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 We propose several candidate vehicle 
configurations and characterize their 
aerodynamics through wind tunnel tests. On the 
basis of their results, a twin engine 
configuration with a cranked-arrow main wing 
is selected as the baseline. Its aerodynamic 
stability and controllability are analyzed in 
detail through wind tunnel tests. These 
treatments and results will be elaborated in 
Section 2. On the other hand, a counter-rotating 
axial fan turbojet (CRAFT) engine is proposed 
for propulsion for this vehicle. Its concept and 
design will be outlined briefly in Section 3. On 
the basis of the aerodynamic characterization 
and propulsion design analysis, flight capability 
prediction is carried out by point mass analysis 
of motion. It will be described in Section 4. 
Prior to the construction of the supersonic 
vehicle, a prototype is designed and fabricated 
in order to verify the subsonic flying 
characteristics of the vehicle configuration 
through flight tests. Section 5 will outline the 
design of the prototype vehicle and its maiden 
flight test carried out in August 2010. A revised 
aerodynamic configuration with an air-turbo 
ramjet gas-generator cycle (ATR-GG) engine 
will be proposed and its aerodynamics will be 
assessed in Section 6. Then Section 7 will be 
conclusions. 

2    Configuration Designs and Aerodynamic 
Characterization  

2.1   Proposed Configuration Designs  

Five configurations shown in Fig. 1 were 
proposed*. Their concepts are as follows: 

 M2005:  A single engine is installed in 
the fuselage and an intake is located at 
the nose, in order to minimize the 
projected front area and to place the 
thrust vector nearest to the fuselage axis.  
These would minimize parasite and trim 
drags. 

 M2006:  Twin engines are installed 
underneath the main wing at the both 
sides of the fuselage in order to attain 
sufficient acceleration and ascent 
capability. A diamond wing section of 
6% thickness is adopted for reduction of 

wave drag during supersonic flights. Its 
main wing has a cranked arrow planform 
for stable aerodynamic characteristics. A 
high wing configuration with a dihedral 
of 1.0 degree is also adopted in order to 
attain sufficient roll stability. 

 K2005:  A single engine is installed at 
the root of the vertical tail on the rear 
part of the fuselage. The main wing has a 
variable planform with sweep-back 
angles of 30 and 50 degrees. A canard is 
adopted instead of a horizontal tail. 

 K2006:  A slight extent of blended-wing-
and-body feature is added to K2005; the 
connecting portions between the wings, 
the fuselage, and the engine nacelle are 
smoothed. This would reduce wing-body 
interference drag. 

 O2006: A single engine is installed in 
the fuselage and two intakes are located 
on the both sides of the fuselage. A so-
called close-coupled canard is equipped 
for enhancement of lift during subsonic 
flights. 

 On the basis of wind tunnel tests and engine 
performance prediction, the thrust margin, i.e. 
thrust minus parasite drag, was analyzed for 
various sets of flight Mach number and altitude. 
An optimistic assessment of attainability of 
supersonic flight was carried out using the thrust 
margin map where the aspect of fuel 
consumption was neglected. As a result of this 
analysis, the twin engine configuration M2006 
was found to be the only one capable of 
attaining supersonic flights. Thus M2006 was 
selected as the baseline configuration. Its overall 
shape and dimensions are illustrated in Fig. 2. It 
has ailerons, a rudder, and all-pivoting 
horizontal tails as control surfaces.  
 In addition, a modified configuration 
M2006prototype was proposed for construction 
of a prototype vehicle, in which the following 
modifications were adopted as shown in Fig. 3: 
(a)  Its horizontal and vertical tails are enlarged 

and less swept back for enhancement of 
stability and controllability during takeoff 
and landing. 

(b)  Its lateral control capability is enhanced by 
adopting all-pivoting elevons.  

 

*Their codenames consist of a prefix M, K, or O and four digits. The prefix is for the name of the institution, i.e. 
Muroran Institute of Technology, Kyusyu University, or Osaka Prefecture University, by whom the configuration 
was proposed. The four digits are for the fiscal year of the proposition. 
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(c)  A pair of inboard flaps is installed for 
takeoff and landing. 

(d)  Its engine nacelles are connected to the 
fuselage on its both sides for the sake of 
convenience in fabrication and maintenance. 

(e)  Its nose is extended forward in order to 
attain a sufficient capacity for installing fuel 
and avionics in the fuselage. 

 
 Series of wind tunnel tests were carried out 
for these configurations M2006 and 
M2006prototype. The results will be outlined in 
the following subsections. 
 

  
(a) M2005 

 

 
(b) M2006 

 

   
(c) K2005 

 

 
(d) K2006 

 

 
(e) O2006 

Fig. 1. Proposed aerodynamic configurations. 
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Fig. 2. The baseline configuration M2006. It has all-
pivoting horizontal tails. 
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Fig. 3. The modified configuration M2006prototype for 
constructing a prototype vehicle. 

2.2    Lift and Drag Characteristics 

The Comprehensive High-speed Flow Test 
Facility at the Institute of Space and 
Astronautical Science (ISAS) of the Japan 
Aerospace Exploration Agency (JAXA) was 
used for the present aerodynamic 
characterization. The facility consists of a 
transonic wind tunnel for Mach 0.3 to 1.3 and a 
supersonic wind tunnel for Mach 1.5 to 4.0. The 
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cross-sectional size of their test sections are 
600x600mm. 
 The results for lift and drag are shown in Fig. 
4. The maximum value of the angle of attack 
(AOA) is 10 degrees for subsonic conditions 
and 4 degrees for transonic/supersonic 
conditions. These small values are 
correspondent to the force capacity of the 
internal balance utilized. The lift coefficient 
curves show quite a good linearity with a slope 
of 0.058/deg for subsonic, 0.065/deg for 
transonic, and 0.043/deg for supersonic regime, 
where the elevators are fixed. The so-called 
sound barrier, i.e. the drag peak at transonic 
regime, is small owing to the large sweep-back 
angles of the wing and tails. 
 Concerning the configuration 
M2006prototype, additional subsonic wind-
tunnel tests were carried out at Osaka Prefecture 
University. Their results are shown in Fig. 5 for 
AOA ranging from -30 to +30degrees. The 
linearity of its lift coefficient is found to be 
good for this wide range of positive AOA, 
owing to the stability of the vortex system over 
the present cranked-arrow wing with a large 
inboard sweepback angle of 66deg[1]. The 
linearity deteriorates for negative AOA 
probably because the engine nacelles would 
interfere with the vortex system. 

  
(a) Lift coefficient versus angle of attack. 

 

 
 (b) Drag polar. 

 
 (c) Mach number dependence of the drag coefficient at a 
zero angle of attack. 
Fig. 4. Lift and drag characteristics of the baseline 
configuration M2006. 
 

 
Fig. 5. Subsonic lift and drag characteristics of the 
modified configuration M2006prototype. 

2.3   Trim Capability for Pitching Motion 

The measured variation of the pitching moment 
coefficient  Cm with varying AOA is shown in 
Fig. 6 (a) and (b) for a centre of gravity (CG) 
location of 20% of the mean aerodynamic chord 
(MAC) and for several elevator deflection 
angles ranging from -10 to +10 degrees. Note 
that the elevator deflection measures positive 
when the trailing edge of the elevator deflects 
downwards. The negative gradients of the 
curves indicate static stability in the pitching 
motion. The value of the gradient, i.e. the extent 
of the stability, varies in accordance with the 
CG location; the more forward the CG lies, the 
larger the stability is. On the other hand, the 
intercepts on the horizontal AOA axis represent 
the trim conditions. For example, at Mach 0.3 
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the vehicle can attain pitch trim at AOA of 6.0 
degrees with an elevator deflection of -5 degrees 
for a CG location of 20%MAC.  

Fig. 6 (c) shows the pitch trim capability 
for various CG locations, where the upper 
magenta curve indicates the AOA for pitch trim 
at each CG location for an elevator deflection of 
-10 degrees, and the lower blue curve for an 
elevator deflection of +10 degrees. So the 
difference in AOA between the two curves is 
the range where pitch trim can be attained. The 
more forward the CG is located, the narrower 
the AOA range for pitch trim is, and vice versa. 
Note that the more backward CG location than 
40%MAC will cause pitching instability. A CG 
location of 25 to 30%MAC is found to be 
appropriate for both the pitch trim capability 
and stability. 

 
(a) Pitching moment coefficient versus angle of attack for 
several elevator deflections with a CG location of 
20%MAC and at Mach 0.3. 
 

 
(b) Pitching moment coefficient versus angle of attack for 
several elevator deflections with a CG location of 
20%MAC and at Mach 2.0. 

 
 (c) Pitch trim capability at Mach 0.3. 

Fig. 6. Pitching moment characteristics measured by wind 
tunnel tests. 

2.4   Trim and Control Capability for Rolling 
Motion 

Fig. 7 (a) shows the measured rolling moment 
coefficient Cl versus the side slip angle β  for 
several Mach numbers. The static roll stability 
is indicated by the negative gradients of the 
curves for all of the Mach numbers. For 
assessment of the roll control capability, the 
tangent of helix angle pb/2V is a convenient 
measure, where p is the angular rate of the 
rolling motion, b is the wing span, and V is the 
airspeed. This helix angle means the angle at 
which the main wing tips draw a pair of helixes 
during a rolling maneuver. It depends 
theoretically only on aircraft’s geometry and is 
independent of dimension, airspeed and angle of 
attack. It can be estimated from wind tunnel test 
data using the following equation [2]:  

pl

al

C
KC

V
pb a

,

,

22
δδ=             (1) 

where the roll damping derivative  plC ,  and the 
correction factor for large aileron deflections K 
are empirical factors [2]. Its values evaluated 
from the present wind tunnel tests are shown in 
Fig. 7 (b) for aileron deflections of 10 and 20 
degrees. The dotted red line indicates a design 
target for acrobatic/fighter aircraft. Thus 
sufficient roll control capability is predicted for 
the present M2006 configuration. 
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(a) Rolling moment coefficient versus side slip angle for 
several Mach numbers ranging from 0.3 to 2.0. 

         

 
 (b) Estimated tangent of helix angle main wing tips draw 
at Mach 0.7. 
Fig. 7. Rolling moment characteristics measured by wind 
tunnel tests. 

2.5   Trim and Control Capability for Yawing 
Motion  

Fig. 8 (a) shows the measured yawing moment 
coefficient Cn versus the yaw angle ψ  for 
several Mach numbers. The static yaw stability 
is indicated by the negative gradients of the 
curves for all of the Mach numbers. Fig. 8 (b) 
shows the yaw trim capability. The intercepts on 
the horizontal axis represent the trim conditions. 
Thus yaw trim can be attained at yaw angles of -
8 or -16 degrees with rudder deflections of 10 or 
20 degrees, respectively. The rudder power 

rnn CC
r

δδ ∂∂≡ /,  evaluated from the present wind 
tunnel tests is shown in Fig. 8 (c) where the 

dotted red line is a design target. Thus sufficient 
rudder effectiveness is predicted for the present 
M2006 configuration. 

  
(a) Yawing moment coefficient versus yaw angle for 

several Mach numbers ranging from 0.3 to 2.0. 
 

 
 (b) Yawing moment coefficient versus yaw angle for 
some rudder deflections at Mach 0.7. 

 
(c) Rudder power for some rudder deflections. 

Fig. 8. Yawing moment characteristics measured by wind 
tunnel tests. 
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3   Concept and Design of the Proposed 
Engine  

A counter-rotating axial fan turbojet (CRAFT) 
engine was proposed and designed preliminarily 
for installation onto the proposed supersonic 
flight experiment vehicle [3-5]. In this engine 
the rotor fans in the first and the second stages 
rotate in an opposite direction and the stator 
fans can be eliminated to establish a 
compactness of the engine configuration. Its 
thrust and specific impulse evaluated for an 
afterburner fuel/air ratio of 0.025 by a 
thermodynamic cycle analysis are shown in Fig. 
9. The operational upper boundary in terms of 
flight Mach number is correspondent to the 
constraint on the turbine inlet temperature (TIT). 
For more practical design of the engine 
components, CFD analysis has been carried out 
using the turbo-machinery analysis software 
FineTURBO as illustrated in Fig. 10. A set of 
prototype counter-rotating fans was fabricated 
and is undergoing ground rig tests. 

 
(a) Thrust contours. 

 
 (b) Specific impulse contours. 

Fig. 9. Predicted performance of the proposed counter-
rotating axial fan turbojet engine at an afterburner fuel/air 
ratio of 0.025. 
 

 
Fig. 10. CFD analysis of counter-rotating axial fans for 
the proposed turbojet engine. 
 

    
Fig. 11. The fabricated first-stage fan in the prototype 
counter-rotating axial fan turbojet engine. 

4   Flight Capability Prediction  

Flight capability of the proposed supersonic 
experiment vehicle is predicted by point mass 
analysis on the basis of the lift and drag 
characteristics measured by wind tunnel tests, 
thrust and specific impulse evaluations of the 
proposed engine, and a preliminary weight 
estimation of the airframe. One of the results is 
shown in Fig. 12, where three flight trajectories 
with return cruise at altitudes of 10, 12, and 14 
km are illustrated. It is found that the vehicle 
can attain supersonic flight at Mach 1.6 for 
about one minute and a sufficient endurance for 
return flight. The upper limit in flight Mach 
number is correspondent to that in the turbine 
inlet temperature of the proposed engine design. 
This constraint can be eliminated in the 
proposed revision engine, i.e. an air-turbo 
ramjet gas-generator cycle (ATR-GG) engine. 
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(a) The history of altitude. 
 

(b) The history of Mach number. 
Fig. 12. One of the results of the flight capability analysis. 

5   A Prototype Vehicle for Subsonic Flight 
Tests 

5.1   Configuration Design and Fabrication 

Prior to construction of the supersonic vehicle, a 
prototype with the modified configuration 
M2006prototype was designed and fabricated in 
order to verify the subsonic flying 
characteristics of the vehicle configuration 
through flight tests. Its overall appearance is 
shown in Fig. 13.  
 It has semi-monocoque structure composed 
of spars, stringers, and skins made of CFRP and 
ribs and ring frames made of wood. The forward 
part of fuselage is made of GFRP so as to install 
antennas inside. The empty mass is 22.2kg 
including a propulsion system. The maximum 
fuel mass is 4.6kg, and the avionics is 0.2kg. 
Then the total takeoff mass is 27.0kg. The 
propulsion system is model-scale twin turbojet 
engines available on the market. Their rated 
total thrust is 330N and the maximum airspeed 
for level flight is predicted to be 104m/sec 
according to the wind-tunnel tests. Its nickname 

is OHWASHI (Steller's Sea Eagle) which was 
selected by an advertised prize contest. 
 

 
(a) The airframe before painting. 

 

 
(b) The painted and fully equipped vehicle. 

Fig. 13. Overall appearance of the fabricated prototype 
vehicle. 

5.2   First Flight Test 

The first flight test of the prototype vehicle was 
carried out in August 2010 at the Shiraoi 
Airfield nearest to Muroran Institute of 
Technology. The length of the runway is 800m. 
The vehicle was radio-controlled by a pilot on 
the ground. For onboard data acquisition, a 
combined GPS/INS navigation recorder, an air-
data-sensor (ADS) including a 5-hole Pitot tube, 
a control signal recorder, two electric control 
units for the twin turbojet engines, and a small 
video camera were installed onboard. A 
snapshot of the preflight check on the onboard 
avionics is shown in Fig. 14. The appearance of 
the prototype vehicle ascending just after 
takeoff is shown in Fig. 15. The vehicle circled 
six times above and around the runway for 4 
minutes and a half. Its flight stability and 
controllability were quite adequate.  
 Its flight trajectory is illustrated in Fig. 16 on 
the basis of the onboard GPS data. The airspeed 
and angles of attack and sideslip estimated from 
the ADS data show twelve high-speed flights 
and twelve low-speed turns with pitch-up 
attitudes and sideslips, in accordance with the 
six rounds, as shown in Fig. 17. The maximum 
air speed 58m/sec is considerably smaller than 
prediction due to drag enhancement described 
below. 
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 Because control inputs for the control 
surfaces and engine throttle were quite frequent 
in the flight test, local-quasi-steady data were 
extracted from the overall data acquired. 
Aerodynamic coefficients were estimated from 
the acceleration and angular rates so extracted 
and the thrust characteristics measured by 
ground tests. The results for lift and drag 
coefficients in quasi pitch-trim conditions are 
shown in Fig. 18 in comparison with wind-
tunnel data. The lift coefficients from the flight 
test agree quite well with those from wind-
tunnel tests. Note that the lift curve slope in the 
pitch-trim condition is smaller than that in 
fixed-elevator condition since a downward lift 
on the horizontal tail is required for pitch trim. 
On the other hand, parasite (i.e. zero-lift) drag is 
enhanced as shown in Fig. 18 (b) due to 
structural members installed between the 
engines and the nacelle internal walls.  
 

 
Fig. 14. Preflight check on onboard avionics. 

 

 
Fig. 15. The prototype vehicle ascending just after takeoff. 
 

 
Fig. 16. The flight trajectory measured with onboard GPS 
receiver. 
 

 
Fig. 17. ADS data acquired in the flight test. 

 

 
(a) Lift coefficient versus angle of attack. 

 

 
(b) Drag coefficient versus angle of attack. 

Fig. 18. Aerodynamic coefficients estimated from the 
flight test in comparison with wind-tunnel test data 
rearranged for pitch-trim conditions. 
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(a) Lift coefficient. 

 

 
(b) Drag coefficient. 

 

 
(c) Pitching moment coefficient around the aerodynamic 

center of the main wing. 
 

 
(d) Lift, drag, and pitching moment coefficients for 

several sets of nose and intake lengths. 
Fig. 21. Longitudinal aerodynamics measured by wind 
tunnel tests for the configuration M2011. 

6.3   Flight Capability Prediction 

Flight trajectory analysis of the vehicle with an 
ATR-GG engine and the M2011 aerodynamics 
was carried out. Its results shown in Fig. 22 
predict that a drag reduction of 15% will enable 
achievement of flight Mach number 2.0. Such 
drag reduction could be attained by adopting the 
so-called area rule to the aerodynamic 
configuration of the vehicle. 

 Fig. 22. Results of the flight capability analysis of the 
M2011 vehicle with the proposed ATR-GG engine. Ten 
to twenty percent of drag reduction is assumed. 

7   Conclusions 

With the aims of creating and validating 
innovative fundamental technologies for high-
speed atmospheric flights, a small scale 
supersonic experiment vehicle was designed as 
a flying test bed. Several aerodynamic 
configurations were proposed and analyzed by 
wind tunnel tests. A twin-engine configuration 
was selected as the baseline. Its flight capability 
was predicted by point mass analysis on the 
basis of aerodynamic characterization and 
propulsion performance estimation. In addition, 
a prototype vehicle with the almost equivalent 
configuration and dimension was designed and 
fabricated for verification of subsonic flight 
characteristics. Its first flight test was carried 
out in August 2010 and good flight capability 
was demonstrated. 
 Furthermore a revised aerodynamic 
configuration and an air-turbo ramjet gas-
generator cycle (ATR-GG) engine are being 
designed for improvement in flight capability at 
higher Mach numbers. 

An autonomous guidance and control system 
will be designed on the basis of the acquired 
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aerodynamics data. In addition, structure of the 
airframe will be revised, and the design of the 
proposed ATR-GG engine will be improved to 
fabricate actual engines for supersonic flights.  

Then the proposed supersonic flight 
experiment vehicle will be realized in near 
future. This prospective flight experiment 
vehicle will be applied to flight verification of 
innovative fundamental technologies for high-
speed atmospheric flights such as turbo-ramjet 
propulsion with endothermic or biomass fuels, 
MEMS and morphing techniques for 
aerodynamic control, aero-servo-elastic 
technologies for efficient aerodynamic control 
with low-stiffness structure, etc. 
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