the field of solution
of linear and non-linear mechanical problems in
the late 70’s [14], model reduction techniques are
the subject of more recent works [12, 18].

The principle relies on the projection of the
unknowns on a reduced subspace. Let C =[

C1 ... Cn
]

be a reduced basis of n vectors
in a solution space of dimension N. The vector
of unknowns q is approximated by a linear com-
bination of the Ci∈[1:n]:

q̃ = Cη (3)

The tangent system (2) is then projected on C:

CTKTC∆η = CTR (4)

Solving the large system is thus replaced by the
projection and the solution of a reduced system
which have a smaller computational complexity.

A given reduced basis is adapted to the prob-
lem when a linear combination of the vectors
reproduces accurately the solution of the dis-
cretized equilibrium equation (1). Otherwise the
following statement is false despite the conver-
gence of the algorithm:

||R(q̃)||
||Fext ||

< ε (5)

Therefore the choice of the reduced basis is chal-
lenging and it has been tackled since the early
stage of the model reduction techniques.
In the special case of the post-buckling analy-
sis, the constitutive displacement modes of the
reduced basis that can be found in the literature
are the following ones:

• the buckling modes calculated within an
eigenvalue analysis [12, 13].

• the path derivatives or higher order
derivatives of the solution with respect
to a path parameter (applied load or
displacement)[15, 12].

Although good agreement to the approximation
of post-buckled solutions could be shown in
some cases, the reduced basis build in this way
does not lead to the fulfillment of the error cri-
terion. That is the reason why, the reduction
of non-linear models required the development
of strategies for adapting the aforementioned re-
duced basis to the non-linearities [14, 1, 12].
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This is what the “on the fly” completion recently
developed by Kerfriden and al. [11] aims at.
Contrary to the strategy developed by Kling and
al.[12] which performs a full Newton-Raphson
increment in the case of an unverified error cri-
terion, the “on the fly” completion makes the
most of the projected conjugate gradient algo-
rithm during the increment. The principle of this
procedure is recalled for better understanding.

The “on the fly” completion aims at control-
ling both the full problem error (5) and the re-
duced problem error (6).

||CTR(q̃)||
||CTFext ||

< εreduced (6)

During the reduced Newton iterations, if the re-
duced problem error become much smaller (k
times) than the full problem error (7), the next
prediction step (2) is performed by the mean of a
projected conjugate gradient.

||CTR(q̃)||
||CTFext ||

< k× ||R(q̃)||
||Fext ||

(7)

Equation (8) defines a projector onto Im(C)⊥KT .
The idea is to separate the search space into two
subspaces Im(C) and Im(C)⊥KT (9).

P = I−C
(
CKTCT)−1 CT KT (8){

∆q = C∆η+∆qK

∆qK ∈ Im(C)⊥KT
(9)

The prediction step is thus replaced by the uncou-
pled equations (4) and (10).

(KTP)∆qK = R−KTC∆η (10)

The solution of (10) is orthogonal to the re-
duced basis and can be added to it after normal-
ization. This completion can occur several times
until convergence of both the reduced and the full
problem errors.

In the case of local non-linearities, it is worth
noting that the entire reduced basis is completed
while only local modifications would be suffi-
cient. This seems to be one of the of relevant de-
velopment path for improving the performances
of the adaptive reduced basis strategies.

2.2 Domain decomposition methods

Since the basic idea of domain decomposition
methods is to spread computational costs over
several processor units, their development is
linked to the advent of parallel computers. The
structure is decomposed into non-overlapping
sub-domains and kinematic (resp. static) conti-
nuity is ensured by conditions on displacement
(resp. force) unknowns over the boundaries [10].
This decomposition should be done such that cal-
culation cost is balanced between processors in
order to optimize parallel computation.

(a) (b)

L

(c) (d)

Fig. 1 Steps of the domain decomposition
method (in the case of a primal approach). (a) Ini-
tial structure, (b) decomposition of the structure
in 4 sub-domains and boundary, (c) condensation
of the sub-domain and solution of the boundary
unknowns, (d) linear localization of the bound-
ary displacements on each sub-domain

The main steps for the resolution of the
linear system of each Newton iteration (2) are
presented in the case of a primal approach, when
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displacement continuity over the boundaries is
verified a priori. Fig.1 represents it schematically
while details are given in the following enumer-
ation (The superscript s refers to a sub-domain
identifier and the subscript b (resp. i) indicates
the boundary (resp. internal) d.o.f. of a subdo-
main).

1. For each sub-domain (local operation),
condensation of the internal d.o.f. for the
tangent operator and the residual:

Ss
T = Ks

Tbb−Ks
TbiK

s
T
−1
ii Ks

Tib

rs = Rs
b−Ks

TbiK
s
T
−1
ii Rs

i

(11)

2. Resolution of the condensed linearized
problem over the boundary unknowns
(global operation):

∆qb = ST
−1r (12)

3. Localization of the boundary displacement
in each sub-domain (local operation):

∆qs
i = Ks

T
−1
ii (Rs

i −Ks
Tib∆qs

b) (13)

The local operations are independent per sub-
domain. The global system is usually solved by
iterative parallel solvers of Krylov type which do
not require assembling condensed local opera-
tors. Details on Krylov solver for domain decom-
position methods can be found in the literature
[9].

NL

Fig. 2 Non-linear
localization

However Cresta
and al. [7] showed
that the classical do-
main decomposition
methods had poor
convergence properties
in presence of local
nonlinearity. Indeed
the most critical local
phenomenon controls
the global convergence.
Then they proposed

a strategy that differentiates the treatment of
the local nonlinearities. An iterative solver is

introduced in the place of the localization solver
(see fig.2). The idea is to localize the increment
of boundary displacement of a sub-domain as if
it were the boundary conditions of a particular
non-linear problem.

∆qs
i = Ks

T
−1
ii (q)(Rs

i (q)−Ks
Tib(q)∆qs

b) (14)

A local convergence criterion εL is defined as pa-
rameter for the method. A parametric study [7]
showed that a compromise should be found be-
tween a coarse local convergence criterion (lead-
ing to high number of global iteration) and a fine
one (leading to a high number of local iterations
with a stagnation of the number of global itera-
tions).

The non-linear localization algorithm was
evaluated for the analysis of a frame structure un-
der bending load [7]. Local buckling of consti-
tutive beams occurred. The table 1 summarizes
the convergence results of both classical domain
decomposition and non-linear localization algo-
rithms. It shows an important gain in terms of
number of global and local computations. As a
consequence, the computation time is reduced.

Strategy
loading
steps

Number of
global

iterations

Number of
local

computations
a 8 63 630
b 6 35 470

Table 1 Convergence results: comparison be-
tween (a) conventional domain decomposition al-
gorithm and (b) domain decomposition algorithm
with non-linear localization [7]

3 Domain decomposition with non-linear re-
duced localization: Coupling domain de-
composition and model reduction

Non-linear localization improves performance of
domain decomposition in the case of local non-
linearities by the transfer of computation cost
from global to local level. Thus the local op-
erations become overriding and further improve-
ments may come from local model reduction. Es-
pecially in the case of post-buckling analysis of
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stiffened structures where refined model is neces-
sary for taking into account the structural details
and physical phenomena.

3.1 Principles

The proposed strategy relies on the coupling of
domain decomposition with non-linear localiza-
tion and a model reduction technique. It aims at
reducing the costs of all the local operations in
a domain decomposition procedure such as con-
densation and localization.

At the local level, both condensation and lo-
calization are performed in a reduced subspace.
Equations (11) and (14) become respectively (15)
and (16).

Ss
T = Ks

Tbb−Ks
Tbη

Ks
T
−1
ηη

Ks
Tηb

rs = Rs
b−Ks

Tbη
Ks

T
−1
ηη

Rs
η

(15)

∆η
s = Ks

T
−1
ηη
(Rs

η(q)−Ks
Tηb(q)∆qs

b) (16)

with

Ks
Tηη

= CTKs
TiiC

Ks
Tηb = CTKs

Tib

Ks
Tbη

= Ks
TbiC

(17)

and
Rs

η = CTRs
i (18)

In this manner, the interior part of the local
tangential operators is not factorized. From the
standpoint of parallel computation, the improve-
ment of load balancing between sub-domains is
derived from the local models reduction to ap-
proximately the same number of unknowns (sub-
space coordinates).

3.2 Simple local reduced basis for post-
buckling analysis and interactions be-
tween sub-domains

A local reduced basis is proposed for post-
buckling analysis from the following statements:

• no experience on the model has been ac-
quired from previous calculation.

• although good accuracy is required, the
cost of the initial reduced basis constitution
must not minimize excessively the gains
resulting from the model reduction.

• an adaptive procedure may ensure the ac-
curacy of the model reduction and compen-
sate the lack of a priori knowledges.

On this basis, the proposed local reduced basis is
composed of the following easily computed dis-
placement modes:

• the unbuckled solution of the fundamental
equilibrium path which is either calculated
by a linear analysis or extracted from the
solution of the first increment.

• the firsts buckling modes which are cal-
culated within an eigenvalue analysis af-
ter the first increment converged. Only the
modes whose critical load may be reached
in the range of loading (Fc < Fext) are kept
in the reduced basis.

The idea is that these displacement modes are
the main working displacement modes and can
be completed by some low-energy displacement
modes to reach the buckled equilibrium. Indeed
in the case of a plate in compression, because
of stress redistribution the out-of-plane displace-
ments and the in-plane displacements are not ac-
curately approximated by a combination of buck-
ling modes and the solution of in-plane compres-
sion . Therefore a completion procedure is added
to the strategy at a local level.

A previous work submitted for publication
[2] demonstrated the relevance of this simple
adaptive reduced subspace on a simple plate un-
der shear and compression loading without do-
main decomposition. The gain in CPU time
reaches 90% for refined meshes.

3.3 “On the fly” completion of the local sub-
spaces

As described in the previous subsection, a com-
pletion of the local reduced subspaces may be
necessary. For this reason, “on the fly” com-
pletion is introduced at the local level, which is
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consistent with the prospects of [11]. It is in-
deed worth noting that the reduced subspace of
the whole model is intrinsically split on the sub-
domains and can be independently completed,
thus saving computational resources.

The completion occurs during the non-linear
localization step. The local convergence test in
the reduced subspace (19) determines whether
the next prediction step of the Newton-Raphson
procedure is solved in the reduced subspace only
or also in the complementary subspace [11] so
that the local reduced basis is enriched (see sec-
tion 2.1)

||Rs
η(q̃)||

||CTFs
ext ||

< k× ||R
s(q̃)||
||Fs

ext ||
(19)

3.4 The entire procedure

This subsection summarizes the procedure of
domain decomposition with non-linear reduced
localization for post-buckling analysis into a
flowchart fig.3.

It is interesting to note that other strategies for
the computation of different local nonlinearities
derive by the modification of the local subspaces
initialization.

4 Implementation and performance of the
strategy

4.1 Preliminaries

The domain decomposition strategy with non-
linear reduced localization for post-buckling
analysis was implemented in a research fi-
nite element code developed by the authors of
this paper. The code is written in python
which is a scientific object oriented program-
ming language and makes the most of a well
known numerical linear algebra library (LA-
PACK). This work was performed using High
Performance Computing (HPC) resources from
CALMIP (http://www.calmip.cict.fr).

In the performance study, the parameters
were chosen empirically. Further work should
demonstrate the influence of each local param-
eter (k,εL). Furthermore, as Noor and al. [14]

recommended for the reduced model techniques,
the global error threshold εG is set to 5.10−2.

4.2 Local post-buckling of a stiffened panel

In order to give some insight into the perfor-
mances of the strategy for industrial applications,
the case study takes inspiration from the works
led by Bertolini and al. [4] on stiffeners debond-
ing of an aircraft panel due to local post-buckling.
Fig.4 describes the case study. The stiffening of
the plate is realized by constraining out-of-plane
and rotational d.o.f.. The structure is divided into
four sub-domains. It can be seen that the stiffen-
ers are not symmetrically positioned so that the
sub-domain number 1 buckles first and no global
buckling mode appears in the range of loading.

The structure is discretized by quadratic
quadrangular finite elements and transverse shear
is taken into account in the model. The computa-
tion of the model is carried out with two levels of
mesh refinement in order to emphasize a possible
dependence to the number of d.o.f..

4.3 Analysis of the results

Since the first increment of the proposed strat-
egy is not reduced, the result analysis focuses on
the second increment in which the sub-domain 1
buckles. The table 2 summarizes the convergence
results of the compared strategies.

Strategy
Global

iterations
Local

iterations

Subspace
comple-

tions
Mesh 1: 20 by 20 elements, 2000 d.o.f.

a 3 39 -
b 5 44 17

Mesh 2: 40 by 40 elements, 8000 d.o.f.
a 6 53 -
b 5 51 23

Table 2 Convergence results. (a) Domain decom-
position with non-linear localization, (b) Domain
decomposition with non-linear reduced localiza-
tion for post-buckling.

The convergence properties are not signif-
icantly affected by the reduction of the non-
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Begin

initialize operators

initialize reduced bases

set next increment

reduction and con-
densation of the lo-
cal tangent system

...

solution of global boundary problem

nonlinear reduced
localization

...

||RG||
||FG

ext ||
> εG ?

load level reached?

End

S1 Ss

S1 Ss

no

yes

yes

no

solve first increment

Fci < Fext ?

ith buckling mode calcula-
tion: Fci,Γi

...

no

yes

S1 Ss

local solution calculation

||Rs||
||Fs

ext ||
> εL ?

||CTRs||
||CTFs

ext ||
< k ∗ ||R

s||
||Fs

ext ||
?

solution of the lo-
cal reduced tangent
system

“on-the-fly”
completion

yes

no yes
no

Fig. 3 Flowchart of the procedure. Si refers to the ith subdomain.
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Fig. 4 Stiffened panel: Local post-buckling in the case of a shear test. Out-of-plane displacement in millimeter.

linear localization neither by the mesh refine-
ment. However, tab.3 shows that the CPU times
of the condensation is reduced by up to a factor
10.

Strategy Localization
Localization

with
completion

Condensation

Mesh 1: 20 by 20 elements, 2000 d.o.f.
a 0.44 - 1.6
b 0.012 0.6 0.32

a/b 36 0.73* 5
Mesh 2: 40 by 40 elements, 8000 d.o.f.

a 6.9 - 34.4
b 0.23 11.7 3.28

a/b 30 0.6* 10.5

Table 3 CPU time (in seconds) per local oper-
ations of sub-domain 1.(a) Domain decomposi-
tion with non-linear localization, (b) Domain de-
composition with non-linear reduced localization
for post-buckling. *comparison between local-
ization of strategy a and localization with com-
pletion of strategy b.

In the case of localization without comple-
tion, the CPU time is also strictly minimized but
these gains may be canceled if too many comple-
tions are required. On the first hand, the ratios of
localization CPU times are stable while the mesh
refinement increases. On the other hand, the ratio
of CPU times of condensations increases with the
mesh refinement.

Tab.4 confirms the relevance of the proposed
simple subspace. While almost half of the lo-
calization iterations achieves a completion of the
subspace, the gain remains about 50 percent.

Strategy Mesh 1 Mesh 2
a 89.6 1066
b 50.1 504

Gain 44% 53%

Table 4 Total CPU time (in seconds) and gain (in
percent) for local computations of sub-domain
1.(a) Domain decomposition with non-linear lo-
calization, (b) Domain decomposition with non-
linear reduced localization for post-buckling.
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Lastly, an increase in the gain with the num-
ber of d.o.f. is outlined. This is consistent with
the assumption that the proposed strategy is de-
signed to deal with refined models.

5 Conclusion and perspectives

In this paper, a strategy coupling domain decom-
position and model reduction for post-buckling
analysis was proposed. The CPU time is reduced
by around 50 percent in comparison to an existing
computational strategy. The case study is cho-
sen to demonstrate the relevance of the proposed
strategy in an industrial framework, although the
modeling is simplified. Nevertheless some as-
pects have not been addressed and require further
developments.

Whereas the interactions between sub-
domains are taken into account, for reasons
of simplicity, no interactions between buckled
sub-domains occurred in the case study. The
buckling of a sub-domain lead indeed to the
change of the stiffness seen by its neighboring
sub-domains. This may change their buckling
modes.

The use of a mixed domain decomposition
approach [7] would enable taking into account
these stiffness changes. A strategy for updating
the local buckling modes would also become nec-
essary in addition to the management of the size
of the reduced basis that must not grow unreason-
ably.

Finally this paper opens perspectives of de-
velopment for the computational strategies for
local post-buckling analysis of large stiffened
structures by the use of both physical knowledges
and parallel computing.
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