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Abstract  

During atmosphere reentry the probe heat 
shield suffers from a significant overheating. 
Composite materials undergo an ablative 
process that consumes the heat flux by physico-
chemical reactions. Plasma jet experiments on 
polycrystalline graphite show a structural 
surface roughness like a scalloped pattern when 
the flow is turbulent. The goal of this study is to 
understand the interaction between a turbulent 
flow and an ablatable material at the smallest 
turbulent scale (the Kolmogorov scale). To this 
extent, direct numerical simulation (DNS) 
software has been developed and investigated. 
Firstly, in order to guarantee simulated 
patterns, the computed turbulence has been 
validated according to well-known results for 
turbulence decay and near-wall turbulence. 
Secondly, ablation experimentations have been 
performed to identify parameters responsible 
for turbulent roughness appearance. 

1    Introduction  

Ablative surface flows often arise when using 
thermal protection materials for preserving 
structural components of atmospheric re-entry 
spacecrafts. 
During the atmospheric re-entry the heatshield 
of the probe suffers a significant overheating. 
The composites materials undergo an ablative 
process that consumes the heat flux by 
physicochemical reactions. The composite 
disappears gradually by sublimation, oxidation. 
In the case of polycristalline graphite, plasma jet 
experiments show a structural surface roughness 

like a scalloped pattern when the flow is 
turbulent.  
The main idea of this study is to characterize the 
interaction between a turbulent flow and an 
ablatable material at the Kolmogorov scale (the 
smallest turbulent scale).  
The description of surface ablation is 
consequently very complex to model and 
requires knowledges and expertise in several 
disciplines such as chemistry and 
multicomponent physics, multi-phase ow 
dynamics, thermo-structural mechanics of 
composite materials, physics of particle/droplet 
impingement, roughness interaction 
mechanisms, or physics of radiative heat 
transfer. 

Hence, the main objective of this work is to 
simulate this roughness and to understand the 
mechanisms that are responsible for it.  
Roughness lengthscale is about 50 µm which 
implies that the software implemented have to 
be able to consider very small lengthscales. This 
is why a DNS software has been chosen to 
compute flow evolution from the smallest 
lengthscale (Kolmogorov scale) to the largest 
(turbulent scale). 

2    Modeling  

2.1    Governing equations  

Direct numerical simulation (DNS) is used to 
investigate the turbulence evolution. The flow is 
described by Navier-Stokes conservative 
balance equations for mass fraction for ne 
chemical species (1), momentum (2), and total 
energy (3): 
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where Re, Sc, Ma and Pr denote respectively the 
Reynolds number, the Schmidt number, the 
Mach number and the Prandtl number. Viscosity 
µ  is defined by Sutherland’s relation whereas 

thermal conductivity is 
Pr

Cpµλ = . 

2.2    Discretization 

A 6th order compact finite difference scheme 
resolution describes the spatial discretization 
[1].  

The grid resolution is a function of the 
Reynolds number and is in close agreement with 
other well-resolved simulations and Reynolds’ 
predictions [2]. The smallest resolved scale is 
the Kolmogorov lengthscale η, its good 

resolution is ensured by the condition 
2

η
∆x ≤ . 

In the same extent, the computational box size 
of simulations is large enough so that the flow 
variables are not correlated across the 
computational box (Fig. 1). So, the box size is 
equal to about four times the wavelength of the 
peak energy. 
A general method, derived from Poinsot & Lele 
[3], is used to specify boundary conditions for 
Navier-Stokes flows. This technique, called 
NSCBC is based on characteristic theory and 
includes a special treatment for viscous terms. 

 
Fig. 1 Computational domain  

 
Besides, an accurate coordinate transformation 
is implemented in order to take into account a 
roughness wall. This transformation is 
primordial to both describe the material 
recession and to maintain numerical scheme 
accuracy (which requires a constant spatial 
step).The 6th order of accuracy scheme is 
maintained by calculating the conform 
transformation [4]. 
Finally, a fourth order Runge-Kutta scheme is 
used for time discretization. The global time 
step is equal to the minimum between 
conductive and diffusive time steps and ensures 
the stability of explicit time discretization. 

2.3    Initialization 

To generate useful statistical quantities, an 
ensemble of ten independent flows was 
calculated and the results ensemble averaged. 
The homogeneous isotropic velocity field is 
initialized in spectral space using the Passot-
Pouquet spectrum or the Von-Karman-Pao [5] 
spectrum. It is established by requiring that the 
initial velocity spectrum have a prescribed form 
and that the Fourier-transformed velocity field 
be random Gaussian variables. The approach is 
similar to that of Rogallo [6]. It consists in 
expressing the spectral velocity field norm as a 
function of energy spectrum: 
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coordinate system of a point in the spectral 
space. The Passot-Pouquet spectrum expression 
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where the averaged velocity u’ is equal to 

3/2k . 
We have displayed on Fig. 2 two velocity fields 
extracted from Passot-Pouquet spectra with κe=4 
(Fig. 2.a) and κe=10 (Fig. 2.b) using Fourier-
transformation. κe is the wavenumber 
corresponding to the initial turbulent scale l t 
with  te l/2πκ = . 

 

 
(a) κe=4                                 (b) κe=10 

Fig. 2 Velocity fields obtained using Passot-
Pouquet spectrum  

 

FFTW library has been used to provide a 
faster the transition between spectral and 
physical space. This library turns out to be very 
convenient to implement a spectral forcing 
witch requires many transports between these 
two spaces. 

3   Numerical Results  

3.1   Simulation of an isotropic homogeneous 
turbulence (IHT)  

The purpose of this part is to validate results 
obtained by computing isotropic turbulence 
decay. The theory developed for k-ε models is 
used to be compared to our DNS results. We 
consider an infinite space (periodic boundary 
conditions) where statistic properties remain 
constant by translation or rotation. There is 
neither mean flow nor diffusion. Considering 
those conditions, k-ε equation system becomes: 
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The following expression of the couple (k-ε) is 
the exact solution of the system below: 
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  According to Comte-Bellot and Corrsin [7], 
the goal of this study is to evaluate the best 
power-law fit to inverse turbulent energy during 
the decay. In the case of an IHT, this power-law 
depends only on the value of Cε,2. Fig. 3 shows 
that behaviors of the averaged kinetic energy k 
and the averaged dissipation rate fit perfectly 
with analytical solutions. 

 

 
Fig. 3 Time evolution of k and ε compared to 
their analytical solutions (tref = 3,8.10-6 s) 

 
Cε,2 used in the analytical scheme turns out to 

be a function of the computed Reynolds 
number; its values are between 1.60 and 1.71 
(greater Reynolds implies greater Cε,2). These 
values are in close agreement with [7] for DNS 
experiments. To improve the physic 
representativeness of the computed turbulence, 
we have displayed evolution of isotropy 
components ratios (Fig. 4.a) and skewness and 
flatness factors of the velocity derivatives (Fig. 
4.b) to both validate isotropy and homogeneity 
in the flow. 
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(a) Isotropy 

 
(b) Homogeneity 

Fig. 4 Validation of IHT 
 
The velocity-derivative skewness factor Sk and 

the flatness factor Tk are indicator of the self-
preserving decay; their expressions are: 

( )
( )[ ]∑

∂∂

∂∂
=

2/32

3

/

/

3

1

ii

ii
k

xu

xu
S    (8) 

( )
( )[ ]∑

∂∂

∂∂
=

22

4

/

/

3

1

ii

ii
k

xu

xu
T    (9) 

 
Expected values of approximately -0.5 for Sk 

and 3.5 for Tk have been reached until one large-
eddy turnover time τk. These values are 
consistent with a good simulation of the IHT 
behavior. 

 

3.2   Spectral forcing of turbulence  

In DNS problem of turbulence, the field cannot 
be stationary if there is not external forcing, as 
turbulence is a dissipative system. So, a spectral 
forcing is used to generate a statistically steady 
turbulent flow.  

The spectral forcing starts after a large-eddy 
turnover time τk witch is the time for the IHT to 
be established. The method consists of creating, 
in the spectral space, a new velocity field 
(kinetic energy and large-eddy wavenumber κe 
are user-defined). This field is added to the 
Fourier-transform of the current physical 
velocity field. Spectral forcing is performed as 
soon as averaged kinetic turbulent energy is 
lower more than one percent of its initial value 

)( kk τ .  

Fig. 5 shows that the turbulent kinetic energy 
rate remains constant all along time simulation 
(Fig. 5.a). This artificially generated turbulence 
remains physically consistent, as proved by well 
known values of the skewness and flatness 
factors of the velocity derivatives (Fig. 5.b). 
Finally, we observe that different main 
lengthscales remain constant after kt τ2= , 

preventing flow from degeneration (Fig. 5c). 
 
The main advantage of this strategy is the 

possibility to choose properties of the flow like 
kinetic energy or the wavelength of large eddies 
κe. Consequently, we are able to force the flow 
using small structures (κe=20 for example), 
whereas it was initialized with a smaller 
wavenumber (κe=6). This method allows us to 
study the redistribution of kinetic energy by 
looking at the evolution of the spectrum E(κ). It 
means that we can simulate the influence of 
turbulent roughness (witch generate small 
eddies) on a flow with large eddies. 
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(a) 

 
(b) 

 
 
(c) 

Fig. 5 (a)Evolution of turbulent kinetic energy, 
(b) skewness and flatness factors of the velocity 
derivatives and (c) different main lengthscales 

during spectral forcing (tref = 2,7.10-6 s) 
 

 

3.3   Near-wall turbulence 
 

Wall affects turbulence through a number of 
different mechanisms. In this case, mean shear 
has been eliminated to consider only the 
interaction between turbulence and a solid 
stationary wall. The goal of this part is to 

confront results of our software to Perot and 
Moin’s results [9]. The solid wall is inserted 
into isotropic turbulence decay, immediately 
after a large-eddy turnover time τk. Spectral 
forcing is confined inside a plane layer of fluid 
in order to avoid boundary influences. 
Detailed instantaneous and statistical 
measurements of the flow have been calculated, 
including terms in the Reynolds stress 
evolution. Transport equations for the elements 
of the Reynolds stress tensor can be derived 
form the Navier-Stokes equations [9]. For the 
flow in question, which is homogeneous in 
planes parallel to the solid wall, the mean 
gradients in the surface-parallel directions 

vanish. Reynolds stress equations for 2u  

(tangential component of velocity) and 2v  
(normal component of velocity) reduce to: 
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We focus on the pressure-strain terms and 

components of the Reynolds stress tensor. Fig. 6 
shows scaled Reynolds stress profiles at 

1.1/ =kt τ . Like Perrot & Moin, we can observe 

a peak near the wall which is a residual effect of 
the inhomogeneous initial condition at the time 
of wall insertion. This initial peak in tangential 
Reynolds stress is quickly dissipated by the 
viscous damping near the wall and the profiles 
soon collapse to a single profile when scaled 
appropriately. Concerning the normal Reynolds 
stress, the profile at this time is a good 
approximation to the inviscid Hunt & Graham 
[9] solution.  

Note that, as the turbulent Reynolds number 
increases, the profiles become steeper at the 
wall but do not penetrate farther into the flow. 
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Fig. 6 Scaled Reynolds stress profiles at 

1.1/ =kt τ  

 
 

 
(a) Dissipation terms 

 
(b) Pressure-strain terms 

 
Fig. 7 Dissipation terms (a) and pressure-strain 
correlations terms (b) in the transport equations 

for 2u  and 2v  Reynolds stress normalized with 

0=tε . 
 

Fig. 6 presents, for 2u  (red) and 2v  (blue), the 
loss due to viscous dissipation (Fig. 7.a) and 
pressure-strain correlations (Fig. 7.b) which 
represents inter-component energy 
redistribution near a stationary solid wall at 
t/τk=5.  
As might be expected for a flow with strict 
boundary conditions on the tangential velocity, 
the tangential dissipation terms εtrans are large 
near the boundary contrary to the normal 
dissipation terms εnorm which are relatively small 
(fig 7.a). The other term of importance in the 
balance is the pressure-strain term. Normal 
pressure-strain Πnorm dominates the near-wall 
balance. Its sign is negative very close to the 
wall (transferring energy to the tangential 
Reynolds stresses) but positive farther away 
from the wall due to the standard return-to-
isotropy mechanisms (fig 7.b). The relative 
importance of the pressure-strain increases as 
the Reynolds number increases. However the 
extent of the pressure-strain term does not 
change significantly. 

3.4   Ablation simulation  

The ablation model considers only the sublimation 
reaction of C3 at the wall. So, the preserving mass 
flux equation becomes: 
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y
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Sublimation mass flux is given by the Knudsen-
Langmuir’s relation:  
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Where 
3Cp  and 

3Cp are respectively the saturated 

vapor pressure and the partial pressure of C3. The 
wall injection velocity of ablative gaseous products 

ωv  is determined by the mass injection rate m&  by: 
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with ωρ  the gaseous density at wall. Considering 

sρ  the heat shield material density, material 

recession velocity sv  is: 

s
s

v
v

ρ
ρ ωω=               (14) 

So the preserving species equations become: 
















=

=+
∂

∂
−

=+
∂

∂
−

ωω

ωα
α

α

ρ

ρρ

ρρ

vJ

vC
y

C
D

JvC
y

C
D

sub

sub
CC

C
C

C

C

3

333

3

3

0            (15) 

 
Simulations of turbulent flows on ablatable 

surface are performed to understand how specific 
patterns appear and which turbulent flow parameters 
are responsible for it (Fig. 8) 

 

 
 

(a) Laminar flow 

 

 (b) Turbulent flow 
 

Fig. 8 Polycrystalline graphite surface state after 
plasma jet experiments 

 
At this point, we know that the large-eddy 
wavelength has no influence on recession velocity 
rate whereas it acts on turbulent roughness height 
(Fig. 9). This figure assumes that as the large-eddy 
wavelength increases, the magnitude of roughness 
height increases. Of course, it has modified surface 

patterns obtained (Fig. 10). The surface patterns for 
κe=6 is rougher than the one for κe=4.  
On this figure, the wave length κe is an important 
parameter who determines the density and the 
magnitude of the roughness. 
 

 
Fig. 9 Roughness height evolution for a κe=4 

flow and a  κe=6 flow (Ret=90) 

 
 

 
(a) κe=4 

 

 
(b) κe=6 

 
Fig. 10 Surface state obtained for a κe=4 flow 

(a) and a κe=6 (b) flow with Ret=90 
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4   Conclusion and perspectives  

These simulations have shown that our software 
is able to simulate accurate turbulent flows with 
several boundary conditions (periodic box and 
solid wall) in regard to results exposed in [7], 
[8] and [9]. The spectral forcing implemented is 
very useful in order to guarantee a steady state 
of turbulence without degeneration. 
Furthermore, we have developed a way to 
investigate the kinetic energy redistribution by 
modeling small eddies appearance. Finally we 
have started to identify parameters responsible 
for roughness appearance and roughness 
velocity formation rate.  
Next numerical experiments will deal with 
ablation more exhaustively in order to identify 
all parameters which generate surface patterns 
modification. It would be interesting to take 
thermal transfer and pyrolysis into account by 
considering a solid body instead of mere 
boundary conditions. 
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