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IDENTIFICATION OF STRUCTURAL DAMPED VIBRATIONAL SYSTEMS

M. S. Galkin
Central Aero-Hydrodynamics Institute
Moscow, USSR

Summary

A calculation method for coefficients of elastic structural vibra-
tion equations from vibrational test results has been developed.

Complex inertial and stiffness matrices are used whose imaginary
parts describe the structural damping.

1. INTRODUCTION

The identification of a theoretical dynamic model and a physical
object is discussed in‘®~™)_ These papers use a solution of the inverse
problem of eigenvalues for a system having a finite number of degrees-
of freedom without damping (or with a damping matrix diagonal in
normal coordinates).

Local inertial and elastic characteristics are found from ortho-
normalization conditions of eigenvalues at known natural frequencies
and generalized masses.

In real structures the damping matrix is not diagonal and their
modes are complex. In addition, a rather large number of modes
(equal to the measurement number) has to be used. It can result in ap- _
preciable errors.

To reduce errors the present paper contains equations without
friction forces proportional to velocity but having complex matrices of
inertia and elasticity. All the formal mathematics for the small-vibration
theory of linear systems without friction remains almost unaltered.

In spite of a traditional use of the complex elasticity matrix the
complex mass matrix does not seem to be widely employed, though its
application is as much valid as the use of the complex elasticity matrix.

[1. PROBLEM STATEMENT AND ASSUMPTIONS VALIDATION

Let’s write the vibration equations of a test structure

[ml{ac} + [k]fxc} ={F}e™* | (1)

where

{JC}={:§C (2)

is the displacement vector (matrix-column).
It is further assumed that [m] and [k] are complex symmetrical
matrices, i. e.:

m]=[Rem]+i[Jmm] . [K]=[Rek]+i[ImK] |,
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[m=iml. Rem)=Rem] , Fmm)=Dmm]

(3)
[)'=[], [Rek]=[Rek] , [mk]=[mK]
Deduce the matrix row as
{af ={xy o} (4)

The amplitude vector of external forces {F} is considered comp-
lex and only at a cophased excitation is taken to be real.

The imaginary parts of elasticity matrix coefficients [k} describe
the structural damping®®) due to the hysteresis of elastic and Coulomb
friction forces in joints.

The energy loss equal to the work of these forces during T'=
=2nfwis:

AE =£ Re(iwe™* {I})Re (i[Imw{x,} ") dt =
(5)
=1 ({Re xu}'[Jm KI{Re x,} + {Im Iu}’[flm K{Imx,)) .

AFE is independent of w — vibration frequency.

The imaginary coefficients of the matrix [m] may be considered
as coefficients of structural damping due to weak multiple collisions in
rivet joints, gaps etc., and in closing crack edges as well.

Thes follows from a comparison of the energy loss expression at
multiple weak unelastic collisions and from that for the force work pro-
portional to [Im m] during a vibration period. Let us show it.

Let v;; be the velocity of mass m; at time #; preceeding an impact
and ny; vy; after that; ny; is the velocity recovery coefficient. The energy
varjation is equal to

AL

-1 2 1y a2
y=z m vy (-mg) - (6)

i
If each mass m; for a period experiences k; impacts, then one has for
the whole system:

N Ki

AE=2] Z%ma"fﬂ"fg) N

iL={ B

Represent velocity »; as a sinusoid multiplied by amplitude stepwi-
se changing at an impact:

V.

L

=V, sinwt , (8)

where

Ky

U, =Yy, exp (Z §e-t)lnm, ), (9



t<t
L (10)

é(t-tz>={”

1 t2t,

then
j-1
V-Lj :mym([;l niz) sin Zﬂtj/T . (11
Substituting (11) in (7) we obtain
N PR K; -1
- 4 20,
AE—a)zLZ1 5 Ys mLJZW nq [;Ina surf 21(tj/T. (12)

In turn, the forces proportional to the imaginary part of the mass
matrix lead to the energy loss during a period equal to:

AE~—f Reliwe™Hr) )Re (i [Tmml{z) €*)dt-
(13)
5t (Rex, Dm m}{Re )+ {Im )T I, )) .

Though (12) and (13) are derived using different computed dynamic
models (V> n), the comparison shows the energy change as a function
of frequency to be the same.

[I. NORMAL COORDINATES

Introduce for (1) normal coordinates and express forced vibrations
through these coordinates.

Substituting
t
{x}={f}e" 4
in the homogeneous equation
(ml{x} + [kl{x} =0 , (15)

will give algebraic equations for eigenvalue and eigenvector X and {f}

(32 [m] + [k]){fl=0 . 16)
The characteristic equation for eigenvalues is
det (M2[m] +[k]) =0 amn
The eigenvalues and eigenvectors (16) can be written as:
Ays Ags-oon A
1 29 bl n (1 8)
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Derive the orthogonality conditions for eigenvectots. Using the
transposition rule for matrix product

([m){FD) = (3 Tm) = {f} m

write the factor commutativity in bilinear forms with symmetric matrices

19

(20)

YL} = (D () ={F 3 m{f}

Using this property we find from (16) the orthogonality condition for
two eigenvectors{f,} and {f,} with unequal eigenvalues 2, and Ag

i
{f}m{f=0. @
Similarly, the second orthogonality condition is found
!
{ffkl{f} =0 . 22)
If we introduce the modal matrix
]cn s fm
(fl={ ] @3)

nn

then conditions (21) and (22) for all n vectors are written as two matrix

HmA =R mEN . o
F0E =NEYIKEN . @

T g the e wmtormation
{x} =[f1q} 26)

introduce a normal coordinate vector {¢}.
Substituting (26) in (1), multiplying by [f] and using (24) and
(25), we obtain vibration equations in gentralized coordinates {q}:

R TN G} + R IR FF e @n

For s — component of the vector {g} from (27) we find

(28

FSS Cz/s + Xssqlsr_{fs}’{[:} el(‘)t N

where



' !
Rs~U I mE} e =1} @
complex generalized , mass” and , stiffness” respectively.
For A, we have:
. 2
As= Ogr ipg » AT %ss/}iss ,
(30)

8S=Re\"9€ss/f‘ss > Pszjm\/_%ss/ Pss .

where 6, and p, are the damping coefficient and the frequency S of
natural vibration mode respectively.
For g, from (28) we find

iwt
q’S= qSO e 5 Gn

where

A G ,
0 g (R + @)

For the displacement amplitude in point / at multipoint excita-
tion:

!
R e AL
SFOBL T S L4 S
s=p &0 g5 e (05 +w?)
and at onepoint excitation in 7 point:
i f
Lpe=— e T ¢4)

S e D

Egs. (33) and (34) coincide with similar expressions {or frictionless
systems with the difference that except for w all values in these formulas
are complex.

Since the vibration modes are found accurate up to the complex
normalizing factor, generalized masses and stiffnesses are proportional
to the normalizing factor square.

The value

1 fARNFR)
Pss Mss

(35)
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does not depend on the normalizing factor, but is dependent on the

choice of a measurement point and force application points. In (35) the
vector {F/FO} is characteristic of a force excitation distribution and
the Fo number is representative for force.

1V. HODOGRAPH

Let us examine the vibration amplitude. near resonance S of a
normal mode. Present (33) as

2 2z
<)\5+w)(uaa)=1/f355 3 (36
where
!
£ ALHF/F
U=Xoe/Fy > O=~Z m (17\}2{ /gi en
j=1 LA+ P
(j;és) }lJJ J S
We neglect @ = a (w) assuming w = p,. Introduce the notations:
' 2
p=—" — %=-azct9-—z—8—zsp—s—2— er
483PS_PSS 8‘3 Ps w
Using the equality
. i, 1
1-g"=-2 sin— (&3 , (39)
2
reduce (36) to
i L{p+9)
u=a+b(l-e*)=a+b-8le” ", wo
where
9=7/2 - avelq Imp, [Rep; - v

Hodograph (40) is a circle with the centre u,=a+b and radius | 5|
(fig. 1) (Y is counted from the point u = a).



RelU

Figure 1.

Points ¢, in fig. 1 correspond to different resonance conditions.

1. Phase resonance:

Reu=0, cos(¥+¥)="Re(a+8)IBl™.

“2)

2. Resonance ij:
0Tmu _ s Jm
_a’a.}._.—[] ) 4’2-J(+a'zctg—————ReP:
3.Resonance U |-
lul® _ 0y agetg Im(@t®)
gy 0 e e
4. Normal mode resonance:
dlu-al’_ _
T*U, $=Y=7 ,
wi=p2-8. . u-a=26

For systems with a complex mass matrix describe a refined method

of determining the natural frequency, complex natural mode and genera-
lized mass which is a version of the known Kennedy-Pancu method.

The method is that the perfect oscillator hodograph circle coinci-

ding with true ones in three points corresponding to th ree discrete

frequencies near resonance is inscribed in a true hodograph for a system
with many degrees of freedom.

Let these three points be related to frequencies w,, w, and w;

2
Uy~ Ul Uy~ Ul = fuy- U =1 B @)
From (43) we find
- , -
’ I -1u,” Im(u-uy)
et
IUZIZ_IU3‘2 jm(“z'“})_
Reus - -
et Re(u,-u,)  Im(u,~u,)
e
Re(uy-u)  Im(u,-uy)
(49
. ) =
Re(u1_uz) lU1! A‘UZ,
det
Re(UZ—U3) luzlz—'lusfzﬂ
ijC= = -
Re(u-u,)  Jm(u-uy)
det
Re(u,-uz) — Tm(u,-uy),
2 2 2
161"=Re (u,~Ue)+Im (u,-up) “5)
Similarly, from (36) we have
r 2 27
U LW W-w,
det 2 2 2 2
3 U0, U0, W, ~ W
S » 2 2]
U, = U, Wy - W,
det
U, U W - |
(46)
_ B A
Uy-t, U,y + U, W,
det 2 5
U,= Uy U, w, + U, W,
Q=- —= -
(u,-u, Wi - ws
det P
U,= Uy W, - W |
1
P=- 4-a . Uzz_ g @1
Wy - W,

and to relative amplitudesu,, u, and us.

The condition that three points lie on the circle of the radius

| bi with the centre u, is
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Define the vibration of S — nirmal mode. The determination of

a in each measurement point results in the vector:



a,
{af=y: @8)
a

f1

Substituting (43) in the forced oscillation mode at resonance of
S — mode obtained from (34):

HHEY F/F)

{x,/F}={a}- o0t ) (49)

and finding the difference
={xc,/F}-{a} ={fIN (50)
R o

RO

we find that {Ws} are complex natural vibrations of § mode. Since the
natural vibration mode is determined accurate up to the complex factor
one can assume

{£h=cofw} - (52
where C; is, generally speaking, an arbitrary normalizing factor.
From (35) we obtain the generalized mass

£ 5Y1F/F,

Hss™ se{ s} { U}Pss 63
and, according to (30), the generalized stiffness

2
3{”ss"_xs FSS G4

V. IDENTIFICATION

Having determined experimental generalized mass, stiffness and
complex natural vibration modes and substituted them in (24) and (25)
we obtain equalities to be re;}ded as equations for finding the coeffici-
ents of matrices [m] and [k]:
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[F1m)(f] = N }iss\] , (55)
DI N R I
HTmE) = p s, s on
{fS}I[K] {3?{ = Hgs 851 , (58

(s=1,...:1 , v=1,..n)

In view of (20), independent equations in each of systems (52) and
(53) are only (n+1)n/2 and their numder is equal to the number of
[m] and [k] symmetric matrix coefficitnas.

This theory being a generalization for the case of complex natural
forms of the results published in‘*) may be used to identify a fullscale
structure and its computatuinal as well as elastic dynamical models.

The magnitudes of coefficients [m] and [k] are dependent on
measurement point locations, a number of considered modes, the choice
of calculation points on the hodograph and on other factors. Therefore,
they differ from actual local mass and stiffness characteristics and from
damping characteristics as well. Nevertheless, if we have defined them
by the samé procedure on the fullscale structure, and by prediction, then
by comparing these coefficients we can establish a reciprocal check.

When appreciable cracks, stability loss of a structural element,
impacts from a separated element or an equipment unit etc. occur, the
coefficients of matrices {k] and [Im m] corresponding to the flaw point
may be altered much more than such inte gral characteristics as genera-
lized mass, frequency and oscillation decrement. Hence, the present
identification method may offer certain promise for vibration flaw detec-
tion, particullarly for those structural elements which are unaccessible
by conventional flaw detection methods or for an approximate flaw
detection.

VI. EXAMPLES

Fig. 2 and tables 1 and 2 show processed results of vibration
tests for a composite swept wing model. The location of the stiffness
axis necessary to represent the wing as a beam working in bending and
torsion was found. To that end, the {k] matrx coeffocoents were used

from:

(1",

[K]=[fT"R 2 (59)
which follows from (56).
Further, compliance coefficient matrix {r] was defined
[t) = [Rek]” ©0)

and the next experssion was formulated for a wing displacement in two
points when applying forces ®; and ®;



IFPLLL(PL“LLJCR =y Ry ® e

If the points lie on an undeformed section and the force moment relative
to the stiffness axis (flexural centre) is equal to zero,i.e.:

G 6, =-PU-8) . )

then the section will displace translationally and

X=X . ©3

Egs. (56), (57) and (58) give the following expression for the
stiffness axis location

éii—- = ——L—%LL—PLL‘ k) (64)

where Lis the distance between force application points.

Fig. 3 and tables 3 and 4 prese nt processed results of vibrational
tests for two similar compressor blades. One of the blades has a 10 cm
flaw located on 45% of the span.

The greatest discrepancy is contained in coefficient r, 3.
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Figure 2. Dynamic model of the wing with a torsion box from
anisotropic fiber-glass plastic
A, ® — measurement point; @ — excitation point; 59~ foam  core:
[ITT0 — anisotropic fiberglass plastic; ™ — flexion center b; semispan
1=750cm,x =45°.

i 1 2 3 4 5 6

1 Flex.| H Flex.| I Tors H Tors. 1t Flex. 1l Tors.
v 1135} 364 555 1028 1145 1343
0 0,09 0,08 0,09 0,07 0,08 0,12

Table 1. Frequencies and decrements ot experimental modes used in
the calculation

_S_ec‘ number 1 2 3 4 5 6
i
by/l; 091 0,65 1
N bifl; 0,32 | 0,78 0,53
by/l; 0,49 0,87 0,95
byfl; 1,17 | 0,96 0,805 0,765 | 0,75 0,83
static

Table 2. Flexion center location for different section choices.
Comparison of b,/I; obtained by dynamic and static methods
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Figure 3. Compressor blade;
length /=110 cm; chord =55 cm;
crack length A/= 10 cm; ® — excitation

point; ® — measurement point.

1 Flexion I Torsian 1T Flexion II Torsion
Modes
Frequency, v | Decrem. 8 vy [} v [} v [}
(Hz) log.
Blade N°I (withno crack) 52,7 0,004 1793 0,053 2347 0,015 4189 0,046
Blade N°2 (with no crack) 53,6 0,003 180,5 0,06 238,1 0,020 414,5 0,051
Blade N° 3 (with a crack) 472 ‘ 0,0037 167,3 - 223,0 0,027 406,5 0,052
Table 3. Frequencies and decrements of experimental modes used in the calculation
0.123-107% 10267-10°% 0,170-10"¢ [0,362-1077 0,129-107¢ | 0,18-107% | 0,14-107¢ | 0,388.10~7
0,683-10~% [0,357-107¢ 10,123.1077 0455-107% | 0,12-107% |0,148.1077
0,357-107% {0,111-10"¢ 0,268 -107¢ 10867-1077
0,997-1077 0,982-10"7
Table 4. Matrix {r] of influence coefficients for blade N° Table 5. Matrix {r] for blade N° 3
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