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Abstract 

The aim of this paper is to implement a Game-Theory 

based offline mission path planner for aerial inspection 

tasks of large linear infrastructures. Like most real-

world optimisation problems, mission path planning 

involves a number of objectives which ideally should be 

minimised simultaneously. The goal of this work is then 

to develop a Multi-Objective (MO) optimisation tool 

able to provide a set of optimal solutions for the 

inspection task, given the environment data, the mission 

requirements and the definition of the objectives to 

minimise. Results indicate the robustness and capability 

of the method to find the trade-off between the Pareto-

optimal solutions. 

1   Introduction 

Nowadays most of the world relies on complex 

frameworks of oil/gas/power distribution as well as 

goods delivery infrastructure such as highways and 

railways. In the last years, the use of Unmanned 

Aerial Systems (UASs) for civil applications had 

an increasing trend, so that today UASs can be 

considered as a valid alternative for long and 

monotonous civil missions such as the inspection 

of a large linear infrastructure. The use of UASs for 

linear infrastructure inspection has been explored 

by a number of researchers [3], [7], but the benefits 

of using UASs may be compromised if the mission 

planning is inadequate. Typically, monitoring 

missions of linear infrastructures alternate a 

number of on-service and off-service legs, and the 

total time spent for the off-service part of the 

mission may amount to a significant portion of the 

whole duration of the mission. Therefore, a well-

designed mission should be targeted to minimise 

the costs due to the off-service legs with respect to 

the on-service legs. 

The rest of the paper is organised as follows: 

in Section 2 the methodology adopted and the 

formulation of the problem are described. Section 3 

presents an overview of NSGA-II, Nash-GAs and 

Hybrid Game. Section 4 describes how the Hybrid 

Game framework is implemented and details the 

strategies for the players of Hybrid Game. Section 

5 presents some test bench cases. Section 6 details 

a novel formulation of the Multi-Objective 

Travelling Salesman Problem (MO-TSP) and the 

techniques adopted for its solution; the operators 

and the way they are used by the players of the 

Hybrid Game are detailed. Section 7, details the 

application of the MO-TSP solver to the mission 

path planning problem for aerial inspection of large 

linear infrastructures. Finally, the results obtained 

for two practical cases are presented. A discussion 

of the findings of this works is given in Section 8. 

2    Methodology and problem formulation 

The goal of the paper is to implement a novel MO 

Genetic Algorithm based on Hybrid Game strategy 

in Matlab. The core of the algorithm is an enhanced 

version of NSGA-II and original solutions for the 

strategy of Hybrid Game are proposed. The 

performance of the algorithm is evaluated against 

some bench test optimisation problems. Then, the 

Hybrid Game framework is used to solve 

Travelling Salesman Problems (TSP). The issues of 

such combinatorial optimisation problem are 

analysed and the definition of the chromosomes 

and the genetic operators are customised for the 

solution of the TSP. A MO formulation of the TSP 

(MO-TSP) is detailed and some bench instances of 

MO-TSP are created and tested. 

The MO-TSP formulation is then used to 

define the two-dimensional environment of a large 

infrastructure inspection task. In order to reproduce 

HYBRID GAME EVOLUTIONARY ALGORITHM FOR 
MISSION PATH PLANNING OF AERIAL SURVEY TASKS 

 

G. Rappa *, F. Gonzalez **, J. Kok **, F. Quagliotti * 
* Politecnico di Torino, Dipartimento di Ingegneria Meccanica e Aerospaziale, Torino, Italy. 

** Australian Research Centre Aerospace Automation (ARCAA), School of System Engineering, 

Queensland University Technology (QUT), Brisbane 4001, Australia. 

giovanni.rappa@studenti.polito.it; felipe.gonzalez@qut.edu.au; 

jonathan.kok@student.qut.edu.au; fulvia.quagliotti@polito.it 
 

Keywords: Hybrid Game, MOEA, Mission Path Planning, UAS, Infrastructure Inspection 



G. RAPPA, F. GONZALEZ, J. KOK 

2 

realistic environments the digital scenario includes 

both the infrastructure to inspect and a number of 

risk areas, thus allowing to formulate the mission 

path planning problem as a Multi-Objective 

Optimisation Problem (MOOP) involving the 

length of the trajectory and a risk function as the 

objectives. The model adopted to describe the 

trajectory of the UAS is based on Dubins curves. 

Finally, a number of scenarios reproducing the 

complete railway network of Queensland, 

Australia, are used to test the software. The 

hardware used for all the tests is a PC running 

Windows 7 64 bit with a 2.40 GHz Intel
(R)

 Core
(TM)

 

i5-M450 CPU and 4GB of RAM. 

3   Background 

3.1   Multi-Objective Evolutionary Algorithms 

Most real-world optimisation problems involve 

simultaneous minimisation of several conflicting 

objectives. Multi-Objective Evolutionary 

Algorithms (MOEAs) have been developed to find 

sets of optimal trade-off solutions for MOOPs. In 

this work we focus on NSGA-II, as it is a well-

known algorithm and it showed good performance 

in many bench tests [1], [11]. The procedure of 

NSGA-II may be arranged into 7 steps [13], [14]: 

1) the main evolutionary parameters (i.e. 

population size and maximum number of 

generations) are given and the objective 

functions are defined; 

2) the population is randomly initialised; all 

objective functions are evaluated for each 

individual and is stored; 

3) the population is sorted into fronts based on 

non-domination: a rank is assigned to each 

individual so that individuals having rank j 

dominate all individuals having rank k>j and are 

dominated by all individuals having rank i<j. 

Then, within each front, all individuals are 

classified depending on their crowding distance, 

that is a measure of how close an individual is to 

its neighbours and it is used in order to preserve 

diversity in the population; 

4) a mating pool is picked by means of a binary 

tournament selection based on individual rank 

and crowding distance; 

5) generic operator on the mating pool is 

conducted to generate an offspring population; 

the evolution consists either in a Simulated 

Binary Crossover (SBX) or in a genetic 

mutation based on polynomial mutation [4]; 

6) the resulting intermediate population, which 

includes both parents and offspring, is in turn 

sorted based on the same criteria of non-

domination and crowding distance; 

7) a selection of the population is performed, i.e. 

only the individuals belonging to the first fronts 

survive while the others are discarded. 

The number of generations evaluated is used as the 

stopping criterion, so steps 4, 5, 6, and 7 are 

cyclically run until the maximum number of 

generations is achieved. 

3.2   Nash-Genetic Algorithms 

A MOOP can be solved using as many players as 

the objectives of the problem: each player 

optimises one criterion keeping all other criteria 

fixed by the other players. Such a strategy is called 

Nash-strategy and tends to the so called Nash-

equilibrium, i.e. the condition when no player can 

further improve its own objective [10], [29]. 

Nash-strategies can be implemented within a 

Genetic Algorithm in order to obtain Nash-

equilibrium solutions of MO problems [15], [16], 

[18]. A technique to implement a Nash-GA for an 

M-Objective optimisation problem is to create M 

distinct populations assigned to M Nash-players; 

each player evolves its own population based on its 

own criterion and send its best solution to the other 

players, which in turn optimise their own criterion 

without changing any criterion optimised by the 

other players. The scheme proceeds generation 

after generation and the evolution can be 

considered completed when the Nash-equilibrium 

is reached. Figure 1 shows the flow-chart of a 

Nash-GA for a 2-objective problem. 

3.3   Hybrid Game Genetic Algorithms 

Hybrid Games are advanced optimisation methods 

which couple different strategies within one single 

framework. A suitable implementation of Hybrid 

Game consists in one Pareto-player and a number 

of Nash-players exchanging information each other 

to produce Nash-equilibrium and Pareto-optimal 

solutions at one time [15]. 

The goal of coupling the Nash-strategy and 
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the Pareto-strategy into a Hybrid Game is to speed 

up the convergence of the solutions found by the 

Pareto-player towards the Pareto-optimal front. The 

role of the Nash-players within a Hybrid Game is 

therefore to explore the extreme zones of the 

objective space and seed useful information to the 

Pareto-player and to the other Nash-players. 

The Hybrid Game developed in this work is a 

variant of the original Hybrid Game, [14] [15], 

[16]. The exchange of information is conducted by 

sending and seeding some elite members from each 

population to the other ones. Such a technique, 

further discussed in Section 4.3, is called migration 

and performed cyclically during the evolution. 

 
Figure 1. Flow-chart for a 2-objective Nash-GA. 

4   Hybrid Game framework 

4.1   Pareto-player’s MO strategy 

The Pareto-player of the algorithm presented in this 

paper consists of a MOEA based on the well-

known NSGA-II algorithm. In its original 

formulation, NSGA-II works on a population of 

predetermined constant size [5]. The computational 

cost to evaluate one generation is  (   ), being 

  the number of objective functions and   the 
population size [2]. The basic idea encouraging the 

new scheme proposed in this work is to reduce the 

computational cost of the MOEA by making it 

work on a population whose size varies in 

accordance with a given law type, in order to obtain 

better convergence towards the Pareto-front in 

lower computational time [8]. All the tests 

presented in this work are conducted with 

populations varying quadratically. 

4.2   Nash-Players’ single-objective strategy 

Each Nash-player of Hybrid Game optimises one 

objective and produces optimal solutions speeding-

up the convergence of the global Pareto-player 

towards the Pareto-optimal solutions set. The Nash-

player’s strategy is implemented following the 

usual structure of a generic EA. The parent-

selection and the population-sorting operators used 

by Nash-players are different from those used by 

the Pareto-player. In particular, the mating pool of 

the Nash-players is obtained by merging two 

subsets of individuals, one filled up using an elitist 

criterion and one formed by randomly picked 

members. The purpose of such a combined parent-

selection is to guarantee the involvement of the 

new members coming from other populations in 

the evolution of the Nash-populations. 

Another important feature of the Nash-players 

strategy is that the application of the genetic 

operators occurs after the selection of the decision 

variables specific for that Nash-player. The action 

of a given Nash-player is hence restricted to just 

some genes of the whole chromosome while the 

other genes are kept frozen. An important issue in 

the development of a Hybrid Game algorithm is 

consequently the selection of the decision variables 

on which every Nash-player is allowed to operate 

on. The most pragmatic consequence of this feature 

of Hybrid Game is that the formulation of the 

model describing the optimization problem is a 

crucial matter, since the problem should be 

carefully formulated in such a way that the effect of 

the decision variables can be easily discerned and 

an efficient strategy can be implemented. 

4.3   Elite migration technique 

The exchange of information between the players 

of Hybrid Game occurs by means of cyclic 

migrations of some individuals (elite group) 

between the populations involved into the 

evolution process. 

In the algorithm, the elite group sent from the 

Nash-population A to the Nash-population   is 
populated selecting the members of population A 

having the best fitness value from the standpoint of 

the Nash-player B. Analogously, the subgroup 

migrating from any Nash-population N to the 

Pareto-population P is composed by the members 
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of the populations N having the lowest rank. This 

mechanism aims to keep the exchange of 

information during the evolution as high as 

possible while simultaneously reducing the risk to 

get trapped in some local minima. Also the 

subgroup  sent from the Pareto-population P to any 

Nash-population N is populated by the members of 

the origin population P having the lowest rank. 

5   Test bench problems 

5.1   Mathematical test cases: ZDT functions 

The Zitzler-Deb-Thiele’s (ZDT) functions are two-

objective optimisation problems commonly used in 

literature [2], [12], [14]defined in the general form: 

Minimise:   ( )  (1) 

   ( )   ( )   (  ( )  ( ))   

where:            ,   - 
Depending on the expressions assumed by the 

functions f1(x), g(x), and h(x), six problems were 

defined [12]. The ZDT functions used as bench 

tests in this work are the ZDT1, ZDT2, ZDT3, 

ZDT4 and ZDT6. The value of the decision 

variable xi is the i
th
 gene of the chromosomes used 

in the evolutionary optimisation. The only decision 

variables assigned to the first Nash-player is x1, 

while all the other variables are assigned to the 

second Nash-player. The evolutionary parameters 

used for the optimisation of the ZDTs are 

summarised in Table 1. 
 ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

main pop.size 20:100 20:100 20:100 20:100 20:100 

Nash-pop.size 15:50 15:50 15:50 15:50 15:50 

growth exponent 2 2 2 2 2 

elite group size 2 2 2 2 2 

max time [s] 30 30 45 60 15 

generations evaluated 1150 1124 1672 2395 1949 

Table 1. Evolutionary parameters used for the bench tests.  

The final Pareto-fronts of the ZDT functions were 

computed but only a few are shown here due to 

space restrictions. 

5.2   MO Engineering problems 

We also considered the Gear train design, the Two-

bar truss design and the Welded beam design 

problems. [19], [20], [21] and the evolutionary 

parameters used for the optimisation of this set of 

problems are summarised in Table 2. 
 Gear train Truss Welded beam 

main pop.size 40:100 40:100 40:100 

Nash-pop.size 15:50 15:50 15:50 

growth exponent 2 2 2 

elite groups size 2 2 2 

penalty value on    -         

penalty value on    -          

maximum time [s] 120 120 120 

generations evaluated 2676 2487 2060 

Table 2. Evolutionary parameters used for the Engineering 

optimisation test problems. 

5.3  Results and discussion 

The algorithm proved to be able to find the true 

Pareto-front of all the ZDT functions but the ZDT4. 

Such an anomalous behaviour is supposed to be 

due to intrinsic complexity of the ZDT4 function, 

which has 21
9
 of local Pareto-fronts in the problem. 

Such a considerably high number of local minima 

makes the algorithm get stuck in one of them 

preventing the convergence towards the global 

Pareto-front. 

Figure 2. Pareto-front found for function ZDT3. 

 
Figure 3. Pareto-front found for function ZDT4. 

Amongst the Engineering optimisation problems 

evaluated, the true Pareto-front was available only 

in the gear design case. Some values of the true 

Pareto-front were not found by the algorithm, but a 

globally well spread set of optimal solutions was 

found. On the contrary, no direct numerical 

comparison of the results obtained for the truss 

design and the welded beam optimisation problems 

was available. 
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Figure 4. Pareto-front found for the gear train problem. 

An intrinsic difficulty of the Engineering problems 

tested here is that the effects of each decision 

variable on the objective functions are not 

straightforward to identify. This probably 

prevented an adequate assignment of the decision 

variables to the Nash-players, leading to the 

adoption of a weak overall strategy of the Hybrid 

Game framework. 

6   Multi-Objective TSP 

The Travelling Salesman Problem (TSP) is a 

combinatorial optimisation problem stated as [22]: 

Minimise: ∑ ∑       
 
   

 
    (2) 

subject to: ∑    
 
                   

 ∑    
 
                   

     *   + 

The problem requires to minimise the total cost of a 

tour between a set of N cities, given the cost 

function dij=dji between each pair of cities i and j; 

xij is a discrete variable which can assume only 

value 0 or 1. The constraints indicate that the tour 

must visit each city only once, thus the solution of 

the TSP is the shortest Hamiltonian cycle (i.e. a 

close cycle visiting each node exactly once) of the 

graph whose nodes are the cities. 

The solution of a TSP by comparison of all 

the possible (   )  solutions becomes 

practically impossible for a few tens of cities. Many 

optimisation algorithms and heuristic techniques 

have been proposed during the last decades to solve 

the TSP. Currently, Concorde software is one of 

the best TSP solvers [22], and its solution is used in 

this work as the reference to estimate the quality of 

the paths found. 

Many efforts were also done to solve the TSP 

by means of Evolutionary Algorithms [17], [23], 

[24]. The major issues concerning the application 

of Evolutionary Algorithms to the TSP are related 

to the chromosome definition and the genetic 

operators. In order to obtain suitable 

implementations, the chromosomes must be 

designed in such a way that their genes can 

represent the properties of feasible solutions; the 

generic operators must be able to combine the 

parents transferring useful information to the 

offspring in a non-destructive manner [25]. 

The algorithm presented here can be 

conceptually divided into three steps, which are run 

in sequence: 

 pre-processing: the environment data is 
imported and decoded; the evolutionary 

parameters are set and the initial populations are 

initialised; 

 processing: the populations evolve until a 

stopping criterion is met; 

 post-processing: the chromosomes belonging to 
the final Pareto-front of the main population are 

stored in an external file and the results are 

shown graphically to the user. 

In order to formulate a model for the 

implementation of a TSP solver, one of the major 

issues is the implementation of a method to 

describe a candidate solution. In this work the 

approach used is the so called path representation, 

i.e. the cities are labelled with progressive 

numbering, so that the chromosome is simply the 

ordered sequence of the cities which gives the 

candidate path. 

 
Figure 5. Representation of two example paths. 

As an example, let us consider the simple TSP of 9 

random cities (Figure 5). The path representation of 

two possible solutions path1 and path2 of such a 

TSP is then: 

path1=[1 6 5 7 9 4 3 2 8] 

path2=[8 6 4 7 9 5 3 1 2] 

They are representative of the paths (a) and (b) of 

Figure 5 respectively. An important feature of the 

path representation is that a complete path through 
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the cities of a  -dimensional TSP can be expressed 

in    possible ways, due to the circularity of the 
solution of the TSP. Such a peculiarity is 

conveniently exploited by some of the genetic 

operators implemented in this work. 

6.1   Objective functions definition 

In order to build-up a model which can be later 

exploited as the basis for the aerial mission path 

planning, the MO-TSP formulation presented here 

involves the two following cost functions    and 

  , where: 

      is the length travelled, i.e. in a two-
dimensional environment the Euclidean 

distance between the coordinates of any 

couple of consecutive cities of the tour; 

      is an additional cost function referred 
to as the risk of the tour. 

To introduce the risk function, the model includes a 

number of elements, called dangerous points, 

whose presence induces a cost to the paths passing 

in its vicinity closer than a certain threshold. The 

risk f2(i,j) of the edge between the cities i and j is 

then defined as the total number of dangerous 
points encountered during the travel from i to j on 

the left and right side of the edge. Figure 6 shows 

the 9-city example TSP described previously where 

50 randomly placed dangerous points are 

considered. The tour path1 is also shown as a 

dashed blue line. The yellow-shaded area plotted in 

the same picture identifies the region 

(threshold=0.05) within which any dangerous 

points affects the risk of an edge. 

 
Figure 6. Example MO-TSP and risk evaluation of an edge. 

The two cost functions just defined are additive 

functions, meaning that the values of the cost 

functions of a complete tour through the cities is 

given by the sum of the cost functions of each 

single edge forming the tour. 

6.2   Look-up tables 

The computational time needed for the evaluation 

of the cost function increases with the dimension of 

the problem (i.e. number of the cities to visit) as 

well as the total number of dangerous points 

considered [26]. In order to make the evolutionary 

process faster, a timesaving technique is adopted to 

save computational resources during the evolution: 

in the pre-processing phase, the cost functions of all 

the edges are evaluated and stored into 

tridimensional matrices used as look-up tables 

during the evolution. This solution makes the time 

required for the evolution absolutely independent 

of the time taken to evaluate the cost functions. 

6.3   Genetic operators for MO-TSP 

The MO-TSP belongs to the class of combinatorial 

problems. Due to the different nature of the 

problems, five crossover operators and four 

mutation operators were specifically designed for 

the TSP and implemented to be used by the MO-

TSP solver instead of the SBX and the usual 

mutation operator. 

6.3.1   Partially Mapped Crossover 

This crossover performs a mapping between the set 

of consecutive cities which in the two parent 

chromosomes occupy the random positions from i 

to j, while keeping the order of the other cities 

unchanged. 

6.3.2   Order-Based Crossover 

This crossover keeps unchanged the order of a set 

of consecutive cities occupying the random 

positions from i to j of each parent and changes the 

order of the other cities in accordance of the order 

of those cities in the other parent. 

6.3.3   Sub-path Crossover 

A random city X is picked and the cities Y1 and Y2 

following X in the parent paths are identified. The 

sub-path of the second parent p2 going from X to 

Y1 and the sub-path of the first parent p1 going 

from X to Y2 are isolated and placed between X and 

Y1 in p1 and between X and Y2 in p2. The rest of 

the cities are kept unchanged. 

6.3.4   City-Centred Crossover 

A random city X is picked and the path of p1 from 

the first city to X is copied to the first child c1, and 

the path of p2 from the first city to X is copied to 

the second child c2. The rest of c1 is filled in 
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according to the order the remaining cities appear 

in p2 and the rest of c2 is filled in according to the 

order the remaining cities appear in p1. 

6.3.5   Edge-Recombination Crossover 

This crossover is targeted to obtain offspring 

chromosomes having as many edges as possible 

equal to the edges of the parents. The operator first 

evaluates the edges of each parent and identifies the 

ones common to both of them. The offspring 

chromosomes are built using the edges common to 

both parents; if no common edges are available the 

rest of the offspring chromosome is built randomly. 

6.3.6   Shortest sub-path mutation 

This mutation reorders heuristically the cities of the 

subpath of the parent p3 from i to j while keeping 

the other cities unchanged. The method used to 

reorder the cities from i to j is to place after each 

city X the city Y of the remaining ones such that the 

cost of the edge (X,Y) is the lowest. 

6.3.7   Single-point insertion mutation 

This mutation picks a random city X and moves it 

between the consecutive cities A and B such that 

the total length of the subpath [A-X-B] is the 

shortest. The order of the other cities is kept 

unchanged. 

6.3.8   Simple swap mutation 

This mutation mutually exchange the position of 

two cities picked randomly. 

6.3.9   Single-edge-insertion mutation 

This mutation is the dual version of the single-point 

insertion operator: it randomly picks two 

consecutive cities A and B of the parent 

chromosome and interposes between them the city 
X for which the total length of the subpath [A-X-B] 

is the lowest. The order of the other cities is kept 

unchanged. 

6.4   Sub-tour inversion operator 

Besides the crossover and mutation operators 

detailed above, another type of operator was 

implemented. The operator can be conceptually 

considered as a mutation, since it gets as an input a 

single chromosome and returns as an output a 

single child. It is used as a regular mutation 

operator by all the players of Hybrid Game, but 

also as a specific optimiser of the offspring of the 

Nash-players. This operator, called sub-tour 

inversion, explores the possibility to reduce the cost 

of a complete tour [A…Z] by inverting any 

intermediate sequence [X…Y] of consecutive cities: 

p3=[A … X … Y … Z] 

c3=[A … Y … X … Z] 

This operator is very effective, since it always 

returns as an output a chromosome whose fitness is 

not worse than the parent chromosome. Its 

drawback relies in the computational time, which is 

longer than any other operator implemented. 

6.5   Hybrid strategy for MO-TSP 

The algorithm presented in Section 4 is customised 

to solve MO-TSP cases. The framework imports 

the problem data (i.e. the position of the cities and 

of the dangerous points) and creates the matrix of 

look-up tables. Then the main population is 

initialised and the cost functions of all its members 

are evaluated. After the initialisation of the 

population operated by the Nash-players, the 

subtourinversion operator is applied to their 

members: each member of the population of the m
th
 

Nash-player is linearised with respect of the m
th
 

objective function, so that the useful action of the 

Nash-players be efficient from the first generation. 

Once all the populations are properly initialised, the 

evolutionary optimisation is conducted by 

following the general scheme of the Hybrid Game 

detailed in the previous section. 

The first difference with respect to the Hybrid 

Game algorithm described in Section 4 concerns 

the variable assignment at Nash-players. The 

results of the Engineering problems proposed in 

Section 5.2 revealed that the separability of the 

variables of a MOOP, and consequently a proper 

assignment of the decision variables to each Nash-

player, is a complex aspect of the definition of an 

efficient Hybrid Game strategy. Hence, a novel 

automatic procedure for the variable assignment is 

proposed here. Such a procedure was made 

possible by the introduction of the look-up tables 

and it is adopted for the MO-TSP solver and for the 

infrastructure inspection task path planner as well. 

Keeping in mind that the cost function of the global 

trajectory is given by the sum of the cost of each 

edge, the contribution to the total cost of a complete 

tour due to the presence of the city X in the tour, is 
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given by the sum of the cost to go from the city A 

to X and from X to B, being A and B the cities 

preceding and following X respectively. The cost of 

visiting the city X of a V-dimensional MO-TSP is 

equal to the sum of the costs of the (V-1) edges 

connecting X to the other cities of the problem. 

According to this definition, the risk of visiting the 

city X can be evaluated by summing-up all the 

elements of the X
th 

 row of the look-up table of the 

risk, since the table contains the costs of all the 

possible edges between X and any other city of the 

problem. The risk of each city is evaluated and the 

cities are sorted based on their risk. At this stage, 

the first Nsafe and the last Ndangerous cities are stored 

as the safest and most dangerous cities of the 

problem. The value of Nsafe and Ndangerous can be 

chosen by the user; in all the following cases it is 

assumed Nsafe=Ndangerous=0.25V. 

The subtourinversion operator is used by the 

m
th
 Nash-player to improve the fitness of its own 

offspring in the regards of the m
th
 objective. It is in 

this phase that the assignment of the decision 

variables takes place; the look-up table sent as an 

input to the subtourinversion operator contains the 

element of the m
th
 cost function for all the edges 

except the ones connecting the cities assigned to 

the other Nash-player. The value of the cost 

function of such edges is reduced by a certain 

amount in order to force the sub-tour inversion 

algorithm to restore the edges between the cities 

assigned to the other Nash-player. 

Some operators perform heuristics estimations 

and they need the lookup table as an input. When a 

heuristic genetic operator is called by any Nash-

player, the related look-up table is used. Otherwise, 

if a heuristic genetic operator is called by the 

Pareto-player, an equivalent look-up table is built 

averaging the cost functions of each edge. 

6.6   Benchmark results 

Hybrid Game MO-TSP algorithm was tested on a 

few benchmark problems, but only one (namely 

MO_pma343, where 343 cities and 3000 dangerous 

points clustered in six lines are located in the range 

[0,300]×[0,42]) is reported in this work. Other test 

cases can be found in [9]. 

The test case is a benchmark case proposed in 

the TSP toolbox [28] and adapted here to the MO-

TSP formulation. The clusters of dangerous points 

are placed over some edges of the shortest path on 

purpose, with the intention to make the shortest 

path also the most dangerous path and force the 

algorithm to find alternative (i.e. longer but safer) 

solutions. The evolutionary parameters used for the 

test are summarised in Table 3 and the results 

obtained after the evolution are summarised in 

Table 4. The final Pareto-front of the main 

population is plotted in Figure 7, and the shortest, 

the safest and one trade-off path are shown in 

Figure 8 (a), (b) and (c) respectively. 
Main pop.size 50:100 

Nash-pop.size 20:50 

Growth exponent 2 

Elite groups size 2 

Maximum time [s] 720 

Generations evaluated 724 

Table 3. Evolutionary parameters used for MOpma343. 

 Shortest path found Safest path found Trade-off path 

Length 1389.7938 1629.6626 1468.7392 

Risk 1677 0 433 

Table 4. Results of MOpma343. 

 
Figure 7. Final Pareto-front of MOpma343. 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Shortest, safest and trade-off paths of MOpma343. 

6.7   Discussion 

A number of paths avoiding the clusters of 

dangerous points were found. This shows that the 

MO-TSP formulation presented in this work is a 

suitable model for representing environments with 

physical obstacles not to be crossed. Comparing the 
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length of the paths obtained by Concorde (1.3898) 

and Hybrid Game (1.3898) it was noticed that the 

Hybrid Game algorithm found paths shorter than 

the ones found by Concorde. These anomalous 

result (noticed for other bench cases as well) is due 

to the fact that Concorde evaluates distances 

rounding to the nearest integer [30]. 

Hence, the performance of the optimiser are 

satisfying. The Pareto-front found is well spread 

and a number of Pareto-optimal solutions found 

represent paths avoiding the obstacles, as 

demonstrated by the plot of the trade-off solution. 

Since the MO-TSP benchmark case evaluated are 

not present in literature, the true Pareto-front of the 

problem is unknown and any comparison with the 

Pareto-front found by the software is prevented. 

7   Infrastructure inspection 

7.1   Problem definition 

One important application of the algorithm 

developed in this paper is the computation of the 

optimal trajectory needed to perform an aerial 

survey on large linear infrastructures like gas/oil 

ducts, power lines, railways or highways. 

7.1.1   Digitalisation and discretisation 

The map of the infrastructure was digitalised to be 

imported in Matlab and be effectively handled by 

the optimization algorithm. The best way to 

describe a linear infrastructure is to describe it as 

the combination of a number of lines whose 

extremes can belong to only one, two or more than 

two lines; in the first case, they are said extreme 

waypoints, in the second case connection 

waypoints and in the third case nodes. The lines to 

inspect are discretised as a list of intermediate 

waypoints between two extreme points of a line. 

The total number of the intermediate waypoints in 

which each line is discretised must be a 

compromise between the loss of detail due to the 

discretisation and the computational difficulty, 

which increases with the number of the waypoints. 

The issue is solved by importing a high-

density waypoint map into Matlab, but reducing the 

number of waypoints considered by the 

optimization algorithm by clustering some 

sequential waypoints of a global line together to 

form sub-lines whose extremes are connection 

waypoints of the lines of the global infrastructure. 

Such sub-lines are treated as unbreakable sub-

paths, so that the goal of the optimisation algorithm 

is to find the best trajectory through those sub-lines. 

This approach allows the optimisation 

algorithm to produce results only as feasible 

trajectories through the actual waypoints of the 

lines of the infrastructure. The discretization 

method described above can thus be applied to 

straight-line infrastructures, typically gas/oil 

pipelines and power lines, or curve-line 

infrastructures, i.e. railways, highways and even 

natural landscapes like rivers and coasts. 

7.1.2   Off-service additional path 

The goal of the optimisation algorithm developed 

in this paper is to compute a feasible trajectory 

above an infrastructure with an Unmanned Aerial 

Vehicle. Its trajectory is given by a composition of 

a certain number of sub-paths which can be 

generally classified as on-service and off-service 

paths. The first are the legs of the total trajectory in 

which the vehicle inspects the infrastructure, while 

the second ones are the legs in which all the 

mission sensors can be switched off because the 

vehicle is not overflying the infrastructure. 

In this work, it is assumed is that the aircraft is 

able to follow any bend of the on-service path, as 

well as any trajectory made up by compositions of 

straight lines and arcs of circle tangent each other 

with constant turn radius Rturn. This hypothesis 

allows to model the additional paths as Dubins 

curves [6], i.e. sequences of a maximum of three 

straight or curve primitives. 

7.2   Multi-objective analysis 

The infrastructure inspection mission planning is 

handled as a MOOP with two objective functions 

f1=L and f2=R, being the first one the length of the 

additional path and the second one the risk. 

Similarly to what was done for the MO-TSP, the 

scenario consists of a map of the infrastructure to 

inspect and a number of dangerous zones. The 

dangerous points are clustered into two-

dimensional areas so that they can be used to 

reproduce realistic environments in which cities, 

restricted areas and/or bad-weather zones occur. 

The boundaries of the risk areas are imported by 
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the algorithm and the user is allowed to tune the 

density of dangerous points for each dangerous 

area that the algorithm generates. Once the density 

is set and the boundaries of the dangerous areas are 

imported, the algorithm automatically generates the 

grids of points which are taken into consideration 

during the optimisation process. 

The solution implemented for the MO-TSP 

solver to hold down the computational cost needed 

for the evaluation of the cost functions is also 

adopted here: the length and the risk associated to 

all the possible additional trajectories are evaluated 

before the evolution process starts and stored into 

look-up tables. 

7.3   Chromosome genes 

As the problem was defined, any trajectory 

representing the solution of the inspection task path 

planning problem can be described as an ordered 

list of the sub-lines. Analogously to what has been 

done in the MO-TSP formulation, the sub-lines are 

numbered, so that any permutation of the vector 

[1,2,…,V-1,V], being V the number of sub-lines 

forming the global infrastructure, represents a 

candidate solution to the inspection problem. 

While the cities in the MO-TSP had no 

dimensions, the sub-lines are defined by two 

different extreme waypoints, implying the need to 

specify which is the direction of travel over each 

sub-line. The technique implemented to univocally 

point out one of the eight feasible trajectories 

between any two sub-lines i and j is to define a flag 

binary variable which identifies the direction of 

each line. The eight feasible trajectories between 

the sub-lines i and j are thus defined by four 

variables: two indicating the order and two 

indicating the direction of inspection. Hence, the 

solution trajectory is fully described by the order of 

inspection of all the sub-lines and the direction of 

travelling direction over them. The chromosomes 

of the members involved in the evolutionary 

algorithm are made up of the composition of a 

permutation of [1,2,…,V-1,V] and the vector of the 

flag variables. Such a definition of the 

chromosomes implies that the dimension of the 

look-up tables is ,     -. 

7.4   Optimisation method 

Thanks to the analogies between the inspection task 

problem and the MO-TSP, all the genetic operators 

implemented for the MO-TSP solver are used also 

for the infrastructure inspection path planner; 

however to take into account the direction flag 

variables, the genetic operators used for the 

optimisation of the inspection path are allowed to 

work only on the first part of the full chromosome, 

while the flag variables vector is changed in 

accordance to the result of the operator itself. 

Thus, the functionality of all the genetic 

operators is basically unaffected by the presence of 

the direction flag variables; only the sub-tour 

inversion operator applied by the Nash-Players was 

strongly modified with respect to the one used for 

the MO-TSP solver. The sub-tour inversion 

operator used for the inspection path planning is 

indeed allowed to modify directly the flag variables 

vector. While for the MO-TSP the minimum sub-

path which could be swapped was the sequence of 

two cities, for the infrastructure inspection path 

planning, any single sub-line has an orientation and 

can therefore be swapped too. 

7.5   Queensland railway inspection 

The infrastructure considered is the Queensland, 

Australia, railway network (Figure 9). In this 

scenario, the lines to inspect have variable lengths 

and curvatures and therefore they represent a 

complex linear infrastructure. 

7.5.1   Environment definition 

The map of the infrastructure was obtained by 

tracing a number of point-to-point paths matching 

all the available lines in the layer of the rail of 

Queensland on Google Earth. The coordinates (in 

the Earth-Centred–Earth-Fixed reference system) 

of the waypoints were imported in Matlab, where a 

reference system transformation (in accordance to 

the WGS84 ellipsoid model, [27]) was performed. 

The Cartesian coordinates of the waypoints were 

imported in Rhinoceros 4.0, where each railway 

line was rebuilt interpolating the available 

waypoints with polynomial curves of degree three. 

Such curves were finally split into 50-meter long 

segments and the equispaced intermediate 

waypoints exported in text files. At the end of this 

procedure, 251 files containing the Cartesian 

coordinates of 206180 waypoints were created. 
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Figure 9. Overview of the railway network of 

Queensland, Australia. 

In such a scenario, a number of risk-related 

restrictions can be specified: 

 overflying cities for a long period may be unsafe 

due to airspace restrictions; 

 flight in the outback far from airports or 
populated areas is also a consideration; 

 according to forecasts, flying through some 

weather zones should be avoided. 

The restrictions listed above are conveyed into the 

digital environment as risk-inducing clusters of 

dangerous areas located over the major cities of 

Queensland, throughout the outback and far from 

the railway. Different levels of risk are assigned to 

the bad-weather forecasts. Over this environment, a 

number of test cases (on different scales) were 

evaluated and two of them are presented here: 

 Test case 1: inspection of the Brisbane, Gold 
Coast, Ipswich and Toowoomba (BGIT) area 

railway in good-weather conditions; 

 Test case 2: inspection of the BGIT area 
railway with two zones of bad-weather zone are 

considered. 

The density of the dangerous points used for the 

cities is 800km
-2
, while for the bad-weather zones a 

density of 1000km
-2
 was used. 

7.5.2   Results 

The software was run for 1200 seconds; 1249 and 

940 generations were evaluate for the test case 1 

and for the test case 2 respectively. All the 

evaluations are performed using Rturn=150m as the 

constant turn radius of the aircraft and 2km for the 

range of risk influence. A trade-off path, as well as 

its position on the final Pareto-front are plotted and 

a summary of the cost functions for each trajectory 

is presented. Table 5 summarises the results 

obtained. 

 

Figure 10. Pareto-front for test case 1. 

 

Figure 11. Pareto-front for test case 2. 

 
Figure 12. Intermediate path over the BGIT area railway 

in good-weather conditions. 

 
Figure 13. One trade-off path over the BGIT area railway 

in bad-weather conditions. 

 
Shortest path found Safest path found Trade-off path 

length risk length risk length risk 

Test 

case 1 
287km 376 385km 320 303km 331 

Test 

case 2 
287km 915 478km 533 369km 560 

Table 5. Summary of the results for the test cases. 
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7.5.3   Discussion 

The results obtained for the railway inspection task 

confirm the good performance of the optimisation 

algorithm displayed for the benchmark cases: in the 

real-world cases evaluated, the difference between 

the maximum and minimum of off-service lengths 

(ΔL) and risk (ΔR) found for are: 
 Test case 1 Test case 2 

              

          

Hence, the optimal trade-off paths chosen are 

representative of paths which allow a reduction on 

the risk by ,       - with respect to the shortest 

path paying only ,        - in terms of length. 

Finally, the off-service to total length ratio is 

low for all the trade-off missions planned: the on-

service lengths of the railway to inspect is 575km, 

hence the off-service to total length ratio metric is 
,           -. 

The shortest paths found in the two cases are 

characterised by the same length although the risk 

related to each one of them is significantly 

different. These results prove that the algorithm is 

able to adapt efficiently to the environment 

definition and the risk constraints considered. 

8   Conclusions 

This paper presented a novel formulation of the 

problem of the mission path planning of aerial 

survey tasks and an advanced Hybrid Game 

Evolutionary Algorithm was implemented for its 

solution. The mission path planning was handled as 

a MOOP where the objectives to minimise are the 

distance travelled and a risk function. These two 

objectives are defined for the purpose of taking into 

account any element of the real environment which 

can generally reduce the safety of the mission; thus, 

the scenarios considered include a number of 

dangerous zones representing restricted airspace, 

populated regions or bad weather areas. The risk 

function was defined in such a way that the risk 

induced by each dangerous zone is adjustable, thus 

allowing to define complex environment involving 

zones having different levels of risk. 

The problem of the mission path planning was 

formulated as an enhanced MO version of the TSP. 

The technique proposed for the discretisation of the 

lines of the infrastructure is applicable to networks 

consisting of either straight and curve lines. 

A specific chromosome definition was 

necessary as well as the implementation of genetic 

operators peculiar for combinatorial optimisation. 

In order to speed up the evolutionary process, a 

novel technique for the evaluation of the fitness of 

the individuals involved into the evolution process 

was developed: the length and the risk of the edges 

are read on look-up tables created in the pre-

processing phase of the software. 

Some of the test cases used to test the 

algorithm were presented. The software was finally 

applied to the mission path planning problem of the 

inspection task of the railway of Queensland, 

Australia. The results obtained were satisfying in 

all the cases: in all the cases evaluated, the software 

produced well spread sets of optimal trade-off 

solutions, proving that the software developed in 

this paper is a suitable and versatile tool for the 

offline mission path planning  of aerial inspection 

tasks of large network infrastructures. 

Even though the algorithm was initially meant 

as an offline path planner for UASs, a possible 

future development based on this work could be the 

implementation of a Graphical User Interface to 

run the software on the UAV Controller Station. 

The risk areas could be updated downloading the 

information of the on-board Weather Surveillance 

Radar and the software could be used as a real-time 

re-planner in case of sudden change of the 

environmental data. Future works will also 

consider the airfield locations and aircraft 

endurance to determine an optimal path into 

package missions. 
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