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Abstract  

In the area of aircraft design, man
about Multi Disciplinary Optimizatio
and Multi Objective Optimization (MOO
been published in the last decade. 
there are some concerns that prevent 
many developed optimization tools 
aircraft design process. These issues a
a lack of functionalities of 
surface/surface intersections and ge
constraints, and difficulties of applyin
knowledge to the real aircraft design 
the fundamental features for MDO an
In this study, a new shape paramete
framework is proposed to overcome thes
by establishing a geometry paramete
method based on a NURBS formulati
used in nearly any state of the art CAD
and utilizing the Free Form De
technique to deform the aircraft 
arbitrary with a moderate number o
variables. With the developed
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parameterization based on NURB
 newly developed 

gr on
ing-bo -
cant dr g 
ases with 

and without geometrical constraints. It is 
demonstrated that this approach will be an 
essential design tool in practical aircraft design.  

1   Introduction  

In the field of shape optimization, the 
geometry representation plays an important roll 
and it strongly affects the ease of applying of 
design knowledge to the real aircraft design 

ization. Numerous 
e been devised to 

 be used in 

egard to the wing 
ple, Hicks-Henne 
ARSEC (Ref. [3]) 

tations are widely 
hape representation 
. Then, a span-wise 

rm a wing loft is 
ple interpolation of 
 methods. In such 
s, CST (Ref. [4]) is 
sed as a universal 

tation method for 
nents. CST is 

 specification of 
rs such as leading-

nd airfoil closure 
se parameterization 
ough from a shape 
used as a practical 
ility of treating 
plex geometrical 

constraints are mandatory, and an ease of 
transferring design knowledge into design 
process is also a key feature.  

In this study, a new geometry 
representation framework based on NURBS, 
(Ref. [6]) which has become a common CAD 
format in any industrial field is proposed. In this 
framework, NURBS is used to exchange the 
geometry data between 3D CAD software and 
the optimization tool easily.  
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id deformation approach  optimizati
been carried out for the DLR-F6 w
nacelle-pylon configuration. A signifi
minimization has been achieved in c

process after shape optim
methods (Ref. [1]–[5]) hav
numerically represent geometries to
aerodynamic design, optimization, and also for 
parametric studies. With r
shape definition, for exam
shape function (Ref. [2]), P
and spline-based represen
used for sectional airfoil s
and for shape modification
connection of airfoils to fo
typically calculated by a sim
polynomial or spline-based
mathematical representation
a systematic method propo
parametric geometry represen
nearly all aircraft compo
developed to allow the
meaningful design paramete

shapes 
design 
shape 

S in 
surface 
s ha e 

edge radius, boat-tail angle a
angle directly. However, the
methods are not mature en
design stand point. To be 
design tool, the capab
intersections and comcombination with a
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2   Shape representation approach  

2.1   NURBS Surface 

A Non-Uniform Rational 
(NURBS) is a de-facto industry stan
free-form shape representation and 
applied to the wide variety of CAD sof
using the NURBS representation met
continuity is guaranteed in

B
dar
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tw
ho

 the whole reg
the surface. A NURBS surface is represen
the coordinates of the control points and w
The basis function reads as follows; 

 
 

-Spline 
d for a 
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ted by 
eights. 

 
 
 
 
 
 
 

 

mvmu, : Order of the NURBS function 

: Number of control points for UV directi

 for UV directions 

: control points for NURBS surface 

: Parameter for UV directions 

 Knot vector for UV directions 

for UV 

ons 
directions 

nvnu,

mvjmu NN ,, : Basis functioni ,

ijQ


vu,

ji vu , :

ij : Weight vector of each control point 

 
The Basis function is as follows. 

 

 

 

modified by either 
changing the position of the control points or by 

weights. 

on 

 previous section,  
 as a mixture of the 
oints and weights, 
ints depends on the 

f the surface. In the 
 of control points 
etimes it may reach 
timization point of 
are better to reduce 
. In this study, to 
e, a Free Form 
ique, which was 
computer graphics 
to be used with an 

R (Ref. [7]), was 
sed on a B-Spline 
URBS function to 
of the deformation 
the computational 

ple of the FFD 
re-mapping of point 
 B-spline volumes. 
ved indirectly by 

he FFD technique 
allows a user to get more smooth and coherent 
deformation by less design variables.  Fig. 1 
shows an example of the FFD result which is 
applied to a NURBS surface.  In this case, it is 
clearly observed that by changing the control 
points of the B-spline volume rather than 
changing the control points of NURBS surface 
directly, NURBS surface can be deformed. 

A B-spline volume can be expressed as 
follows; 

 

 

The shape can be 

changing the 

2.2   Free Form Deformati

As described in the
NURBS surface is expressed
coordinates of the control p
and the number of control po
complexity and the order o
practical field, the number
usually exceeds 100 and som
one thousand. From the op
view, less design variables 
the computational resources
deform a NURBS surfac
Deformation (FFD) techn
originally developed in the 
field and has been enhanced 
optimization loop at DL
applied. This method is ba
function rather than the N
achieve both simplification 
process and reduction of 
complexity. Basic princi
technique is a mapping and 
coordinates into and from
The deformation is achie
changing the coordinates of the control points of 
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dire

n for UVW 

ctions  
: for UV

ctions 

s function for UVW

: co lume 

 Knot vector for UVW directions 

The Basis functions are de e way 

o
eld
an
ca

e
ma
ee

 Th
ad  is that
a li  
NUR , 
surfa dep
of th ter
curve alc
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 ce
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ubd
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done on the parametric space as shown 
in Fig. 2. In this process, those squares, 
which have possibilities to have an 
intersection, will be subdivided. 

 
 Intersection – Both NURBS surfaces 

are assumed as the collection of the 
triangle meshes where each square in 
the previous process is composed of 
two triangles. Then intersection 

segments will be evaluated as shown in 

edge points of the 
ents from the 
e not lying on the 

cause the NURBS 
ere assumed as the triangle 

process, both edge 
 segments will 

h surfaces. 

 struction – By using all intersection 
ts, an intersection curve for both 

V parametric space 

s 

al constraints in a 
key issue for the 

easibility 
and it has become 

 field in shape 
n to apply a 

o limit the design 
nd a proper design 
 does not violate a 
sk for designers. In 
tical way for a 
al constraints was 
oupled with the 
ming (SQP) (Ref. 

gner has to create a 
violated during the 
 spar surface in the 
e of the geometrical 
se spar surfaces are 

inning of the shape 
optimization, and the optimizer tries to keep 
these area constant during the optimization 
process. When the wing becomes thinner, these 
surfaces will be exposed outside, which is 
shown in Fig. 3. This means the areas of the 
spar surfaces are smaller than the initial value. 
The constraints checker will calculate the 
difference between the initial value and the 
current value, and the optimizer will produce a 
next design vector to reduce this difference. 

nwnvnu ,, Number of control points 

dire

W 

 

Fig. 2. 
 
 Projection – Both 

intersection segm
previous process ar
exact surface be
surfaces w

mwkmvjmu ,,iN , NN ,, : Basi

directions 

ntrol points for B-spline voijkQ
wvu ,, : Parameter for UVW directions 

u , kji wv , :

 
rived in the sam

as 1.1. 

2.3   Surface/Surface intersection 

Surface/Surface intersection 
fundamental feature in the CAD and C
Aided Geometric Design (CAGD) fi
this is a complex subject that has been 
research field for more than three de
this study, a subdivision algorithm (R
was implemented to achieve an auto
robust intersection calculation betw
surfaces during sha

is a 
mputer 
s, and 
 active 
des. In 
f. [8]) 

tic and 
n two 
e main 
 it is 
such as 
Bezier 
endent 
section 
ulation 

s are 
quares, 
ivided 
nother 
ess is 

3D space and the U
can be constructed. 

2.4   Geometrical constraint

Considering geometric
shape optimization is a 
practical application to maintain the f
of the optimized geometry, 
also an active research
optimization. One solutio
geometrical constraint is t
space itself. However, to fi
space so that the geometry
constraint is not an easy ta
this study, a more prac
consideration of geometric
implemented by being c
sequential quadratic program
[9]). In this method, the desi
surface that should not be 
optimization. Fig. 3 shows a
wing geometry as an exampl
constraints. The area of the
calculated at the beg

pe optimization.
vantage of this algorithm

pp cable to any surface representations
BS surface, B-Spline surface
ce and so on. Moreover, it is in
e shape and complexity of the in
s. Fig. 2 shows an intersection c
ss of this algorithm. 
This algorithm involves four steps

 
 Subdivision – Both surfa

subdivided into a number of
and then each piece will be s
again if the piece is close to
surface. This subdivision pr

meshes. In this 
points of the intersection
be projected on bot

 
 Con
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2.5 Proce Process chain with novel mesh 
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the intersection curve describ d
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 the optimization, the len
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the length ratio. 

Length ratio
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eformation 

Fig. 4 shows a complete flow ch
proposed framework for a shape opt
The proposed framework involves th
steps, [initialization], [update] and [e
steps. In early approaches after deform
the surface the mesh is newly generate
time consuming and disables the app
an adjoint method. Here a soph
mapping p

eformation 

Fig. 4 shows a complete flow ch
proposed framework for a shape opt
The proposed framework involves th
steps, [initialization], [update] and [e
steps. In early approaches after deform
the surface the mesh is newly generate
time consuming and disables the app
an adjoint method. Here a soph
mapping p

art of the 
imization.  
ree main 

art of the 
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ree main 

on] 
of 

on] 
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d, what is 
lication of 

isticated 
angulation 
ed which 

d, what is 
lication of 

isticated 
angulation 
ed which of the UV space has b

allows an
of the UV space has b
allows an immediate recalculation of th
mesh after deformation and calcu
intersections.  

 
1)
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mesh after deformation and calcu
intersections.  

 
1)

e surface 
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e surface 

lation of 

 [Initialization] process. 
The main purpose of this proce
establish a relation between the p
space (UV for a NURBS surface a
for a B-spline volume) and XYZ sp

 [Initialization] process. 
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space (UV for a NURBS surface a
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e UVW 
[update] 

 onto the 
eters are 
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process works as follows: 
i.  All control points of the NURBS

are mapped into th

process works as follows: 
i.  All control points of the NURBS

are mapped into the B-spline
UVW parameters are also as
every control points and thes

e B-spline
UVW parameters are also as
every control points and thes
parameters are stored for the 
process. 

ii. All mesh points are projected
NURBS surface and UV param

parameters are stored for the 
process. 

ii. All mesh points are projected
NURBS surface and UV param

shsh points on 
 below is 

 points on 
 below is ee

During  During  gth ratio 
e [update] 
e updated 
 based on 

gth ratio 
e [update] 
e updated 
 based on 

process, the new mesh process, the new mesh 
intersection cintersection c
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Li : length from start point to ith point 

L : whole curve length 

coming from an 
ordinates of control 
lume that leads the 
. Then the volume 

 
 process goes as 

ws: 

ntrol points of the 
changed by the 

oints of the NURBS 
ted by using the 

 derived from the 
s and the updated 
-spline volume. 

rves are calculated 
URBS surface. 

on the intersection 
ased on the length 

formed in the UV 
V parameters are 
n this process, to 
and fast mesh 
ay graph mapping 

ms (Ref. [10]) was 
eformation is done 

step, UV space is 
iangles (Fig. 7) and 
een the Delaunay 

triangles and the mesh points is 
 design step, an 
 and then, by using 

 UV parameters 

ts are calculated 

d the 
ters derived from 

process v. 

vii. The displacement of the surface mesh 
is propagated into the volume mesh and 
the new volume mesh points are 
calculated by using a volume mesh 
deformation tool (Ref. [11]). (Fig. 9) 

2) [Update] process. 
The design variables 
optimizer change the co
points of the B-spline vo
surface mesh modification
mesh is deformed according to the change of
the surface mesh. The
follo

i. The coordinates of co
B-spline volume are 
design variables.  

ii. The control p
surface are recalcula
UVW parameter
[initialization] proces
control points of the B

iii. New intersection cu
by using the updated N

iv. The new mesh points 
curve are calculated b
ratio. 

v. Surface mesh is de
space and new U
calculated (Fig. 6). I
achieve a robust 
deformation, a Delaun
method for 2D proble
adopted. This mesh d
on the UV coordinate, not on the XYZ 
coordinate. As a first 
filled with Delaunay tr
then the relation betw

established. At each
intersection is modified
that relation, new mesh
are calculated. 

vi. New surface mesh poin
(Fig. 8) by using updated NURBS 
surfaces derived from process ii, an
updated UV parame
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3) [Evaluation] process 

In this process, all the param
objective function, constraints 
gradient, that are required for 

ete
and 

the op
va

ctio

s 
  within the optim

etry is directly 
process without lengthy 

co

 shape representation tool 
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solve a drag minimization problem, and for a 
constrained optimization, the Sequential 
Quadratic Programming (SQP) method with the 
objective function approximated by a quadratic 
Taylor series expansion was used to create a 
direction-finding problem. Detailed algorithms 
and methodologies of the SQP method are 
described in Ref. [9]. To automate the whole 
optimization process, the proposed framework 
was coupled with "Pyranha" (Ref. [16]), a 

ased optimization framework that has 
been developed in DLR.  

ne components has 
craft performances 
ndition. Mitsubishi 
ohoku University 

he engine-airframe 
aerodynamic design 
in past research 

e of an aircraft 
g mounted engines, 

pplied to DLR-F6 
nfiguration (Ref. 

sport aircraft 
in Fig. 10. The 
this configuration 

on tetrahedras. The 
erated by the direct 

od coupled with the 
n the STL 

ormat. (Ref. [20]) 

method. (Ref. [21]) 

uration without 
al constraints 

 free stream Mach 
 coefficient CL of 
esign example is to 

t at the fixed Mach 
 96 design variables 
 deformation of the 
ox and the surface 

To have a greater flexibility to deform the 
geometry around the leading edge region, the 
FFD box node was concentrated around the 
leading edge region. Geometrical constraints 
were not explicitly imposed in this case. The 
magnitude of the displacement was set +/- 3% 
of the each chord length by setting the domain 
of each design variable. In total, 16 times Euler 
analysis and 8 times Adjoint analysis were 
conducted using the HPC cluster in DLR. 

rs, an 
the 

timizer 
luation 
n. 

having 
ization 

4    Design Examples 

An installation of engi
significant effects on air
especially at a high speed co
Aircraft Corporation and T

are calculated. The details of each e
method are described in the next se
 

 The major benefit of this flow chart i
the CAD representation
loop, and the final geom
for other 

usable 
CAD 

of the 
h an 
system 
lver, a 
t-based 

have studied intensively on t
integration with MDO and 
optimization approaches 
activities (Ref. [17],[18]). 

As a design exampl
configuration with under win
the present method was a
wing-body-nacelle-pylon co
[19]), a generic twin-jet tran
configuration, as shown 
computational mesh for 
contains about 0.6 milli

nversion. 

3    Design tools  

The
previous section is c
aerodynamic design optim
composed of an unstructured flow 
discrete adjoint code, and grad
optimizers. 

3.1   Flow and sensitivity analysis  

The TAU-Euler code, a three-dime
unstructured Euler solver (Ref. [12], [
used for the compressible flow analys
the Adjoint flow problem, a discrete A
TAU was used. (Ref. [14], [15]). 

3.2 Optimization algorithm 

In this study, two gradi
optimization methods utilizing the gr
the objective functions provided by th
solver were applied. For an opt
without constraints, the Conjugate 
(CG) method with line-searches was used to 

python b

nsional 
]), was 
and for 
oint of 

geometrical feature extraction o
(Stereo lithography) data f
The tetrahedral volume mesh was generated by 
a Delaunay-type generation 

4.1  DLR-F6 WBNP config
geometric

t-based 
ient of 
djoint 

ization 
radient 

Design conditions are
number of 0.85 and a lift
0.625. The objective of this d
minimize a drag coefficien
and lift coefficient. In total,
were used for the free form
wing geometry. The FFD b
mesh are shown in Fig. 11. 

surface mesh was gen
advancing front meth
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It took 15 minutes per Euler ana
30 minutes per Adjoint analysis to con
residual up to 1.0e-6

ly
ve

 for the Euler analy
, it

e 
, 
ct
o
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he
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pt

Fig
de

sure around the leading 
 and ou
to achieve th

scribed above, the cu
ar  a

th

the sa
om
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he
tio
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 to
fre
s s
 l
 au
onstraints. 

As described in Section 1.4, the initial areas of 
these spar surfaces were calculated at the 
beginning and these value were used as the 
target area during the optimization. This means 
that even if the wing shape is changed by the 
optimizer, the area of these spar surfaces will be 
kept.  At each design step, the area differences 
of the predefined surfaces for the geometrical 
constraints, between the designed geometry and 
the original geometry are calculated. And then, 
based on that information, the optimizer can 

 area 
metry. 
ptimization history. 
0 drag cts  ( Δ

 achieved under the 
. 17 shows the 
essure distribution 

arison of the airfoil 
essure distribution 
nd the optimized 
m drag.  In Fig 18, 
ocation. 
tant shape does not 
e to the constraints, 
e of the pressure 

distributions are close to that of the previous 
esign example.  The suction peak around the 

n 
as suppressed. Both 
the drag reduction. 

CAD-based shape 
 that incorporates 
ooth surface/curve 

the Adjoint method 
ed. The general approach of the 

ablish a practical 
at can take into 
intersection curve 

eometries.  
pplicability of the 
gn task, a geometry 
lle-pylon DLR-F6 

ing the geometrical 
raints to the shape optimization is also 

described and that capability is presented by 
means of the shape optimization with and 
without geometrical constraints. 

For the shape optimization of DLR-F6 
WBNP configuration without any geometrical 
constraints, it is shown that the proposed 
framework is applicable for the shape 
deformation of the complex geometry, and more 
than 100 drag counts reduction can be achieved 
by that optimization. 

sis a

ound the leading edge was increased
of trailing edge was decreased.  

4.2  DLR-F6 WBNP configuration wi
geometrical constraints 

As a next design example, 
configuration, however with ge
constraints, was chosen to demons
optimization capability under the co
condition. Design conditions are t
values as the previous design optimiza
objective function of this design examp
to minimize the drag coefficient at a fix
number and a fixed lift coefficient. In
design variables were used for the 
deformation of the wing geometry. A
Fig. 15, several surfaces at the spar
such as a front spar, a rear spar and an
spar were created for the geometrical c

nd 
rge the 
sis and 
 took 8 

design 
a drag 
s ( Δ
ws t

provide a new design vector that reduces
differences for the next geo

Fig. 16 shows the o
With  the optimization, 5
CD=0.0050) reduction was
constrained conditions. Fig
comparison of the surface pr
and Fig. 18 shows the comp

1.0e-8 for the Adjoint analysis. In total
hours for the whole design. 

Fig. 12 shows the history of th
optimization. With the optimization
reduction of more than 110 drag 
CD=0.0110) was achieved. Fig. 13 sh
comparison of the surface pressure dis
and Fig. 14 shows the comparison of t
section and sectional pressure di
between the baseline and the o
geometry with minimum drag.  From 
can be clearly observed that the 
geometry has lower pres

he 
ibution 
 airfoil 
ibution 
imized 
 13, it 
signed 

section and sectional pr
between the baseline a
geometry that has a minimu
vertical lines show the spar l

Even though the resul
differ from the baseline du
the trend of the chang

edge region at both inboard
sections. As seen in Fig. 14, 
pressure change de

tboard d
e 

rvature 
nd that 

 

leading edge was increased and the acceleratio
at the trailing edge region w
changes have contributed to 

5    Conclusion 

In this study, a new 

me 
etrical 
te the 
train

parameterization framework
NURBS formulation for sm
representation coupled with 
is propos

ed 
 same 
n. The 
 is also 
 Ma

presented work is to est
optimization framework th
account a change of the 
between two g

ch 
tal, 96 

e form 
een in 

ocation 
xiliary 

To demonstrate the a
framework for practical desi
such as the wing-body-nace
configuration was adopted. 

The method for apply
const
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For the optimization with the ge
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the wing structure, it is shown that the
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(a) before deformation 

 

 
(b) after deformation 

Fig.1 Deformed NURBS surface using Free 
Form Deformation 
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Fig. 2 Intersection calculation process 

 

 
(a) spar surface in the wing geometry 
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(b) exposed spar surface due to thinning the 

wing geometry 
Fig. 3 Geometrical constraints 
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Fig.4 Optimization Process 
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(a) NURBS surface where mesh points are 

projected onto 

 
(b) mesh points projected on a fuselage surface 

 
(c) mesh points projected on a wing surface 

Fig. 5 Mesh points projected on NURBS surface 
 

 
(a) baseline 

 
(b) deformed 

Fig. 6 Deformed mesh in UV coordinate system 
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(a) NURBS surface where mesh points are 

projected onto 

 
(b) mesh points projected on a fuselage surface 

 
(c) mesh points projected on a wing surface 

Fig. 5 Mesh points projected on NURBS surface 
 

 
(a) baseline 

 
(b) deformed 

Fig. 6 Deformed mesh in UV coordinate system 
 

 
(a) baseline 

 
(b) deformed 

Fig. 7 Surface mesh with Delaunay triangles 
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(a) baseline 

 
(b) deformed 

Fig. 8 Deformed surface mesh in XYZ 
coordinate system 

 
(a) baseline 

 
(b) deformed 

Fig. 9 Deformed volume mesh 

Fig. 10 DLR-F6 wing-body-nacelle-pylon 
configuration 

 

 
(a) FFD box 

 
(b) surface mesh 

Fig. 11 FFD box and the surface mesh on DLR-
F6 configuration 
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Fig. 12 History of the shape optimization 

without constraints 

 
(a) baseline 

 
(b) optimized 

Fig. 13 Comparison of the surface pressure 
distribution (w/o constraints) 

 

 
Fig. 14 Comparison of sectional airfoil and 

pressure distribution (w/o constraints) 
 
 

 
Fig. 15 Front, Rear and Auxiliary spar surfaces 

for the constraints 
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Fig. 16 History of the shape optimization 

 

(a) baseline 

 
(b) optimized 

Fig. 17 Comparison of the surface pressure 
distribution (with constraints) 
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