

1

Abstract

SpaceWire networks design and configuration is

a complicated design problem that includes a

set of different tasks to be solved: terminal

nodes selection, workload tasks mapping,

logical channels definition, interconnection

topology design and switches selection,

configuration space settings and routing table

generation, etc. In design one should take into

account many characteristics and requirements:

terminal nodes performance for workload,

channels latency and throughput,

communication system capacity to cover logical

channels requirements, etc. Every design step

and the whole network should also fit into other

user and technological constraints: area, mass,

power consumption, heating also.

Design tasks are complicated; some of

them are NP-hard. “Manual” design of

SpaceWire networks with dozens of nodes

becomes very complicated, time-consuming and

has high probability of design errors and

misses.

To deal with the problem a through design

flow for SpaceWire Networks Design and

Configuration has been developed. Toolset

includes network architecture design tool,

communication structure forming tool and tool

that forms logical structure and routing

information. All these tools are highly

automated and produce results corresponding

to the defined user requirements and

technological constraints. Network modeling

tool is also provided for simulation of network

functioning and collection of network statistics

for investigation purposes.

1 Introduction

A network synthesis problem for systems

with dozens and hundreds of nodes in general

case is NP-hard. Nowadays in a number of

network synthesis methodics affordable

computation complexity is reached due to

significant constraints in the problem statement

only.

Some input parameters for SpaceWire

network generation are determined at the

architecture stage on the base of tasks

parameters. Tasks should be allocated to nodes.

The network should transmit data packets

between source and destination terminal nodes

with required throughput and timing parameters.

In system level design a network should be

generated of devices (routers) from a system

components library. The system components

library can include different types of routers

with various number of ports, mass, power,

timing parameters.

The network should also meet user

requirements in total equipment mass and

power, in fault tolerance, considers specific

requirements based on spatial placement of

nodes.

Network synthesis methodic, such as based

on Stainer three synthesis [1,2,3,4] and other

classical methodics for wireless networks

synthesis [1,5,6], do not deal with these

constraints and can’t be used for SpaceWire

networks synthesis.

Development of a SpaceWire network

structure correspondingly to architecture and

others user’s requirements are supported by the

suggested methodology and developed tools.

TOOLSET FOR ONBOARD NETWORKS DESIGN AND
CONFIGURATION

Yuriy Sheynin*, Elena Suvorova*, Alexey Syschikov*, Boris Sedov*, Nadezhda

Matveeva*, Dmitry Raszhivin*

* Saint-Petersburg State University of Aerospace Instrumentation

Saint-Petersburg, Russian Federation

Keywords: SpaceWire network, automated design, design space exploration, SpaceWire

configuration

YURIY SHEYNIN, ELENA SUVOROVA, ALEXEY SYSCHIKOV, BORIS SEDOV, NADEZHDA MATVEEVA,

DMITRY RASZHIVIN

2

2 Architecture

The system design techniques and

supporting software are based on the design

space exploration methodology. This approach

is productive and is widely used in modern

R&D. For example, communication

architectures with big number of channels

generate exponentially growing number of

possible mappings of logical channels to the

communication paths in the physical structure

of the communication network. It makes

impossible a straightforward exhaustive

exploration of variants. Interrelation between

possible mappings and communication

protocols characteristics increases complexity of

actions in design space exploration.

The proposed instrument is an automated

tool for the design of SpaceWire networks.

The methodology of a network structure

design includes four main stages:

 Analysis of the workload for the

network to be design;

 Synthesis of the network architecture,

including the terminal nodes and logical

channels;

 Synthesis of the communication system,

including switches and physical

channels.

 Synthesis of the Logical Network

structure and correspondent setting in

nodes and switches

Design of SpaceWire network architecture

is performed from a given set of basic system

components from a network system components

library according to user-defined network

characteristics.

During forming of the SpaceWire network

architecture it is necessary to verify the

possibility of allocation of computation

workload to the particular library of system

components. To achieve this, the allocation of

computing workload to synthesized architecture

should be done.

Formed structure should correspond to the

user requirements: performance, throughput,

command transmit delay, signal of real time

transmit delay, failure tolerance of the network,

etc.

The problem is solved with a restricted

search. Methodology generates a set of possible

solutions, which includes alternative problem

solutions. Search is restricted by using a number

of criteria for discarding not satisfying solutions

at each stage.

The assignment problem for the network

synthesis has a task graph G as the input data.

 , where

N – set of graph vertexes, which are

computation tasks,

E – set of graph edges.

Additionally we define the overall

throughput of the network input/output ports (T)

in each direction (for input and for output (I)).

Task graph vertexes are mapped to the

system library components and a set of possible

solutions is formed. At this stage the job is to

define the number of nodes of each type and

allocate task graph vertexes to the SpaceWire

network nodes (end nodes). The total network

characteristics should not override the user-

defined constraints.

The allocation of the task graph vertexes

on the network nodes is represented by the

 ,
where

k – total number of nodes in the task graph;

ni – node of the task graph allocated to the

node nb of the network.

The function for allocation of a task graph

vertex to the network node is:

The function of a network node allocation

that defines which task graph vertexes are

allocate to this network node:

Formula for the total weight of the

SpaceWire network is:

k – the total number of nodes in the

network;

3

TOOLSET FOR ONBOARD NETWORKS DESIGN AND CONFIGURATION

 – weight of the i-the node of the

network.

To limit the search space we apply the

criteria:

1. The total weight of the SpaceWire

network limit.

2. The limit of the throughput of output

logical channels of the network node.

The required output logical channels

throughput is:

The criterium is:

T – throughput of input/output ports of the

network node.

3. The limit of the throughput of input

logical channels of the network node.

The required input logical channels

throughput is:

The criterium is:

4. The limit of the requirement to the

network node memory.

5. The limit of the requirement to network

node computation resource (processor)

In the process of possible solutions building the

best ones are selected with the complex set of

minimization parameters.

1. Total requirement for the network

throughput.

2. Maximum requirements for the

throughput of network node input

ports.

3. Maximum requirements for the

throughput of network node output

ports.

As a result we get the architecture of a

SpaceWire network that is based on the

computing/communication workload

requirements and satisfy the user-defined

constraints.

3 SpaceWire network synthesis

We use decomposition of a system to

subsystems. Decomposition is used for support

of spatial constraints and specific timing

constraints (jitter) for some tasks. It helps also

to decrease algorithm complexity.

3.1 Spatial constrains

Technology constraints related to spatial

placement of terminal nodes and specific of

cable-laying typically are relevant for a

spacecraft. Certain groups of devices should be

placed locally due to their functionality

(sensors, locator) or structural reasons.

Typically quantity of cables that connect such

group with other parts of the network is strongly

constrained. This group is arranged as

subnetwork includes its own set of routers.

The methodic takes into account this type of

user constraints. User can specify such groups

of nodes as clusters. Our tools generate

subnetwork structure for each cluster

independently (routers of one subnetworks are

not used in others) and with constrained

(required) quantity of interconnections to other

network parts.

3.2 Specific timing constraints

We use network structure patterns in our

methodic for specific timing constraints support.

SpaceWire networks are often used for

data transmission from sensors to computer or

from computer to visualization or

telecommunication subsystems. Not only packet

delivery time but jitter is important for these

applications also. Therefore an appropriate

network structure for such subsystems is

YURIY SHEYNIN, ELENA SUVOROVA, ALEXEY SYSCHIKOV, BORIS SEDOV, NADEZHDA MATVEEVA,

DMITRY RASZHIVIN

4

symmetric (that is important for jitter

parameter) tree.

The tool generates symmetric trees of

routers from the system components library that

meet mass and power constraints. Adaptive

routing can be used for simultaneous throughput

utilization of some links, which directly

connects two devices (e.g. in fat trees).

Such subsystems can include up to 90% of

terminal nodes. Therefore this approach also

allows to essentially decreasing the computation

complexity of the integrally algorithm of

network structure generation. (Basic variant of

network structure generation algorithm for

arbitrary network is NP-hard.)

At a lower layer of the tree our tool could

generate daisy chains of nodes (if nodes

supports this functionality), to decrease

hardware cost of the network.

The tool automatically selects subgraphs in a

logical interconnection graph, for which tree

based subnetworks could be generated.

An example of tree subnetwork generation

is represented on fig 1. The logical graph

structure is represented on left part of the figure.

The logical graph structure includes two

subsystems. They are marked “Tree1” and

“tree2”.

For every subsystem separate tree network

is generated. After that these subnetworks are

connected together. The result network

interconnection structure is represented in

middle part of the figure. The network

interconnection structure when daisy chain

connections for terminal nodes are possible.

TN1

App1

TN2 TN3 TNn
...

App2 App2 App2

TNm1

App3

-channels with equal

timing and throughput

requirements, with same

direction

-terminal nodes

corresponds to one type

-applications are same

If daisy chains

allowable

TNm2

App3

TNmm

App3

...

TNk

App5

App6

TN1

TN

Reserved for other

logical channelsR

R R

Tree 1

Tree 2

TN
TN

TN
TN

TN
TN

TN
TN

TN
TN

TN
TN

TN

TN1

TN

Reserved for

other logical

channels
R

R R

TN

TN
TN

TN

TN
TN

TN

TN

TN

TN
TN

TN
TN

Tree 1

generation

Tree 2 generation

And whole structure

combining

TN1

TN

Reserved for other

logical channelsR

R R

TN
TN

TN
TN

TN
TN

TN
TN

TN
TN

TN
TN

TN

R

TN
TN

TN
TN

TN ...

 Fig..1 Example of tree subnetwork generation

Others typical for a SpaceWire networks

structures are used for distributed computing. In

the tasks graph such structures are usually

represented by subgraphs with peer to peer

connections between tasks. Typical requirement

is equal data transmission time between all

components of a distributed computing

platform.

A designer should select subgraphs that

correspond to distributed computing in a logical

interconnections graph because rules of such

subgraphs detection strongly depends on the

tasks that are processed in system.

A good structure for such network

fragments corresponds to bipartite graphs is

Banyan network [7,8,9]. Banyan networks

provide path with equal length between all

nodes from one set of nodes from a bipartite set

to another set.

In our methodic Irregular Banyan

subnetworks are built of routers. The Banyan

subnetwork generation algorithm can use the

adaptive routing to utilize total throughput of

some links that directly connect a pair of

devices (nodes, routers) and takes into account

requirement of connections with other parts of

the SpaceWire network.

5

TOOLSET FOR ONBOARD NETWORKS DESIGN AND CONFIGURATION

Subnetworks for logical interconnections

subgraphs with peer-to-peer interconnections

are generated as Banyan networks also.

A Banyan network in this case should

connect not only nodes from different sets but

nodes from one set with same timing parameters

of interconnections also. We use coupled

Banyan networks in what in the left half of the

network we append interconnections mirrored

interconnections of the right half; in the right

half we append interconnections mirrored

interconnections of the left half.

Example of such a network is represented in

Fig.2. Black lines correspond to

interconnections between nodes from different

sets, gray lines correspond to interconnections

between nodes from one set.

Fig.2 Example of doubled banyan network

4 Synthesis of Logical Network structure

Synthesis of a logical network structure includes

mapping of logical channels (created at the

architecture synthesis stage) to physical paths

(in the basic variant of network structure) and

generation of configuration settings for all

terminal nodes and routers in the network

structure.

In the developed algorithm, which maps

logical channels to physical paths, logical

channels could be mapped not only to shortest

paths, by to others paths that correspond to

throughput and timing constraints. Usage of the

adaptive routing for throughput is also

considered.

Mapping of logical channels to physical

paths starting with check of logical channels and

links characteristics. Further physical path are

searched for one logical channel from list

successively. Logical channels can be sorted

according to priority of logical channels or user

preferences. When searching for physical paths

information about logical channel

characteristics (for example throughput) is taken

into account. This procedure is marked as

successful, when physical paths are created for

all logical channels. Several physical paths can

match logical channel characteristics thus a few

solution can be created. Conclusive physical

paths for all logical channels are selected at final

step. The principles of selection are different.

For example, shortest physical paths can be

selected. User specifies this criterion at the

beginning.

Further generation of configuration

parameters for terminal nodes and routers

(routing tables’ content, adaptive routing mode,

and link transmission rate) is performed.

Link transmission rate is configured

correspondingly to required throughput and

packet transmission time. Adaptive routing

could be configured for pairs of nodes or routers

that are directly connected via some links (for

throughput).

Logical addresses of the terminal nodes

should be defined before the routing table

content generation. Our tools assign a logical

address to every application (task) in a terminal

node.

If the quantity of addresses is more than

224, then the regional addressing is used.

Regions (or groups of regions) correspond to

subgraphs that are extracted in the logical

interconnection graph structure.

Routing tables’ content is generated after

logical and regional address assignment, in

correspondence to mapping of logical channels

to physical paths.

Example of network configuration is

represented on fig. 3. Network consists of 7

terminal nodes and 3 routers. Paths of logical

channel are displayed by colored lines with

arrows. Links are shown by black lines.

TX_speed configuration, Routing tables’

content and information about adaptive routing

are presented on this figure.

YURIY SHEYNIN, ELENA SUVOROVA, ALEXEY SYSCHIKOV, BORIS SEDOV, NADEZHDA MATVEEVA,

DMITRY RASZHIVIN

6

TN1

(LA= 34)

R 1

R 2

R 3

TN2

(LA= 35)

TN3

(LA = 36)

TN4

(LA = 37)

TN 5

(LA = 38)

TN6

(LA = 39)

TN7 (LA

= 40)

1 2

4 6

1 2

1

2

3 4 5

2 3 4

35
36
37
38
39
40

4
4
4
6
6
6

Routing

table:

35
36
37

3
4
5

38
39
40

3
4
5

Routing

table:

1
2

10
10

TX

speed:

3

3

2

5 7

1

1
2
3

10
10
10

TX

speed:

1
2

3

300

300

300

TX

speed:

Adaptive routing:
4 - 5
6 - 7

Adaptive

routing:

1 – 2 - 3

8

TN1

TN2
App1

App1

4
5
6

225
225
225

7 225
8 0

3
4
5

150
150
150

TN3
App1

TN4
App1

TN7
App1

TN6
App1

TN5
App1

Routing

table:

1
2

10
10

TX

speed:

3
4
5

150
150
150

 Fig.3 Example of network configuration

5 Fault tolerance support

Hardware redundancy is used for providing

fault tolerance.

Fault tolerance support is realized by to

hardware replication (routers and links

replication). We suggest two types of

redundancy policy: path replication based and

dynamic path reconfiguration.

5.1 Path replication based redundancy
If tolerance to N-1 faults is need, the whole

SpaceWire network structure should include N

independent paths between source and

destination terminal nodes. The whole network

structure (Fig.4) includes N copies of the basic

structure (configurations of corresponding

routers in all replicas are identical). Every

terminal node is connected to all replicas of the

basic network structure. Source terminal nodes

should send copies of every packet to all

replicas of the basic structure. Destination

terminal nodes should correctly interpret data

flows with proper and faulty copies of received

packets.

This redundancy policy is recommended

for systems with strong requirements to packet

delivery reliability and real time constraints.

Hardware cost of buffering scheme in

terminal nodes is essential for this redundancy

policy.

Tn1

Tn2

R1

R2 R3

Tn3

Tn4

Tn5

R1

R2 R3

(0)

(1)

Fig.4 Example of a path replication based network structure (N=2)

If fault tolerance is required, at the first

stage our tools generate a basic network

structure and logical configuration for it and

next this network structure is expanded for fault

tolerance.

User should reserve resources (mass,

power, number of device’s used ports that can

be utilized for a basic network structure, should

be decreased correspondingly to quantity of

faults and selected fault tolerance policy) before

a basic network generation. In the basic network

should be used not more than 1/N allowable

mass and not more than 1/N of every terminal

node port’s quantity for tolerance to N-1 faults.

For practical reasons it is typical to apply

FT-requirements to some fragments of the

network only, to some of its subnetworks,

clusters. Thus the strategy of network

redundancy by path replication is applied to

these individual parts of the network.

5.2 Dynamic path reconfiguration

redundancy

Further, dynamic path reconfiguration

redundancy could be used for a N-1 faults

tolerant network that includes N replicas of a

basic network (Fig.5). All routers Ri(0) and

Rj(0) in the basic network (marked by “0”) that

are directly connected, have connections with

routers Rj(k) and Ri(k) for all network replicas

(represented by gray dotted lines in the figure).

Adaptive routing configuration for direct

interconnections of devices by some links is

identical in the basic network and all the

replicas.

7

TOOLSET FOR ONBOARD NETWORKS DESIGN AND CONFIGURATION

For dynamic path reconfiguration

additional adaptive routing configuration is

generated for interconnections between network

replicas in whole network structure.

Tn1

Tn2

R1

R2
R3

Tn3

Tn4

Tn5

R1

R2 R3

(0)

(1)

Fig.5 Example of dynamic path reconfiguration based network (N=2)

In this case a terminal node sends to the

network only one copy of a packet. It sends

packet to any link that corresponds to this

packet’s path and is currently in the work state.

Then every next transit router send packet to

any link that corresponds to this packet’s path

and is ready. If a fault occurs in a router or a

link when a packet transmitted, this packet

would be lost or corrupted and destination node

would not receive correct copy of it. Also fault

can impact to transmission time of others

packets in network.

However in this case designer doesn’t need

additional hardware for packet buffering in

terminal nodes. Therefore this fault tolerance

policy is recommended for networks without

guaranteed delivery packets, without strict real

time requirements and when packets buffering

in terminal nodes is impossible.

When a designer plans to use this fault

tolerance policy, he should reserve resource of

network equipment mass and resource of

terminal nodes and routers port’s quantity

before a basic network generation. In the basic

network should be used not more than 1/N

allowable mass and not more than 1/N of every

router and terminal node port’s quantity for

tolerance to N-1 faults.

6 Conclusion

The paper describes the methodology and

toolset for SpaceWire network design. It

provides the design space exploration

mechanism for synthesis of the large SpaceWire

networks. The design includes the set of

terminal nodes, communication structure,

switches and links to meet the computation

requirements and user-defined constraints. The

high level of automation allows making changes

in requirements and reconfiguration of

SpaceWire network rapid and easy.

Acknowledgment

The research leading to these results has

received funding from the Ministry of

Education and Science of the Russian

Federation under grant agreement

n 14.578.21.0022.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, Clifford Stein, Introduction to algorithms,

Second Edition, Massachusetts Institute of

Technology, 2009.

[2] Hazewinkel, M. (2001), "Steiner tree problem", in

Hazewinkel, Michiel, Encyclopedia of Mathematics,

Springer, ISBN978-1-55608-010-4

[3] Algebraic Graph Theory" by Chris Godsiland Gordon

Royle, published by Springer-Verlag, 2001, 439 pp

[4] The Steiner three problem: a tour through graphs,

algorithms, and complexity Hans Jürgen Prömel,

Angelika Steger. Amer Mathematical Society, 2002

241 pp.

[5] Wu, Bang Ye; Chao, Kun-Mao (2004). Spanning

Trees and Optimization Problems. CRC Press.

ISBN1-58488-436-3

[6] A Walk Through Combinatorics: An Introduction to

Enumeration And Graph Theory. Miklós Bóna.

World Scientific, 2006 – 469 pp.

[7] Principles and Practices of Interconnection Networks

William James Dally, Morgan Kaufmann Publishers

is an imprint of Elsevier 2004 581 pp

[8] Computer Networks V.S.Bagad, I.A. Dhotre,

Technical Publications, 2009 г. – 512 pp.

[9] Data And Computer Communications. William

Stallings. Pearson Education, 2007.852

7 Contact Author Email Address

mailto: nadezhda.matveeva@guap.ru

Copyright Statement

The authors confirm that they, and/or their

company or organization, hold copyright on all

of the original material included in this paper.

The authors also confirm that they have

mailto:nadezhda.matveeva@guap.ru

YURIY SHEYNIN, ELENA SUVOROVA, ALEXEY SYSCHIKOV, BORIS SEDOV, NADEZHDA MATVEEVA,

DMITRY RASZHIVIN

8

obtained permission, from the copyright holder

of any third party material included in this

paper, to publish it as part of their paper. The

authors confirm that they give permission, or

have obtained permission from the copyright

holder of this paper, for the publication and

distribution of this paper as part of the ICAS

2014 proceedings or as individual off-prints

from the proceedings.

