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Abstract  

SpaceWire networks design and configuration is 

a complicated design problem that includes a 

set of different tasks to be solved: terminal 

nodes selection, workload tasks mapping, 

logical channels definition, interconnection 

topology design and switches selection, 

configuration space settings and routing table 

generation, etc. In design one should take into 

account many characteristics and requirements: 

terminal nodes performance for workload, 

channels latency and throughput, 

communication system capacity to cover logical 

channels requirements, etc. Every design step 

and the whole network should also fit into other 

user and technological constraints: area, mass, 

power consumption, heating also. 

Design tasks are complicated; some of 

them are NP-hard. “Manual” design of 

SpaceWire networks with dozens of nodes 

becomes very complicated, time-consuming and 

has high probability of design errors and 

misses. 

To deal with the problem a through design 

flow for SpaceWire Networks Design and 

Configuration has been developed. Toolset 

includes network architecture design tool, 

communication structure forming tool and tool 

that forms logical structure and routing 

information. All these tools are highly 

automated and produce results corresponding 

to the defined user requirements and 

technological constraints. Network modeling 

tool is also provided for simulation of network 

functioning and collection of network statistics 

for investigation purposes. 

1  Introduction 

A network synthesis problem for systems 

with dozens and hundreds of nodes in general 

case is NP-hard. Nowadays in a number of 

network synthesis methodics affordable 

computation complexity is reached due to 

significant constraints in the problem statement 

only. 

Some input parameters for SpaceWire 

network generation are determined at the 

architecture stage on the base of tasks 

parameters. Tasks should be allocated to nodes. 

The network should transmit data packets 

between source and destination terminal nodes 

with required throughput and timing parameters.  

In system level design a network should be 

generated of devices (routers) from a system 

components library. The system components 

library can include different types of routers 

with various number of ports, mass, power, 

timing parameters. 

The network should also meet user 

requirements in total equipment mass and 

power, in fault tolerance, considers specific 

requirements based on spatial placement of 

nodes.  

Network synthesis methodic, such as based 

on Stainer three synthesis [1,2,3,4] and other 

classical methodics for wireless networks 

synthesis [1,5,6], do not deal with these 

constraints  and can’t be used for SpaceWire 

networks synthesis. 

Development of a SpaceWire network 

structure correspondingly to architecture and 

others user’s requirements are supported by the 

suggested methodology and developed tools. 
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2 Architecture 

The system design techniques and 

supporting software are based on the design 

space exploration methodology. This approach 

is productive and is widely used in modern 

R&D. For example, communication 

architectures with big number of channels 

generate exponentially growing number of 

possible mappings of logical channels to the 

communication paths in the physical structure 

of the communication network. It makes 

impossible a straightforward exhaustive 

exploration of variants. Interrelation between 

possible mappings and communication 

protocols characteristics increases complexity of 

actions in design space exploration. 

The proposed instrument is an automated 

tool for the design of SpaceWire networks. 

The methodology of a network structure 

design includes four main stages: 

 Analysis of the workload for the 

network to be design; 

 Synthesis of the network architecture, 

including the terminal nodes and logical 

channels; 

 Synthesis of the communication system, 

including switches and physical 

channels. 

 Synthesis of the Logical Network 

structure and correspondent setting in 

nodes and switches 

Design of SpaceWire network architecture 

is performed from a given set of basic system 

components from a network system components 

library according to user-defined network 

characteristics. 

During forming of the SpaceWire network 

architecture it is necessary to verify the 

possibility of allocation of computation 

workload to the particular library of system 

components. To achieve this, the allocation of 

computing workload to synthesized architecture 

should be done. 

Formed structure should correspond to the 

user requirements: performance, throughput, 

command transmit delay, signal of real time 

transmit delay, failure tolerance of the network, 

etc. 

The problem is solved with a restricted 

search. Methodology generates a set of possible 

solutions, which includes alternative problem 

solutions. Search is restricted by using a number 

of criteria for discarding not satisfying solutions 

at each stage. 

The assignment problem for the network 

synthesis has a task graph G as the input data. 

       ,     where 

N – set of graph vertexes, which are 

computation tasks, 

E – set of graph edges. 

Additionally we define the overall 

throughput of the network input/output ports (T) 

in each direction (for input and for output (I)). 

              

Task graph vertexes are mapped to the 

system library components and a set of possible 

solutions is formed. At this stage the job is to 

define the number of nodes of each type and 

allocate task graph vertexes to the SpaceWire 

network nodes (end nodes). The total network 

characteristics should not override the user-

defined constraints. 

The allocation of the task graph vertexes 

on the network nodes is represented by the 

                        

                           

              , 
where 

k – total number of nodes in the task graph; 

ni – node of the task graph allocated to the 

node nb of the network. 

The function for allocation of a task graph 

vertex to the network node is: 

                        
The function of a network node allocation 

that defines which task graph vertexes are 

allocate to this network node: 

                                     

   
Formula for the total weight of the 

SpaceWire network is: 

     

 

   

       

k – the total number of nodes in the 

network; 
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      – weight of the i-the node of the 

network. 

To limit the search space we apply the 

criteria: 

1. The total weight of the SpaceWire 

network limit.  

     
2. The limit of the throughput of output 

logical channels of the network node. 

The required output logical channels 

throughput is: 

        

The criterium is: 

             

 

   

 

T – throughput of input/output ports of the 

network node. 

3. The limit of the throughput of input 

logical channels of the network node. 

The required input logical channels 

throughput is: 

                

The criterium is: 

      

 

   

 

4. The limit of the requirement to the 

network node memory. 

          

           

     
 

5. The limit of the requirement to network 

node computation resource (processor) 

           

           

     

In the process of possible solutions building the 

best ones are selected with the complex set of 

minimization parameters. 

1. Total requirement for the network 

throughput. 

          

2. Maximum requirements for the 

throughput of network node input 

ports. 

         
     

     

3. Maximum requirements for the 

throughput of network node output 

ports. 

         
     

     

As a result we get the architecture of a 

SpaceWire network that is based on the 

computing/communication workload 

requirements and satisfy the user-defined 

constraints. 

3 SpaceWire network synthesis 

We use decomposition of a system to 

subsystems. Decomposition is used for support 

of spatial constraints and specific timing 

constraints (jitter) for some tasks. It helps also 

to decrease algorithm complexity. 

3.1 Spatial constrains 

Technology constraints related to spatial 

placement of terminal nodes and specific of 

cable-laying typically are relevant for a 

spacecraft. Certain groups of devices should be 

placed locally due to their functionality 

(sensors, locator) or structural reasons. 

Typically quantity of cables that connect such 

group with other parts of the network is strongly 

constrained. This group is arranged as 

subnetwork includes its own set of routers. 

The methodic takes into account this type of 

user constraints. User can specify such groups 

of nodes as clusters. Our tools generate 

subnetwork structure for each cluster 

independently (routers of one subnetworks are 

not used in others) and with constrained 

(required) quantity of interconnections to other 

network parts. 

3.2 Specific timing constraints 

We use network structure patterns in our 

methodic for specific timing constraints support. 

SpaceWire networks are often used for 

data transmission from sensors to computer or 

from computer to visualization or 

telecommunication subsystems. Not only packet 

delivery time but jitter is important for these 

applications also. Therefore an appropriate 

network structure for such subsystems is 
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symmetric (that is important for jitter 

parameter) tree. 

The tool generates symmetric trees of 

routers from the system components library that 

meet mass and power constraints. Adaptive 

routing can be used for simultaneous throughput 

utilization of some links, which directly 

connects two devices (e.g. in fat trees). 

Such subsystems can include up to 90% of 

terminal nodes. Therefore this approach also 

allows to essentially decreasing the computation 

complexity of the integrally algorithm of 

network structure generation. (Basic variant of 

network structure generation algorithm for 

arbitrary network is NP-hard.) 

At a lower layer of the tree our tool could 

generate daisy chains of nodes (if nodes 

supports this functionality), to decrease 

hardware cost of the network. 

The tool automatically selects subgraphs in a 

logical interconnection graph, for which tree 

based subnetworks could be generated. 

An example of tree subnetwork generation 

is represented on fig 1. The logical graph 

structure is represented on left part of the figure.  

The logical graph structure includes two 

subsystems. They are marked “Tree1” and 

“tree2”. 

For every subsystem separate tree network 

is generated.  After that these subnetworks are 

connected together. The result network 

interconnection structure is represented in 

middle part of the figure. The network 

interconnection structure when daisy chain 

connections for terminal nodes are possible. 
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 Fig..1 Example of tree subnetwork generation 

Others typical for a SpaceWire networks 

structures are used for distributed computing. In 

the tasks graph such structures are usually 

represented by subgraphs with peer to peer 

connections between tasks. Typical requirement 

is equal data transmission time between all 

components of a distributed computing 

platform.  

A designer should select subgraphs that 

correspond to distributed computing in a logical 

interconnections graph because rules of such 

subgraphs detection strongly depends on the 

tasks that are processed in system.  

A good structure for such network 

fragments corresponds to bipartite graphs is 

Banyan network [7,8,9]. Banyan networks 

provide path with equal length between all 

nodes from one set of nodes from a bipartite set 

to another set. 

In our methodic Irregular Banyan 

subnetworks are built of routers. The Banyan 

subnetwork generation algorithm can use the 

adaptive routing to utilize total throughput of 

some links that directly connect a pair of 

devices (nodes, routers) and takes into account 

requirement of connections with other parts of 

the SpaceWire network. 
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Subnetworks for logical interconnections 

subgraphs with peer-to-peer interconnections 

are generated as Banyan networks also. 

A Banyan network in this case should 

connect not only nodes from different sets but 

nodes from one set with same timing parameters 

of interconnections also. We use coupled 

Banyan networks in what in the left half of the 

network we append interconnections mirrored 

interconnections of the right half; in the right 

half we append interconnections mirrored 

interconnections of the left half. 

Example of such a network is represented in 

Fig.2. Black lines correspond to 

interconnections between nodes from different 

sets, gray lines correspond to interconnections 

between nodes from one set. 

 

Fig.2 Example of doubled banyan network 

4 Synthesis of Logical Network structure 

Synthesis of a logical network structure includes 

mapping of logical channels (created at the 

architecture synthesis stage) to physical paths 

(in the basic variant of network structure) and 

generation of configuration settings for all 

terminal nodes and routers in the network 

structure. 

In the developed algorithm, which maps 

logical channels to physical paths, logical 

channels could be mapped not only to shortest 

paths, by to others paths that correspond to 

throughput and timing constraints.  Usage of the 

adaptive routing for throughput is also 

considered. 

Mapping of logical channels to physical 

paths starting with check of logical channels and 

links characteristics. Further physical path are 

searched for one logical channel from list 

successively. Logical channels can be sorted 

according to priority of logical channels or user 

preferences. When searching for physical paths 

information about logical channel 

characteristics (for example throughput) is taken 

into account. This procedure is marked as 

successful, when physical paths are created for 

all logical channels. Several physical paths can 

match logical channel characteristics thus a few 

solution can be created. Conclusive physical 

paths for all logical channels are selected at final 

step. The principles of selection are different. 

For example, shortest physical paths can be 

selected. User specifies this criterion at the 

beginning. 

Further generation of configuration 

parameters for terminal nodes and routers 

(routing tables’ content, adaptive routing mode, 

and link transmission rate) is performed.  

Link transmission rate is configured 

correspondingly to required throughput and 

packet transmission time. Adaptive routing 

could be configured for pairs of nodes or routers 

that are directly connected via some links (for 

throughput). 

Logical addresses of the terminal nodes 

should be defined before the routing table 

content generation. Our tools assign a logical 

address to every application (task) in a terminal 

node. 

If the quantity of addresses is more than 

224, then the regional addressing is used. 

Regions (or groups of regions) correspond to 

subgraphs that are extracted in the logical 

interconnection graph structure. 

Routing tables’ content is generated after 

logical and regional address assignment, in 

correspondence to mapping of logical channels 

to physical paths. 

Example of network configuration is 

represented on fig. 3. Network consists of 7 

terminal nodes and 3 routers. Paths of logical 

channel are displayed by colored lines with 

arrows. Links are shown by black lines. 

TX_speed configuration, Routing tables’ 

content and information about adaptive routing 

are presented on this figure. 
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 Fig.3 Example of network configuration 

5  Fault tolerance support 

Hardware redundancy is used for providing 

fault tolerance.  

Fault tolerance support is realized by to 

hardware replication (routers and links 

replication). We suggest two types of 

redundancy policy: path replication based and 

dynamic path reconfiguration. 

5.1 Path replication based redundancy 
If tolerance to N-1 faults is need, the whole 

SpaceWire network structure should include N 

independent paths between source and 

destination terminal nodes. The whole network 

structure (Fig.4) includes N copies of the basic 

structure (configurations of corresponding 

routers in all replicas are identical). Every 

terminal node is connected to all replicas of the 

basic network structure. Source terminal nodes 

should send copies of every packet to all 

replicas of the basic structure.  Destination 

terminal nodes should correctly interpret data 

flows with proper and faulty copies of received 

packets. 

This redundancy policy is recommended 

for systems with strong requirements to packet 

delivery reliability and real time constraints. 

Hardware cost of buffering scheme in 

terminal nodes is essential for this redundancy 

policy. 

Tn1

Tn2

R1

R2 R3

Tn3

Tn4

Tn5

R1

R2 R3

(0)

(1)

 

Fig.4 Example of a path replication based network structure (N=2) 

If fault tolerance is required, at the first 

stage our tools generate a basic network 

structure and logical configuration for it and 

next this network structure is expanded for fault 

tolerance.  

User should reserve resources (mass, 

power, number of device’s used ports that can 

be utilized for a basic network structure, should 

be decreased correspondingly to quantity of 

faults and selected fault tolerance policy) before 

a basic network generation. In the basic network 

should be used not more than 1/N allowable 

mass and not more than 1/N of every terminal 

node port’s quantity for tolerance to N-1 faults. 

For practical reasons it is typical to apply 

FT-requirements to some fragments of the 

network only, to some of its subnetworks, 

clusters. Thus the strategy of network 

redundancy by path replication is applied to 

these individual parts of the network. 

5.2 Dynamic path reconfiguration 

redundancy 

Further, dynamic path reconfiguration 

redundancy could be used for a N-1 faults 

tolerant network that includes N replicas of a 

basic network (Fig.5). All routers Ri(0) and 

Rj(0) in the basic network (marked by “0”) that 

are directly connected, have connections with 

routers Rj(k) and Ri(k) for all network replicas 

(represented by gray dotted lines in the figure). 

Adaptive routing configuration for direct 

interconnections of devices by some links is 

identical in the basic network and all the 

replicas.  
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For dynamic path reconfiguration 

additional adaptive routing configuration is 

generated for interconnections between network 

replicas in whole network structure. 
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R2
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R2 R3

(0)
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Fig.5 Example of dynamic path reconfiguration based network (N=2) 

In this case a terminal node sends to the 

network only one copy of a packet. It sends 

packet to any link that corresponds to this 

packet’s path and is currently in the work state. 

Then every next transit router send packet to 

any link that corresponds to this packet’s path 

and is ready. If a fault occurs in a router or a 

link when a packet transmitted, this packet 

would be lost or corrupted and destination node 

would not receive correct copy of it. Also fault 

can impact to transmission time of others 

packets in network.  

However in this case designer doesn’t need 

additional hardware for packet buffering in 

terminal nodes. Therefore this fault tolerance 

policy is recommended for networks without 

guaranteed delivery packets, without strict real 

time requirements and when packets buffering 

in terminal nodes is impossible. 

When a designer plans to use this fault 

tolerance policy, he should reserve resource of 

network equipment mass and resource of 

terminal nodes and routers port’s quantity 

before a basic network generation. In the basic 

network should be used not more than 1/N 

allowable mass and not more than 1/N of every 

router and terminal node port’s quantity for 

tolerance to N-1 faults. 

6 Conclusion 

The paper describes the methodology and 

toolset for SpaceWire network design. It 

provides the design space exploration 

mechanism for synthesis of the large SpaceWire 

networks. The design includes the set of 

terminal nodes, communication structure, 

switches and links to meet the computation 

requirements and user-defined constraints. The 

high level of automation allows making changes 

in requirements and reconfiguration of 

SpaceWire network rapid and easy. 
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