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Abstract  

Maintaining adequate separation between 

aircraft is of paramount importance for safety of 

flight.  One metric that can be used to measure 

the level of collision threat that two aircraft 

pose to each other is the time until adequate 

separation between the two aircraft will be lost.  

This time to loss of separation depends on the 

relative position and velocity between the two 

aircraft.  Unfortunately, there is always some 

uncertainty in those parameters as well as 

uncertainty in whether or not the aircraft will 

maintain their current velocities.  This paper 

examines the effects of uncertainty on estimates 

of the time to loss of separation and explores 

methodologies for incorporating that 

uncertainty into the estimation process.  

Effective algorithms for time to loss of 

separation and also probability of loss of 

separation are developed and their effectiveness 

demonstrated. 

1 Introduction 

Maintaining adequate separation between 

aircraft operating in controlled airspace is a vital 

safety function of air traffic control (ATC).  

However, controllers often must operate using 

uncertain data about aircraft positions and 

velocities.  While the most heavily trafficked 

areas have highly accurate radar systems and 

future aircraft will be required to broadcast 

precise position information using the ADS-B 

system [1], ATC systems and onboard traffic 

avoidance systems will continue to have to deal 

with imprecise information from 

noncooperative traffic (aircraft without a 

transponder), aircraft out of radar or ADS-B 

coverage, and aircraft that are moving 

erratically.   

The estimated time when two aircraft will be 

within a specified distance of each other is a 

metric that can be used to evaluate whether or 

not those two aircraft pose a serious threat to 

each other.  That metric will be called the time 

to loss of separation in this paper.   

What constitutes adequate separation varies 

depending on location and other factors.  

Typical minimum separation distances are 3 

miles when close to a radar installation and 5 

miles when further away [2].  Smaller 

separation distances may be used in certain 

circumstances and larger distances may be used 

where radar is not available.  For this paper, a 3 

mile minimum separation distance will be used.  

2 Time to Loss of Separation 

The figure below illustrates an encounter 

between two airplanes: one at position     and 

traveling with velocity    , and the second at 

position    , and traveling with velocity    .  If 

their velocity vectors converge, then at some 

later time, denoted by    , the two airplanes will 

be at a distance,     , that represents the 

minimum separation required by FAA 

guidelines [2].   

The condition for the two aircraft to be the 

minimum separation distance apart can be 

written 

where the delta terms are the differences 

between the positions and velocities: 
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Figure 1.  Geometry of encounter between two 

aircraft. 

             
            

(2) 

Equation (1) is a quadratic equation for the time 

to loss of separation,    , which can be solved to 

yield the following equation. 
 

    
        

      
   

       

      
 

 

 
           

 

      
 

(3) 

Note that there will be two solutions to this 

equation and these solutions may be complex 

depending on the sign of the quantity under the 

square root.  A complex solution indicates that 

the two aircraft will never reach the specified 

minimum separation distance and are thus not a 

collision threat.  If the solutions are real and 

both are positive, then the airplanes will 

converge at some point in the future and the 

smaller value is the time to convergence.  If the 

solutions are real and both negative, then the 

airplanes are diverging and are not a collision 

threat.  If the two solutions are real and are of 

opposite sign, then the two aircraft are already 

within the minimum separation distance. 

3 Modeling Uncertainty 

To determine the effect of position and velocity 

uncertainty on the estimated time to loss of 

separation, the position and velocity estimates 

can be treated as normally distributed random 

variables.  In this analysis, we will assume that 

the mean values of the position and velocities 

are the estimated values and the covariance of 

the random variables reflects the uncertainty in 

the estimates.  Thus for the first aircraft we can 

write its position and velocity as 
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where    represents the mean/estimated values 

of the position and velocities: 
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and    represents the covariance matrix for the 

random variables: 
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Similar definitions will be applied for the 

second aircraft's position and velocity and 

furthermore it will be assumed that the random 

variables for the two aircraft are uncorrelated.  

Note that for this paper two dimensional 

Cartesian coordinates have been used for 

simplicity. 

3.1 Taylor Series Expansion 

With these assumptions, the distribution of the 

time to loss of separation can be estimated using 

a series expansion technique.  As shown by 

Papoulis [3], the expected value of a function, 

       of two random variables,   and  , can 

be written 
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Using the same series expansion technique the 

variance of the function can be written 
 

       
   

  

  
 
 

  
   

  

  

  

  
     

  

  
 
 

  
  

(8) 

Applying these equations to the present problem 

and using matrix notation, the expected time to 

loss of separation and the variance of time to 

loss of separation can be estimated using the 

equations: 
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where   and   are the Hessian and Jacobian 

matrices respectively for the time to loss of 

separation function.  The Hessian and Jacobian 

matrices were derived using the symbolic math 

capabilities of the Matlab software package.  

They have not been included here due to their 

length. 

Unfortunately, this approach has some 

limitations.  In particular, if two aircraft are 

traveling so that the measured positions and 

velocities indicate that they will just barely 

maintain separation, Equation (9) will not 

provide any indication that there is a possibility 

that the two aircraft could encroach on each 

other's airspace. 

 

3.2 Unscented Transform Algorithm 

A second methodology for estimating the 

expected time to loss of separation and its 

variance is a technique known as the Unscented 

Transform [4][5][6].  The Unscented Transform 

does not use analytical derivatives to propagate 

the error through the nonlinear function, but 

rather uses a numerical sampling technique.  As 

described in [7], a set of data points known as 

sigma points is constructed based on the square 

root of the covariance matrix of the random 

variables.  For a function of n  random 

variables, a set of 2n+1  sigma points is 

required.  These sigma points are propagated 

through the nonlinear function and the mean and 

covariance of the transformed points are 

calculated.  The distribution of the sigma points 

is designed so that the errors in the calculated 

mean and variance estimates are of fourth order.  

This approach has been applied quite 

successfully in nonlinear Kalman filtering [6]. 

The algorithm proceeds as follows for some 

function,       , where x is a vector of 

random variables of length n with mean    and 

covariance matrix    .   

1. Calculate n sigma vectors,   , as the 

rows or columns of the square root of 

the matrix          . 

2. Calculate 2n+1 sigma points as 
       

         
           

(10) 

3. Transform the sigma points using the 

function 
          (11) 

4. Calculate the estimated mean as 
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5. Calculate the estimated covariance as 
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3.3 Modified Series Expansion Algorithm 

As will be discussed later, initial Monte Carlo 

simulation results showed that the Taylor series 

expansion formulation was not particularly 

effective and was outperformed in many 

instances by the naïve approach of ignoring 

uncertainty altogether.  Moreover, the standard 

deviation of the time to loss of separation 

estimates showed excessive error at large miss 

distances.  To try and address some of these 

shortcomings, a modified algorithm was 

explored. 

Since the naïve approach of ignoring 

uncertainty worked reasonably well for small 

miss distances, Equation (3) was used directly 

to estimate the time to loss of separation when 

the estimated miss distance was less than the 

minimum separation distance.  For larger 

estimated miss distances, the time to closest 

approach was used.  The time to closest 

approach is the first term in Equation (3) and 

can be written: 
 

    
        

      
 

(14) 

This approximation is justified by noting that as 

the estimated miss distance approaches the 

minimum separation distance, the time to loss of 
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separation approaches the time to closest 

approach.  Consequently, the time to closest 

approach is a reasonable approximation to the 

time to loss of separation when the estimated 

miss distance is close to the minimum 

separation distance. 

The relationship between time to loss of 

separation and time to closest approach was also 

exploited to arrive at an improved algorithm for 

estimating the variance in the time to loss of 

separation.  The time to closest approach 

equation, Equation (14), is considerably simpler 

than the time to loss of separation equation, 

Equation (3).  However, because of their 

geometric relationship it was reasoned that the 

behavior of the variance of the two equations 

may be similar.  For the modified algorithm, a 

Taylor expansion of Equation (14) was used to 

estimate the variance of the time to loss of 

separation. 

4 Monte Carlo Simulation 

To provide a ground truth for evaluating the 

various algorithms for calculating time to loss of 

separation, Monte Carlo simulation was used to 

estimate both the time to loss of separation as 

well as the probability of loss of separation.  For 

each scenario evaluated, the nominal positions 

and velocities of two aircraft were assumed as 

well as the uncertainties associated with those 

positions and velocities.  The assumed positions 

were treated as the means of normal 

distributions and the uncertainties were 

specified as the variances of those normal 

distributions.  Monte Carlo simulation 

proceeded by adding normally distributed 

pseudo-random variables with the specified 

variances to the mean positions and velocities 

and then calculating the time to loss of 

separation for that combination of perturbed 

aircraft positions and velocities.  The statistics 

associated with the time to loss of separation 

were then compiled over many iterations of this 

process.  This process was implemented using a 

program written for the Matlab environment and 

the Matlab-provided function, mvnrnd, was 

used for producing the pseudo-random 

perturbations. 

The encounter geometry used for the 

simulations is illustrated below in Figure 2.  

Two aircraft were simulated on converging 

courses.  Both slow aircraft, traveling at 120 kts 

which would be typical of a light general 

aviation airplane, and fast aircraft, traveling at 

240 kts which would be typical of a jet airplane 

operating below 10,000 ft were simulated.  

Cases were run with two slow aircraft, with one 

slow and one fast aircraft, and finally with two 

fast aircraft.  In each case, the geometry was 

setup so that the point of closest approach was 5 

minutes from the starting position.  For the slow 

aircraft, this placed them 10 nmi from the 

intercept point, for the fast aircraft, the starting 

position was 20 nmi from the intercept point.   

The half angle between the two tracks,  , was 

varied from 15 deg to 90 deg.  In addition, the 

nominal miss distance between the two aircraft 

was varied.  This was achieved by offsetting the 

starting point of one of the aircraft 

perpendicular to its course until the point of 

closest approach between the two tracks was the 

desired value.  The nominal miss distance was 

varied from zero to 30,000 ft. 

 

Figure 2.  Geometry of encounters used for Monte 

Carlo simulation. 

To determine the number of Monte Carlo 

iterations required to produce reasonable results, 

one of the scenarios was run out to 1,000,000 

iterations a total of 10 different times and the 

time to loss of separation statistics (mean, 

standard deviation, skewness, and kurtosis) 

were compiled over the course of the 

simulations.  For each trial, the scenario was 

held constant, but the seed used for the pseudo-



 

5  

ESTIMATING TIME TO LOSS OF SEPARATION WITH UNCERTAIN 

POSITION AND VELOCITY MEASUREMENTS 

random number generator was varied.  These 

data are shown in Figure 3, Figure 4, and Figure 

5 below.  The independent variable in each of 

the figures is the number of iterations of the 

Monte Carlo simulation completed.  Each of the 

curves presented represents a single run of the 

Monte Carlo simulation.   

 

 

Figure 3.  Effect of number of iterations on estimate of 

mean time to loss of separation. 

 

 

Figure 4.  Effect of number of iterations on estimate of 

standard deviation of time to loss of separation. 

These figures indicate that the scatter in the 

calculated statistics between the 10 trials is 

significantly reduced after 100,000 iterations.  

At 500,000 iterations, the scatter in the mean 

estimate between the 10 trials is less than 0.1% 

(measured as the difference between the 

maximum estimate and the minimum estimate, 

divided by the average estimate).  The scatter in 

the standard deviation estimate is 0.3% and the 

scatter in the skewness is just over 3%.  These 

uncertainties in the statistics are felt to be 

reasonable and so 500,000 iterations were used 

for all of the remaining Monte Carlo 

simulations. 

 

Figure 5.  Effect of number of iterations on estimate of 

skewness of time to loss of separation. 

5 Time to Loss of Separation Results 

Table 1 presents the results from estimating the 

time to loss of separation using the four 

different algorithms described above.  The table 

presents the percent error between each of the 

estimates and the Monte Carlo simulation 

results serving as the “truth.”  For each 

algorithm the results are presented at 

combinations of intercept angles from 15 – 90 

degrees and nominal miss distances from zero to 

30,000 ft.  The first set of results is for the naïve 

approach of ignoring uncertainty altogether.  

Here the measured values of position and 

velocity are assumed to be correct and fed into 

Equation (3) to get the time to loss of 

separation.  At low intercept angles and small 

miss distances this approach moderately under 

predicts the time until loss of separation.  As 

miss distance increases, the error is significantly 

reduced, but then it increases again as the 

nominal miss distance approaches the minimum 

separation distance (3 nmi or 18,228 ft).  The 

most significant problem however, is that at 

nominal miss distances above the minimum 

separation distance (24,000 ft and 30,000 ft in 

the table), the naïve approach ignores the 

probability that the aircraft tracks may indeed 

result in a loss of separation, and gives no 

results for those cases. 
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Table 1.  Percent error in estimate of mean time to loss 

of separation, low speed / low speed encounter. 

Naïve approach 

Intercept Nominal Miss Distance (ft) 

Angle 
(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 -8.25 -4.71 -0.46 9.00 
  30 -3.68 -2.62 0.20 8.88 

  45 -2.47 -1.83 0.33 7.47 

  60 -2.01 -1.47 0.33 6.51 

  75 -1.76 -1.30 0.33 6.02 
  90 -1.69 -1.27 0.32 5.96 

  Taylor series 

Intercept Nominal Miss Distance (ft) 
Angle 

(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 3.77 14.93 48.82 6521.0 

  30 1.97 4.75 16.02 1872.4 
  45 1.38 2.93 10.08 1108.5 
  60 1.08 2.27 7.84 838.0 

  75 0.98 1.99 6.85 720.6 

  90 0.95 1.87 6.50 677.4 
  Unscented Transform 

Intercept Nominal Miss Distance (ft) 

Angle 

(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 5.43 9.48 14.37 31.29 

  30 -0.36 1.43 2.30 6.94 -5.91 -6.59 

45 -0.83 0.36 1.03 4.48 -4.71 -4.68 

60 -0.91 0.10 0.66 3.54 -3.98 -3.54 

75 -0.88 0.02 0.52 3.12 -3.55 -3.01 

90 -0.87 -0.03 0.45 3.02 -3.49 -2.81 

Modified series expansion 

Intercept Nominal Miss Distance (ft) 

Angle 
(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 -8.25 -4.71 -0.46 9.00 8.59 6.40 

30 -3.68 -2.62 0.20 8.88 9.03 6.91 

45 -2.47 -1.83 0.33 7.47 7.99 6.36 

60 -2.01 -1.47 0.33 6.51 7.06 5.80 

75 -1.76 -1.30 0.33 6.02 6.67 5.46 

90 -1.69 -1.27 0.32 5.96 6.62 5.39 

The second set of results in the table used the 

Taylor series expansion method to predict the 

effects of the measurement uncertainty.  At very 

low nominal miss distances, this approach 

works quite well, giving estimates within 5% of 

the Monte Carlo results.  However, as the miss 

distance increases and approaches the minimum 

separation distance, the algorithm wildly over 

predicts the time to loss of separation.  

Moreover this approach has the same problem 

as the naïve approach in that it provides no 

answer when the miss distance is greater than 

the minimum separation distance. 

The unscented transform method provides good 

results across the range tested except for the 

shallowest intercept angle.  At the 15 degrees 

intercept angle, the error grows dramatically as 

the nominal miss distance increases and at high 

miss distances the algorithm fails to provide any 

result.  The cases where the unscented transform 

fails are typically cases where the sampling 

approach fails.  For example at higher nominal 

miss distances, the unscented transform will fail 

if all of the sigma points represent scenarios 

where the two aircraft do not lose separation.  

Moreover for estimating the variance, the 

algorithm will fail unless at least two of the 

sigma points represent scenarios where the two 

aircraft lose separation.  This occurs in the 

results presented in Table 2. 

The modified series expansion method shows 

reasonable accuracy across the range of miss 

distance and intercept angle.  At nominal miss 

distances less than the minimum separation 

standard, the results are identical to the naïve 

approach.  At larger nominal miss distances, the 

method uses the time to closest approach as a 

surrogate for the time to loss of separation.  The 

maximum error is 9% across the range tested. 

Table 2 presents the error in the estimate of 

standard deviation in time to loss of separation.  

The standard deviation of time to loss of 

separation is useful as a measure of how 

precisely time to loss of separation is known.  

The cases presented in the table correspond to 

those in Table 1.  However, no results are 

presented for the naïve approach since it does 

not provide any information about variance or 

standard deviation. 

The Taylor series method provides accurate 

estimates of standard deviation at small nominal 

miss distances and steep intercept angles.  

However, at shallow angles the error goes up 

considerably and at nominal miss distances 

approaching the minimum separation distance, 

18,228 ft, the standard deviation estimates 

become completely unusable with errors greater 

than 500%.  Moreover, as was seen in Table 1, 

the Taylor series method does not provide an 
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answer when nominal miss distance exceeds the 

minimum separation distance even though there 

is still a significant probability of loss of 

separation. 

The unscented transform has similar issues as 

the Taylor series method.  As miss distance 

increases so does the error though not to the 

same extent as the Taylor series results.  At 

nominal miss distances above the minimum 

separation distance the unscented transform is 

unable to estimate standard deviation because 

not enough sample points fall within the 

minimum separation distance region. 

Table 2.  Percent error in estimate of standard 

deviation of time to loss of separation, low speed / low 

speed encounter. 

Taylor series 

Intercept Nominal Miss Distance (ft) 
Angle 

(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 -34.10 -18.08 8.57 437.96 

  30 -11.44 -4.40 24.17 546.17 
  45 -8.37 -1.87 25.70 545.24 

  60 -7.22 -0.95 26.56 539.08 

  75 -6.65 -0.49 26.03 533.88 

  90 -6.47 -0.77 26.33 535.40 
  Unscented Transform 

Intercept Nominal Miss Distance (ft) 

Angle 

(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 -9.62 6.24 12.30 23.32 

  30 -3.70 -0.43 1.07 17.49 

  45 -4.44 -2.09 -1.20 18.31 

  60 -4.59 -2.52 -1.62 18.33 

  75 -4.52 -2.61 -2.43 18.26 

  90 -4.49 -3.10 -2.25 19.38 

  Modified series expansion 

Intercept Nominal Miss Distance (ft) 

Angle 
(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 7.12 3.11 -3.15 -11.92 -13.12 -10.15 

30 10.60 8.83 7.10 5.45 3.92 2.53 

45 6.66 6.27 5.18 4.54 3.87 2.57 

60 4.85 4.74 4.17 3.09 2.28 1.86 

75 4.10 4.07 2.93 2.05 1.31 1.53 

90 3.88 3.49 3.02 2.28 1.51 1.03 

The modified series expansion method produces 

good results across the entire set of cases.  The 

largest error occurs at shallow intercept angles, 

but stays under 15%.   

The calculations shown in Table 1 and Table 2 

were repeated for cases where a low speed 

airplane met a high speed airplane and cases 

where two high speed aircraft encountered one 

another.  Similar trends were observed for these 

two other encounters.  Table 3 and Table 4 

summarize the results for all three of the 

different encounter types.  For mean time to loss 

of separation in Table 3 the naïve approach 

shows the lowest average error over the three 

encounter types, but as described earlier it does 

not provide an answer for the higher nominal 

miss distances.  The unscented transform 

approach and modified series expansion method 

provide similar levels of accuracy, but the 

modified series expansion method provided a 

valid answer for all cases where the unscented 

transform broke down for a few of the cases. 

Table 3.  Percent error in estimate of mean time to loss 

of separation, summary. 

 

Low speed 
/ low 

speed 

Low speed 
/ high 

speed 

High speed 
/ high 

speed 

Naïve approach 2.80 1.81 1.48 

Taylor series 290.22 101.69 113.73 

Unscented transform 3.75 2.24 1.26 

Modified series expansion 4.43 3.25 2.57 

Table 4 summarizes the errors seen in the 

estimates of standard deviation.  The Taylor 

series method shows very poor results due to the 

huge errors seen at large miss distances.  The 

unscented transform does much better but still 

shows greater than 30% average error for the 

low/high speed cases.  Both the Taylor series 

and unscented transform methods were unable 

to provide results at nominal miss distances 

greater than the minimum separation distance.  

In contrast, the modified series expansion 

method demonstrated good accuracy for all of 

the cases and was robust in providing results for 

all of the cases. 

Table 4.  Percent error in estimate of standard 

deviation of time to loss of separation, summary. 

 

Low 

speed / 

low speed 

Low speed 

/ high 

speed 

High speed 

/ high 

speed 

Taylor series 92.36 93.08 92.51 

Unscented transform 6.10 32.23 4.62 

Modified series expansion 4.54 2.37 1.87 
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6 Probability of Loss of Separation 

Knowing the most likely time when two aircraft 

will lose separation is not the whole story.  If 

the aircraft are on estimated courses with a 

closest approach greater than the minimum 

separation distance, they may or may not be a 

threat to each other depending on the 

uncertainty in their trajectories.  Calculating the 

probability that their current velocities will 

result in a loss of separation gives another 

indication of the threat that they pose to each 

other.  In order to estimate this probability, one 

first must be able to estimate the miss distance 

and the variance of the miss distance.  Table 5 

presents the performance of three different 

methods for calculating the expected miss 

distance.  The first method is the naïve approach 

of ignoring uncertainty and just plugging in the 

estimated positions and velocities into Equation 

(1).  This approach does quite well at large miss 

distances and steep intercept angles, but is much 

less accurate at shallow intercept angles and 

close encounters.  At a nominal miss distance of 

zero, an encounter where the measurements 

indicate the two aircraft would hit, the naïve 

approach calculates an expected miss distance 

of zero.  This results in a -100% error because 

the true expected value of miss distance will 

always be greater than zero.  In real terms 

however, the dimensional error for these cases 

is small.  

The second algorithm is the Taylor series 

approximation.  This approach shows excellent 

agreement with the data for all cases.  The 

maximum error noted was just over 1%.  

The unscented transform approach also does 

reasonably well.  The largest percent errors 

occur at zero nominal miss distance.  However, 

as noted above the true expected value of miss 

distance is very small so even the 23% error is a 

small number in dimensional terms. 

To find the probability of loss of separation, we 

need the standard deviation of the miss distance 

as well as the expected value.  Table 6 presents 

the error in estimates of the standard deviation.  

The naïve approach does not provide a standard 

deviation estimate so it is not included in this 

table. 

Table 5.  Percent error in estimate of mean miss 

distance, low speed / low speed encounter. 

Naïve approach 

Intercept Nominal Miss Distance (ft) 

Angle 
(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 -100.0 -61.86 -45.45 -37.17 -32.19 -28.99 

30 -100.0 -51.33 -24.88 -12.34 -6.31 -3.40 

45 -100.0 -48.65 -19.91 -7.60 -2.74 -0.77 

60 -100.0 -47.76 -18.14 -6.13 -1.71 -0.26 

75 -100.0 -47.32 -17.28 -5.33 -1.31 -0.11 

90 -100.0 -46.76 -16.42 -4.74 -0.99 -0.05 

Taylor series 

Intercept Nominal Miss Distance (ft) 
Angle 

(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 0.12 -0.27 -0.38 -0.82 -0.99 -1.19 

30 0.07 -0.19 -0.33 -0.41 -0.37 -0.44 

45 0.07 0.07 -0.12 -0.24 -0.23 -0.11 

60 -0.01 -0.13 -0.14 -0.26 -0.08 0.00 

75 -0.01 -0.31 -0.24 -0.19 -0.06 0.01 

90 0.15 0.11 0.24 0.27 0.45 0.46 

Unscented Transform 

Intercept Nominal Miss Distance (ft) 

Angle 

(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 -22.72 -7.72 -1.66 0.35 1.33 1.73 

30 -18.27 0.22 5.51 3.97 0.89 -2.30 

45 -17.35 2.05 6.07 1.97 -3.21 -1.24 

60 -17.11 2.40 5.98 0.71 -2.03 -0.58 

75 -16.98 2.47 5.77 0.02 -1.56 -0.37 

90 -16.81 2.94 5.88 -0.50 -1.23 -0.29 

 

The Taylor series algorithm shows excellent 

agreement with the Monte Carlo results for all 

of the cases.  The maximum error is just over 

2% and the average error across all cases is 

0.5%.  The unscented transform performs 

considerably worse showing a maximum error 

of 65% and an average error of 14%.  

As with the time to loss of separation analysis, 

cases were run for the low speed/high speed 

encounter and for the high speed/high speed 

encounter and these results followed the same 

trends noted in Table 5 and Table 6. 
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Table 6.  Percent error in estimate of standard 

deviation of miss distance, low speed / low speed 

encounter. 

Taylor series 

Intercept Nominal Miss Distance (ft) 
Angle 

(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 0.18 0.83 1.42 1.62 2.02 2.32 

30 0.03 0.07 0.58 0.79 1.21 1.25 

45 0.01 0.39 0.40 0.55 0.53 0.36 

60 0.07 -0.06 0.41 0.09 0.24 0.24 

75 -0.08 0.01 0.02 0.08 0.44 0.12 

90 0.10 0.09 0.42 0.20 0.42 0.12 

Unscented Transform 

Intercept Nominal Miss Distance (ft) 

Angle 

(deg) 0 6,000 12,000 18,000 24,000 30,000 

15 52.91 18.72 3.60 -3.88 -7.70 -9.93 

30 62.04 16.22 -6.60 -10.24 -4.59 3.94 

45 63.93 15.79 -8.00 -5.65 8.14 3.64 

60 64.68 14.87 -8.21 -2.93 5.99 2.17 

75 64.69 14.67 -8.66 -0.93 5.26 1.46 

90 65.05 14.34 -8.54 0.61 4.45 1.00 

Since the goal is to estimate the probability of 

loss of separation, the type of distribution is 

needed as well as the mean and variance.  The 

probability of loss of separation is the integral 

of the probability density function for miss 

distance from zero to the minimum separation 

distance.  Figure 6, shows the distribution of 

actual miss distance for a scenario with a 45 

degree intercept half angle and an 18,000 ft 

nominal miss distance.  The distribution is 

clearly not a normal distribution.  The left hand 

side is much higher than the right and stops at 

zero since a negative miss distance is not 

possible.  Based on the appearance, a folded 

normal distribution was hypothesized and used 

to model the miss distance.  The solid line on 

the graph shows the results of the analysis and 

demonstrates excellent agreement with the 

Monte Carlo results.  

The probability of loss of separation 

corresponds to the cumulative probability 

distribution for miss distance up to the 

minimum separation distance.  Table 7 presents 

this statistic from Monte Carlo simulation and 

estimated using the Taylor series method and an 

assumed folded normal distribution for miss 

distance.  The probability varied from 80% at 

zero nominal miss distance to 18% at 30,000 ft 

nominal miss distance.  For each run case, both 

the Monte Carlo (truth) value and the estimate 

from the Taylor series method are shown.  The 

maximum discrepancy between the two values 

is 1% and in most cases is only a few tenths of a 

percent. 

 

 

Figure 6.  Distribution of miss distance,      , low 

speed / low speed encounter, nominal miss distance = 

18,000 ft. 

 

Table 7.  Estimated probability of loss of separation 

from Monte Carlo simulation and from Taylor series 

method, low speed / low speed encounter. 

Intercept 

Angle 
(deg) 

Nominal Miss Distance (ft) 

0 6,000 12,000 18,000 24,000 30,000 

15 

84.8 / 

84.7 

64.3 / 

64.6 

48.5 / 

49.1 

37.8 / 

38.7 

30.6 / 

31.6 

25.5 / 

26.6 

30 

84.8 / 

84.7 

76.1 / 

76.2 

62.7 / 

63.0 

48.7 / 

49.2 

36.4 / 

37.1 

27.0 / 

27.5 

45 

84.7 / 

84.7 

78.6 / 

78.6 

65.7 / 

65.9 

50.0 / 

50.2 

34.8 / 

35.2 

22.7 / 

22.9 

60 

84.7 / 

84.7 

79.4 / 

79.5 

66.9 / 

67.0 

50.3 / 

50.5 

33.8 / 

34.0 

20.4 / 

20.4 

75 

84.7 / 

84.7 

79.8 / 

80.0 

67.4 / 

67.5 

50.4 / 

50.6 

33.1 / 

33.2 

19.0 / 

19.0 

90 

84.8 / 

84.7 

80.3 / 

80.2 

67.9 / 

67.8 

50.5 / 

50.4 

32.6 / 

32.3 

17.9 / 

17.6 

Note: Data is presented in the form A / B, where A is the 

probability of loss of separation from Monte Carlo 

simulation and B is the estimate from the Taylor series 

method. 

7 Conclusion 

With improvements in sensors and new 

technologies for navigation/air traffic control 

such as ADS-B coming online, air traffic 

control has more precise position and velocity 

information than ever before.  However, these 

estimates still have errors and uncertainties and 

by incorporating measure of these errors and 
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uncertainties into calculations one can estimate 

how accurate those calculations really are.  In 

this paper we have evaluated several methods 

for incorporating uncertainty into calculations of 

time to loss of separation and probability of loss 

of separation.  The methods evaluated included 

a naïve approach where the uncertainty was 

ignored altogether, a standard Taylor series 

expansion technique, an unscented transform 

approach, and a modified series expansion 

technique for the time to loss of separation.   

For the time to loss of separation calculation, 

the modified series expansion technique was 

clearly the best approach.  It was the only 

algorithm that provided results across the entire 

problem space and it provided good accuracy 

for both the expected value and standard 

deviation with an average error less than 5%.  

The modified series expansion method avoided 

using the series expansion of the time to loss of 

separation equation because it is not well 

behaved.  Instead the time to loss of separation 

equation was used when the nominal miss 

distance was with the minimum separation 

distance and the time to closest approach 

equation for larger miss distances.  For the 

standard deviation, a Taylor series expansion 

technique is used, but instead of expanding the 

time to loss of separation equation, the time to 

closest approach equation is again used.  

For calculating the probability of loss of 

separation, a standard Taylor series expansion 

provided to be extremely effective along with 

the assumption of a folded normal distribution 

for the miss distance.  The assumption of a 

folded normal distribution is based on the form 

of the miss distance equation and the shapes of 

the distributions from the Monte Carlo 

simulations.  The probability of loss of 

separation was estimated within 1% for all of 

the cases examined. 

These two recommended algorithms for time to 

loss of separation and probability of loss of 

separation are straight forward and 

computationally efficient.  Developing 

separation algorithms based on these sorts of 

probabilistic algorithms may provide 

improvements in safety of flight and efficient 

utilization of airspace.  These algorithms may 

be particularly applicable in areas where 

surveillance radar is unavailable or when 

dealing with air traffic that maneuvers 

unexpectedly. 
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