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Abstract

The complexity of nowadays flight control sys-
tems arises from the engineering prescription to
properly merge and integrate actuators, sensors
and computing units within complex data net-
work structures. The use of many different sen-
sors and actuators, the presence of nonlinear phe-
nomena, dynamic effects due to switching oper-
ating conditions as well as physical constraints
due to input/state saturations are of paramount
relevance when designing a modern flight con-
trol strategy, especially in the case of high per-
formance aircrafts. In this paper we analyze
the effectiveness of recent constrained predic-
tive control strategies when they are used to deal
with specific aircraft control problems. Numeri-
cal simulations are presented on a High Altitude
Performance Demonstrator unmanned air vehicle
adopting two different predictive strategies both
dealing with redundant and saturating actuators.

1 INTRODUCTION

Flight Control problems are subject to input and
state dependent constraints which can make the
controller design a complex task. Saturating ac-
tuators, flight envelope limitations, restrictions
due to comfort and safety requirements are ex-
amples of limitations affecting the aircraft. Anti-
Windup (AW), Bumpless methods, AW/LQR,
AW/H2, genetic algorithms and recovery guid-
ance techniques, represent solutions discussed

in the literature [1]. More recently, techniques
based on set-invariance arguments and predictive
control ideas [2]-[3] have gained in popularity
due to their inherent capability to take directly
into account prescribed constraints. In this paper
two contrained control strategies for flgiht con-
trol purposes are discussed. An over-actuated
unmanned aircraft developed at C.I.R.A. (Italian
Aerospace Research Center), named High Alti-
tude Performance Demonstrator (HAPD), is con-
sidered for simulation purposes. The paper is
organized as follows. The mathematical model
of the HAPD including aero-elastic modes is in-
troduced in Section 2. In Section 3, the Model
Predictive Control algorithm developed in [4] for
norm-bounded uncertain systems, is discussed in
view of its application to the HAPD. The pro-
posed technique is oriented to the solution of
constrained control allocation problems of over-
actuated systems. In Section 4, the design and
real-time implementation of a low-computational
demanding predictive scheme known in literature
as the command governor (CG) [5] is illustrated.
This is oriented to the supervision of nonlinear
dynamical systems, as aircrafts, subject to sudden
switchings amongst operating conditions and set-
points, and time-varying constraints. Numerical
simulations are discussed in Section 5.

2 HAPD MATHEMATICAL MODEL

The High Altitude Performance Demonstrator is
an over-actuated unmanned aircraft, see Fig. 1.
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In particular, it has three pairs of elevators di-
vided in inboard (IB), middle (MID) and out-
board (OB), two pairs of ailerons divided in in-
board and outboard, and two rudders, namely the
upper (SUP) and lower (INF) rudder. Thrust is
generated by eight independent electrically pow-
ered propellers. A mathematical model, which

Fig. 1 HAPD model: twelve control surfaces and
eight available propellers

takes into account flexibility, was developed by
the Italian Aerospace Reserach Center (CIRA)
under the following hypotheses: the inertia ma-
trix I is independent from the aircraft elastic de-
formations; the linear elastic theory can be used
to model the aero-elastic dynamics; aero-elastic
modes are quasi-stationary. Under such assump-
tions, the polar form of the nonlinear equations
of motion are (see e.g. [6])

MV̇ = T cosαcosβ−qSCD +Mg1 (1)

V Mβ̇ =−T cosαsinβ+qSCY −MV r+Mg2 (2)

MV cosβα̇ =−T sinα−qSCL +MV q+Mg3 (3)

Ix ṗ− Ixzṙ = qSbCl +qr(Iy− Iz)+ pqIxz (4)

Iyq̇ = qScCm + rp(Iz− Ix)+(r2− p2)Ixz (5)

−Ixz ṗ+ Izṙ = qSbCn + pq(Ix− Iy)−qrIxz (6)

φ̇ = p+q tanθsinφ+ r tanθcosφ (7)

θ̇ = qcosφ− r sinφ (8)

where q = 0.5ρV 2
TAS is the dynamic pressure,

T the thrust, VTAS = ‖VB − VW‖ the true air
speed,VB = (uB,vB,wB) the 6DoF linear velocity
vector, VW = (uW ,vW ,wW ) the atmospheric wind
velocity vector, V = ‖VB‖, ωB = (p,q,r) the ro-
tational velocity vector, φ the roll angle, θ the

Table 1 HAPD: main parameters

Parameters Value Units
Wing Area (S) 13.5 m2

Wing Span (Sb) 16.55 m
Mean Chord (Sc) 0.557 m

Mass (M) 184.4 kg
Elevators Slew Rates ±200 deg/s
Ailerons Slew Rates ±200 deg/s
Rudders Slew Rates ±200 deg/s
Ailerons deflections ±25 deg
Elevators deflections ±25 deg
Rudders deflections ±25 deg

pitch angle, α = arctan
(

wB−ww
uB−uw

)
the angle of at-

tack, β = arcsin
(vB−vw

V

)
the sideslip angle ρ the

air density, Ix, Iy, Iz, Ixz the moments and products
of inertia in body axes and

g1 = g(−cosαcosβsinθ+

+ sinβsinφcosθ+ sinαcosβcosφcosθ)

g2 = g(cosαsinβsinθ+

+ cosβsinφcosθ− sinαsinβcosφcosθ)

g3 = g(sinαsinθ+ cosαcosφcosθ),

with g the gravity acceleration. Moreover by re-
sorting to the generalized state variables ηi and
η̇i, aero-elastic modes are modelled by means of
a second order linear state space description:

Mηi η̈i +ζηi η̇i +Mηiωηiηi = Qηi , i = 1, . . . ,na (10)

where Mηi is the generalized mass of the i−
th mode, ζηi the generalized damping coef-
ficient, ωηi the generalized natural frequency
and Qηi the generalized force. Notice that
due to aero-elastic dynamics the aerodynamic
coefficients (CD,CY ,CL,Cl,Cm,Cn) and gener-
alized forces Qηi depend on 6DoF variables
(VTAS,α,β, p,q,r), on surfaces control deflection
and on generalized state variables ηi and η̇i. Fi-
nally the thrust T is assumed to be a known func-
tion of the throttle command δT .
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3 Method 1: Model Predictive Control allo-
cation scheme

Consider the discrete time system, obtained with
a zero order hold continous to discrete conversion
of the aircraft model,

x(t +1) = f (x(t),u(t))
y(t) = h(x(t),u(t)) (11)

with x ∈ Rnx denoting the state, u ∈ Rnu the con-
trol input, y ∈ Rny the output. Suppose that for
each x, u, and each t there exists a matrix function
Γ(·, ·) : Rnx ×Rnu → Ω(∆), such that f (x,u) =

Γ(x,u)
[

x
u

]
where Ω(∆) is a convex set of ma-

trices of appropriate dimensions. Then, any prop-
erty ensured for the uncertain linear system

x(t +1) = Φx(t)+Gu(t)+Bp p(t)
y(t) = Cx(t)
q(t) = Cqx(t)+Dqu(t)
p(t) = ∆(t)q(t)

(12)

with p, q ∈ Rnp denoting additional variables
which account for the uncertainty, holds true lo-
cally also for the nonlinear system (11), see [7].
In (12) the set

Ω(∆):=
{

Ã+ B̃∆C̃ |‖∆‖ ≤ 1
}

(13)

with Ã =

[
Φ G
C 0

]
, B̃ =

[
Bp
0

]
, C̃ =

[
Cq Dq

]
is the image of the matrix norm unit ball under
a matrix linear-fractional mapping. In the sequel
we shall assume that the plant is subject to the el-
lipsoidal input u(t) ∈Ωu and state evolution con-
straints Cx(t) ∈Ωx with

Ωu ,
{

u ∈ Rnu : ‖u‖2
2 ≤ ū2, ū ∈ R+

}
(14)

Ωx , {x ∈ Rnx : ‖Cx‖2
2 ≤ x̄2, x̄ ∈ R+} (15)

By resorting to the ideas developed in [8],
we propose a two-stage optimization procedure.
Specifically, in the first phase, hereafter denoted
as Reference Trajectory module, a feasible refer-
ence trajectory is made available to the MPC con-
troller. Then, the control allocation problem is
formulated as a receding horizon tracking prob-
lem with the reference trajectory achieved at the

Fig. 2 Control allocation architecture

previous step and attacked by means of the MPC
framework discussed in [9]. The scheme of the
proposed architecture is depicted in Fig. 2.

The control allocation problem can be stated
as follows:
Control Allocation (CA) problem - Given an
initial time instant t0 and a reference trajectory
yre f (·), determine at each time instant t ≥ t0 a
command input u(t) such that the output y(t)
of the plant model (12)-(13) subject to (14)-(15)
tracks yre f (t), ∀t ≥ t0, as closely as possible in a
2-norm sense. 2

In the sequel, the reference to be tracked will
be denoted as r(·) = yre f (·), yre f (·) ∈ Y , where
Y accounts for limitations in the angular acceler-
ation provided by the actuators.

3.1 Reference Trajectory module

Consider a time-varying reference trajectories,
the solution of the CA problem is subject to the
computation over an horizon of a finite length
N ∈ N of a feasible input sequence such that the
sequence output {yi(t) =Cxi(t)}N

i=0 corresponds
to the given reference sequence {ri(t)}N

i=0. To
this end it is mandatory that a nominal plant
model is available: within the proposed norm-
bounded framework this translates to consider the
so-called central dynamics, i.e.

x(t +1) = Φx(t)+Gu(t)
y(t) = Cx(t) (16)

Then, the following problem must be solved:
Reference Trajectory (RF) problem - Given
the reference sequence {rk(t)}N

k=0 ⊂ Y and an
initial state condition x(t) such that Cx(t) = r(t),
determine an input sequence {uk(t)}N−1

k=0 ⊂ Ωu
such that the corresponding solution of

xk(t +1) = Φxk(t)+Guk(t), yk(t) =Cxk(t) (17)

yields yk(t) = rk(t) and satisfies {xk(t)}N
k=1 ⊂Ωx. 2

In order to ensure the resolvability of the
RF problem, we shall further assume that: A1
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the nominal system (16) is controllable and ob-
servable; A2 at each time instant t the refer-
ence trajectory r(t) is known over the horizon
It = [t, t + N], i.e. the sequence {rk(t)}N

k=0 is
available to the controller for all k ∈ N.

A convenient solution of RF problem involv-
ing the solution of a quadratic constrained opti-
mization problem is discussed in [9].

3.2 MPC tracking scheme

The tracking problem will be formulated as a reg-
ulation problem by using the reference sequences
{x̄k(t)}N

k=1 and {ūk(t)}N−1
k=0 . By means of stan-

dard coordinate transformations x̃k(t) = xk(t)−
x̄k(t) and ũk(t)= uk(t)− ūk(t) the following mod-
ifications of the basic MPC algorithm result:
1. Family of virtual commands:

ũ(·|t) :=


Kx̂k(t)+ ck(t) −ūk(t),

k=0, . . . ,N−1
Kx̂k(t), k ≥ N

(18)

2. Quadratic index:

V (x̃(t),P, c̃k(t)) := ‖x̃(t)‖2
Rx
+

N−1

∑
k=1

(
max
ˆ̃xk(t)
‖ ˆ̃xk(t)‖2

Rx
+‖c̃k−1(t)‖2

Ru

)
+max

ˆ̃xN(t)
‖ ˆ̃xN(t)‖2

P +‖c̃N−1(t)‖2
Ru

(19)

where ˆ̃xk(t) = ΦKx(t) +
k−1

∑
i=0

Φ
k−1−i
K (G(ci(t) −

ūi(t)) + Bp pi(t)) − x̄k(t) and c̃k(t) = ck(t) −
ūk(t), k = 0, . . . ,N−1.
3. Upper bound to (19):

max
p0∈S̃0

ˆ̃xT
1 Rx ˆ̃x1 + c̃T

0 Ru c̃0 ≤ J0 (20)

max
pi∈S̃i

i=0,....,k
k=1,...,N−2

ˆ̃xT
k+1 Rx ˆ̃xk+1 + c̃T

k Ru c̃k ≤ Jk (21)

max
pi∈S̃i

i=0,....,N−1

ˆ̃xT
N P ˆ̃xN + c̃T

N−1 Ru c̃N−1 ≤ JN−1 (22)

where

S̃i(t) := {p |‖p‖2
2 ≤max

ˆ̃xi(t)
‖CK ˆ̃xi(t)+

+Dqc̃i(t)‖2
2}, i = 0,1, . . . ,k−1.

(23)

Moreover, the i− th input constraint with i =
1, . . . ,nu is recast into

|eT
i
(
K ˆ̃xk(t)+ c̃k(t)

)
|2 ≤ ū2

i (24)

where ei is the i− th vector of the canonical ba-
sis and ūi the input constraint. Then, the tracking
MPC scheme, hereinafter named NB-MPC, is as
follows:
Off-line -
1. Given the initial state x̃(0), compute the triplet
(K,Q,ρ) by solving the optimization problem
subject:

min
Q,Y,X ,ρ,λ,t

ρ s.t. (25)

[
1 x̃(t)T

x̃(t) Q

]
≥ 0 , (26)


Q Y T R1/2

u QR1/2
x

R1/2
u Y ρ Inu 0

R1/2
x Q 0 ρ Inx

Cq Q+DqY 0 0
ΦQ+GY 0 0

QCT
q +Y T DT

q QΦT +Y T G
0 0
0 0

λ Inx 0
0 Q−λBp BT

p

≥ 0 (27)

[
X Y

Y T Q

]
≥ 0, Xii ≤ ū2

i , i = 1, . . . ,nu, (28)

 x̄2Q (CqQ+DquY )T

CqQ+DquY t−1Inx

C(ΦQ+GY ) 0

(ΦQ+GY )TCT

0
I−t−1GBpBT

pC
T

≥0 (29)

with P = ρQ−1, K = Y Q−1, λ > 0 and t > 0.
On-line -
1. At each time instant t, given x̃(t), solve the
following optimization problem

[J∗k (t), c̃
∗
k(t)], argmin

Jk,ck

N−1

∑
k=0

Jk

4
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subject to (20)-(22) and

max
pi∈S̃i

i=0,...,k−1

∥∥eT
i
(
K ˆ̃xk(t)+ c̃k

)∥∥2
2 ≤ ū2

i ,

k = 0,1, . . . ,N−1, i = 1, . . . ,nu

max
pi∈S̃i

i=1,...,k−1

∥∥C ˆ̃xk(t)
∥∥2

2 ≤ x̄2, k = 1,2, . . . ,N

2. Feed the plant with ũ(t) = Kx̃(t)+ c̃∗0(t);
3. Update t = t +1 and go to step 1.1

Finally, it’s worth to note that it could be of
some interest try to solve the MPC tracking prob-
lem by considering a partial knowledge of full
state. In this case the MPC tracking problem has
to be recast into a Constrained Output Feed-
back Stabilisation (COFS) Problem for which
some preliminary results are collected in [10].

4 Method 2: Hybrid Command Governor
(HCG) approach

Consider the following linear system
x(t +1) = Φx(t)+Gg(t)+Gdd(t)

y(t) = Hyx(t)
c(t) = Hcx(t)+Lg(t)+Ldd(t)

(30)

where x(t) ∈ Rn is the state vector; g(t) ∈ Rm

is the input vector, hereinafter called CG action,
d(t) ∈D ⊂Rnd ∀t ∈Z+ is the exogenous distur-
bance vector with D a specified convex and com-
pact set such that 0nd ∈D; y(t) ∈Rm is the plant
output vector which is required to track r(t);
c(t) ∈ C ⊂ Rnc ∀t ∈ Z+ is the constrained out-
put vector, with C a specified convex and com-
pact set. Assume that all the eigenvalues of ma-
trix Φ are in the open unit disk and system (30)
is offset-free Hy(In−Φ)−1G = Im. The CG de-
sign deals with the problem of generating, at each
time instant t, the set-point g(t) as a function of
the current state x(t) and reference r(t) such that
constraints are always fulfilled along the system
trajectories and possibly y(t) ≈ r(t). In view of
linearity of (30), it is possible to separate the ef-
fects of the initial conditions and input from those
of disturbances so that the disturbance-free so-
lutions of (30) to a constant command g(t) = w
are: xw := (In−Φ)−1Gw, yw :=Hy(In−Φ)−1Gw,

cw := Hc(In−Φ)−1Gw+Lw.
Consider the following set recursions:

C0 := C ∼ LdD,Ck := Ck−1 ∼ HcΦk−1Gd, . . . ,

C∞ :=
∞⋂

k=0

Ck,

where A ∼ E is defined as {a : a+ e ∈ A , ∀e ∈
E}. It can be shown that the sets Ck are non-
conservative restrictions of C such that c(t) ∈
C∞, ∀t ∈ Z+, implies that c(t) ∈ C , ∀t ∈ Z+.
Thus, one can consider only disturbance-free
evolutions of the system and adopt a “worst-case”
approach. By introducing the following sets

C δ := C∞ ∼ Bδ, W δ :=
{

w ∈Rm : cw ∈ C δ

}
where Bδ is a ball of radius δ centered at the ori-
gin, we shall assume that there exists a vanishing
δ > 0 such that W δ is non-empty. In particular,
W δ is the closed and convex set of all commands
whose corresponding steady-state solutions sat-
isfy the constraints with a tolerance margin δ.

The CG alghorithm provides at each time
step a constant virtual command g(·) ≡ w,
with w ∈ W δ, such that the correspond-
ing disturbance-free evolution fulfils the con-
straints over a semi-infinite horizon and its
“distance” from the constant reference is min-
imal. In this respect consider the set
V (x) =

{
w ∈W δ : c(k,x,w) ∈ Ck, ∀k ∈ Z+

}
,

where c(k,x,w) = Hc

(
Φkx+

k−1

∑
i=0

Φ
k−i−1Gw

)
+

Lw is the constrained output vector at time k from
the initial condition x under the constant com-
mand g(·)≡ w. The CG output is chosen accord-
ing to the solution of the following constrained
optimization problem

g(t) = arg min
w∈V (x(t))

‖w− r(t)‖Ψ (31)

with ‖w‖Ψ := wT Ψw, Ψ = ΨT > 0 being a suit-
able weighting matrix. In this section a supervi-
sory based CG framework capable to deal with
the plant structure modifications that could take
place during the on-line operations is introduced.
In particular the basic CG scheme is generalized
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in such way that as the properties of basic CG
are preserved. To this end, a suitable supervisory
unit is designed for orchestrating the switching
amongst the CG candidates during the on-line op-
erations. The overall technique is termed Hybrid
CG (HCG) control scheme.

Consider the discrete-time nonlinear system
model

xp(t +1) = f (xp(t),u(t)) (32)

where xp(t)∈ X ⊆Rn and u(t)∈U ⊆Rm are the
system state and control vectors, respectively, X ,
U being convex and compact sets. Assume that
f (x,u) is continuously differentiable in its argu-
ments and that the plant (32) could operate in N
pre-specified working regions, characterized by
N equilibrium points, denoted as (xeq

pi ,u
eq
i ), i =

1, . . . ,N. Suppose that for each equilibrium cou-
ple (xeq

pi ,u
eq
i )a linearized model from (32) can be

derived [11]

δxp(t +1) = Ai δxp(t)+Bi δu(t)

where z = [δxT
p , δuT ]T with δxp = xp− xeq

pi , δu =

u−ueq
i and Ai,Bi the Jacobian matrices of the lin-

earized systems on the state and input

4.1 Time-varying set-points

Suppose that references are allowed to belong to
a finite levels set (see [12] for details)

r ∈ R := {r1, . . . ,rq}, ri ∈Rm, i = 1, . . . ,q, (33)

and for each i− th linearized model a single pri-
mal controller/reference governor unit CGi is de-
rived with W δ

i , i ∈N := {1,2, . . . ,N} the set of
all commands whose corresponding steady-state
solutions satisfy the constraint with margin δ. In
order to ensure that each set point inside R can be

tracked let suppose that R ⊂
N⋃

i=1

W δ
i and ∀i ∈N

there exists at least j 6= i ∈N such that

Int{W δ
i ∩W δ

j } 6= /0 (34)

where Int{·} denotes the set interior operator. Fi-
nally let consider the output admissible set for the
generic CGi

Zδ
i :=

{
[rT , xT ]T ∈Rm×Rn|ci(k,x,r)∈C , ∀k∈Z+

}

and let X δ
i , i∈N be the set of all states which can

be steered to feasible equilibrium points without
constraint violation

X δ
j :=
{

x ∈Rn|
[

w
x

]
∈Zδ

i for at least onew∈Rm
}

In view of (34) , the following condition holds

Int{X δ
i ∩X δ

j } 6= /0, i, j ∈N

A convenient transition reference r̂ ∈ Int{W δ
i ∩

W δ
j }, with x̂ ∈ Int{X δ

i ∩ X δ
j } the equilibrium

steady-state corresponding to r̂, can be defined
such that [r̂T , x̂T ]T ∈ Zδ

i ∩ Zδ
j . Assume that CGi

unit is in use at t = t̄, r(t̄) ∈W δ
i , r(t̄ + 1) ∈W δ

j

and the condition W δ
i ∩W δ

j 6= /0 holds true, an
HCG scheme can be adopted according to the fol-
lowing switching logic:
Switching procedure -
1) If the distance between the equilibrium xeq

i and
the actual state x(t) is minimal, the supervisor
solve and apply

g(t̄ + k) := arg min
w∈Vi(x(t̄+k))

‖w− r(t̄)‖Ψ,

k = 1, . . . , k̄

2) At t = t̄+ k̄ as soon as x(t)∈ Int{X δ
i ∩X δ

j } and

j := argmin
k
‖xeq

k − x(t)‖ (35)

supervisor switchs to CG j and solve

g(t̄ + k) := arg min
w∈V j(x(t))

‖w− r(t̄ +1)‖Ψ,

t ≥ t̄ + k̄+1

4.2 Time-varying constraints

Consider L different constraint scenarios, de-
noted by C j, j ∈ J := {1,2, . . . ,L}, and introduce
the following sets doubly indexed w.r.t. to the
current couple equilibrium/constraints scenario:

W δ

(•, j) := {w ∈Rm : c̄w ∈ C δ
j }, ∀ j ∈ J (36)

6
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where W δ

(•, j) (the bullet denotes a fixed equilib-
rium configuration) is the set of all commands
w whose steady-state evolutions of c satisfy the
j− th constraint configuration C j with a toler-
ance margin δ . Assume W δ

(•, j) 6= {}, ∀ j ∈ J
and C δ

j 6= {}, moreover W δ

(•, j) satisfies the set
overlapping property : let ( j1, j2) ∈ J , then

C δ
j1

⋂
C δ

j2 6= /0 ⇔W δ

(•, j1)

⋂
W δ

(•, j2)
6= /0 (37)

Definition 1 The state x ∈ Rn is C δ
j -admissible,

j ∈ J , if there exists w ∈ W δ

(•, j) such that

c(k,x,w) ∈ C δ
j ,∀k ∈ Z+. The pair (x,w) is said

C δ
j -executable.

Definition 2 Let x ∈ Rn be a state C δ

j−-

admissible, j− ∈ J , and C δ

j+, j+ 6= j−, a con-
straint configuration to be fulfilled at future time
instants. The state x is switching-C δ

j−-admissible

if there exists w ∈ W δ

(•, j−) such that

c(k,x,w) ∈ C δ

j+,∀k ∈ Z+. The pair (x,w) is

said switching-C δ

j−-executable and the constraint

configuration C δ

j+ switchable.

Moreover V(•, j)(x) := {w ∈ W δ

(•, j) : c(k,x,w) ∈
C δ

j ,∀k ∈ Z+}, ∀i ∈ I represent the sets of all
constant virtual sequences in W δ

(•, j) whose c-

evolutions, starting from a C δ
j -admissible state

x, satisfy the prescribed constraint configuration
C δ

j also during transients. As a consequence, for
a fixed j ∈ J , V(•, j)(x) ⊂W δ

(•, j). Then, when-
ever the supervisory unit selects the CG candi-
date with respect to the j-th constraints configu-
ration (CG(•, j)), a command g(t) is computed as
a solution of the following constrained optimiza-
tion problem

g(t) = arg min
w∈V(•, j)(x(t))

‖w− r(t)‖Ψ (38)

An admissible HCG strategy can then be de-
veloped if at each switching instant t̄, chosen
by the supervisory unit, the current state x(t̄) is

switching-admissible. The following sets

X δ

(•, j) := {x ∈Rn : c(k,x,w) ∈ C δ
j ,

for at least one w ∈W δ

(•, j), ∀k ∈ Z+}, ∀ j ∈ J
(39)

are finally introduced to characterize all the
states C δ

j -admissible (each state x ∈ X δ

(•, j) can be
steered to an equilibrium point without constraint
violation).

5 Simulations

In this Section the effectiveness of the proposed
strategies has been verified by means of numeri-
cal simulations involving a detailed full nonlinear
model of HAPD aircarft including 25 symmetri-
cal and 25 asymmetrical aeroelastic modes, sen-
sors and actuators dynamics.

5.1 MPC Control Allocation Scheme Nu-
merical Results

A Norm-Bounded Differential Inclusion (NLDI)
representation of the HAPD nonlinear model has
been firstly recast into a Polytopic Linear Differ-
ential Inclusion (PLDI) representation by using
9 design models shown in Fig. 3 characterizing
different flight conditions

• the true air speed belongs to [17,23] m/s;

• the altitude varies between 300 m and 700
m.

Then, PLDI has been outer approximated as the
NLDI by applying the optimization procedure
described in [9]. The NLDI representation is ob-
tained under the following assumptions: i) actu-
ator and sensor dynamics have been considered
negligible; ii) aero-elatisc dynamics have been
assumed to be instantaneous by resorting to resid-
ual stiffness techniques. The proposed NB-MPC
strategy has been applied with a prediction hori-
zon N=1 and has been evaluated considering the
following roll test manoeuvre :
Doublet on roll-rate demand (pre f )- At t = 1s
pre f is set to 7deg/s for a duration of 2s. Then,
at t = 5s the reference on p is assumed to be

7
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equal to −7deg/s for the same time interval (see
dashed-line in Fig.4). 2

Fig.4 shows the time responses for a set of 4
starting levelled forward flight testing conditions
shown in Fig. 3. The proposed NB-MPC seems
to be able to track required reference signal tak-
ing into account all prescribed constraints on con-
trol surfaces in the operating envolepe consid-
ered. Moreover, it is interesting to underline how
the strategy is capable to take advantage from the
aircraft redundant actuation capability: in fact the
actuation deficit on the ailerons is compensated
by some of the available elevators, see Fig. 5. As
a consequence, this allow to have sufficient au-
thority to achieve an almost exact tracking on the
p reference signal shown in Fig. 4 without any
constraint violations.
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Fig. 3 VTAS-Altitude flight envelope. Squares:
design points used to generate the PLDI; Circles:
testing points
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Fig. 4 Response of the HAPD in terms of angular
rates. Dashed lines are the reference signals.
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Fig. 5 Control effort. Dashed lines indicate the
deflection limit for each control surface.

5.2 HCG Numerical Results

Also the benefits of the proposed HCG reconfig-
uration strategy have been verified by means of
numerical simulation involving the full nonlinear
HAPD aircraft model. In this case longitudinal
dynamics have been excited by means of the
following pitch angle manoeuvre:

Doublet on the pitch angle demand (θre f )- At
steady state wing levelled forward flight condi-
tions at altitude h0 = 500m and true air speed
V0 = 20m/s, at t = 1s a pitch angle command
of 20deg is first given for a duration of 2s; then
a doublet reference command of 10deg is given
within the time interval [5, 11]s ( see dahsed line
in Fig.7).

For HCG design purposes, the same assump-
tions i) and ii) of Section 5.1 have been made.

8



Constrained predictive strategies for flight control systems

0 5 10 15
−200

−100

0

100

200

SR−Aileron IB−SX

[d
e
g
/s
]

0 5 10 15
−200

−100

0

100

200

SR−Aileron IB−DX

0 5 10 15
−200

−100

0

100

200

SR−Aileron OB−SX

[d
e
g
/s
]

Time [s]
0 5 10 15

−200

−100

0

100

200

SR−Aileron OB−DX

Time [s]

0 5 10 15
−200

−100

0

100

200

SR−Elevator IB−SX 

[d
e
g
/s
]

0 5 10 15
−200

−100

0

100

200

SR−Elevator IB−DX 

0 5 10 15
−200

−100

0

100

200

SR−Elevator MID−SX 

[d
e
g
/s
]

0 5 10 15
−200

−100

0

100

200

SR−Elevator MID−DX 

0 5 10 15
−200

−100

0

100

200

SR−Elevator OB−SX 

[d
e
g
/s
]

Time [s]
0 5 10 15

−200

−100

0

100

200

SR−Elevator OB−DX 

Time [s]

0 5 10 15

−200

−100

0

100

200

SR−Rudder SUP

[d
e
g
/s
]

0 5 10 15

−200

−100

0

100

200

SR−Rudder INF

[d
e
g
/s
]

Time [s]

Fig. 6 Slew-Rate Control effort. Dashed lines in-
dicate the prescribed constraints in terms of max-
imum allowable Slew-Rate for each control sur-
face.

Moreover two levelled forward flight conditions,
corresponding to two equilibrium conditions of
the 6DoF nonlinear aircraft model (1)-(8), are
considered:
C1. (Altitude =500m,V0 = 17m/s)→{

xeq
1 = [17,2.4,0,0,0,0,0,2.4]T ,

ueq
1 = [4.7,4.7,4.7,4.7,4.7,4.7,0,0,0,0,0,0]T

C2. (Altitude =500m,V0 = 23m/s)→{
xeq

2 = [23,−1.6,0,0,0,0,0,−1.6]T ,
ueq

2 = [7.6,7.6,7.6,7.6,7.6,7.6,0,0,0,0,0,0]T

where x(t) = { V (t), α(t), β(t), p(t), q(t),
r(t), φ(t), θ(t) } and u(t) = { Elevator IB −

DX(t), Elevator IB − SX(t), Elevator MID −
DX(t), Elevator MID−SX(t), Elevator OB−DX(t),
Elevator OB− SX(t), Aileron IB−DX(t), Aileron
IB−SX(t), Aileron OB−DX(t), Aileron OB−SX(t),
Rudder SUP(t), Rudder INF(t) }.

The linearized models obtained in correspon-
dence of the above equilibrium conditions have
been discretized using forward Euler differences
with a sampling time Ts = 0.01s and used for the
implementation of the proposed predictive strat-
egy.

The main numerical results are collected in
the Figs. 7-9. As highlighted in Fig. 7, the
HCG device outperforms the single CG(1,1) ac-
tion when the tracking capabilities on the pitch
angle are considered. This is clearly achieved
by means of the CG switchings. In fact the
CG(1,1) → CG(2,1) switching occurring at t =
1.3s and at t = 9.4s, have the merit to enforce
the elevators control action (see Fig. 8) and, as a
consequence, the overall tracking performance.
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Fig. 7 HCG (continuous line); CG(1,1) (dashed-
dotted line). The dashed line is the reference sig-
nal θre f .
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