
28
TH

 INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

In this study we proposed a robust method to

automatically generate grid for Navier-Stokes

flow computation, even when the input solid

surface geometry contains some defects such as

small gaps, overlaps and degenerate triangles.

Such defects are often found in surface

represented in STL (Stereo Lithography) format,

which consists of triangles. This capability

means that surface clean-up prior to grid

generation is minimized, which is a significant

advantage, as it saves a lot of time and manual

labor. The grid itself is a hybrid of Cartesian

grid (for region far from body surface) and

prismatic grid (for boundary layer). Of

particular interest is a new technique to handle

concave feature of body surface. An

approximation technique that minimizes

reliance on the original surface geometry

(which may contain defects) has been devised.

Results have shown that the technique is

effective. This opens up the possibility to carry

out the whole process of Computational Fluid

Dynamics fully automatically.

1 Introduction

This study is a joint effort between Japan

Aerospace Exploration Agency (JAXA) and

Research Center of Computational Mechanics,

Inc. (RCCM). It is a part of JAXA’s Hybrid

Wind Tunnel project, which aims to carry out

fast Computational Fluid dynamics (CFD)

simulation of Navier-Stokes flows, in

conjunction with wind tunnel experiments [1].

Our research in automatic grid generation is

implemented in software called HexaGrid [2].

Previous results suggested that the method has a

lot of potentials, as presented in the 4th Drag

Prediction Workshop (DPW4) [3]. The results

are competitive with that of manual grid

generation, which is quite remarkable,

considering that the grid is generated

automatically [4-6].

Traditionally, the most accurate Navier-

Stokes flow simulation uses multi-block

structured grid, which takes a long time to

generate and requires highly skilled manual

labor. The time to generate the grid may be in

the order of weeks.

With some compromise on solution

accuracy, the turn-around cycle can be reduced

to drastically to within days, by employing

automatic grid generation. The grid is usually

unstructured, which comes in the form of hybrid

between either tetrahedral or hexahedral grid in

the far-field region (away from solid surface),

and prismatic grid in the near-field, to resolve

boundary layer. In this study, Cartesian grid was

chosen, due to its speed and simplicity in filling

the far-field region, as well as the cell geometry

that leads to accurate flow solution.

There are three ways to construct a hybrid

between Cartesian and prismatic grid, all of

which can be automatically generated. In the

first approach, the grids are independently

generated and then simply overlapped (Fig. 1).

This requires the solution to be interpolated

back and forth between the grids during flow

AUTOMATIC HANDLING OF DEFECTIVE SURFACE
GEOMETRY WITHIN GRID GENERATION FOR NAVIER-

STOKES COMPUTATION

Paulus R. Lahur*, Takashi Ishida**, Atsushi Hashimoto**, Keiichi Murakami**

Research Center of Computational Mechanics, Inc. (RCCM), Japan

** Japan Aerospace Exploration Agency (JAXA)

lahur@rccm.co.jp; ishida.takashi@jaxa.jp; hashimoto.atsushi@jaxa.jp;

murakami.keiichi@jaxa.jp

Keywords: Unstructured, hybrid, hexahedra, prismatic grid

PAULUS LAHUR, TAKASHI ISHIDA

2

solving. This introduces interpolation error,

which scales with the grid resolution difference

in the overlapping region, as well as the solution

gradient.

The second approach is to cut the Cartesian

grid cells so that they match the outermost

surface of prismatic grid (Fig. 2) [7-9]. This is

the extension of cut cell approach [10]. It

effectively results in a hybrid of three types of

grid: prismatic grid, Cartesian grid, and cut-cell

grid. The last grid cell has an arbitrary

polyhedron shape, which also varies greatly in

size. This property is undesirable in the

computation of viscous effects.

Fig. 1. Overlapping Grids.

Fig. 2. Cut Cartesian Grid.

Fig. 3. Deformed Cartesian Grid.

The third approach is to remove solid

Cartesian grid cells, deform the cells around

solid surface, and generate prismatic grid from

them (Fig. 3) [2, 11, 12]. This approach is taken

in this study, because the shape and size of the

Cartesian and prismatic grid cells blend well at

the interface. This is a highly desirable property

when computing viscous effects, as has been

demonstrated in the previous results.

Now that the grid generation process has

become automatic and fast, our focus shifts to

the next bottleneck: the manual clean-up of

solid surface, which is in STereoLithography

(STL) format. This ubiquitous format consists

of triangles, and can be produced by virtually

any CAD software. However, it is common for

this surface to contain defects such as gap and

triangle overlap.

The objective in this particular study is

thus to improve the grid generation process so

that it tolerates surface with defects. This will

allow us to skip the time-consuming surface

cleaning step. Of particular interest, we address

the weakest link in this grid generation

approach, namely the capturing of concave

features of the solid surface. A new method

called approximate concave feature is proposed,

which greatly improves tolerance to surface

defects.

2 Grid Generation Method

2.1 General Procedure

2.1.1 Cartesian Grid Generation

Cartesian grid (Fig. 4) is generated by means of

successive local refinement. This step starts

with one cell that covers the whole

computational domain, whose size is set by

user. In three-dimensional space, each

refinement divides a cell isotropically into eight

child cells of equal size and shape. At the

beginning, the grid is locally refined until the

size of cells intersecting solid surface is smaller

than a maximum grid size set by user. Then the

grid is further refined until the size of cells

intersecting the solid surface with large

curvature reaches a minimum grid size. In

addition, with the help of GUI, we can also

explicitly control grid size anywhere using

“Refinement Region.”

3

AUTOMATIC HANDLING OF DEFECTIVE SURFACE GEOMETRY

WITHIN GRID GENERATION FOR NAVIER-STOKES COMPUTATION

Fig. 4. Cartesian Grid Generation.

2.1.2 Removal of Non-Computational Cells

The purpose of this step is to remove

unnecessary grid cells and create sufficient

space for prismatic grid around the solid surface

(Fig. 5). Removal of cells is carried out for

those intersecting the solid object and those

around the solid surface.

Fig. 5. Removal of Grid Cells.

2.1.3 Solid Surface Capturing

The surface of Cartesian grid is then snapped

onto the solid surface (Fig. 6). This is done by

moving a node on Cartesian grid surface to the

closest location on the solid surface. Note that

snapping always finds a unique location closest

to the present position. This is a very important

advantage, because it means that the method

works even when there is a small gap between

triangles that form a solid surface, and when the

triangles overlap or intersect each other.

However, the weakness of the snapping

method is that it cannot capture significantly

concave geometry, because it will always move

to the closest location. Thus this method is

followed by feature capturing method, which

forces the snapped Cartesian grid surface to

move into the concavity (Fig. 7). For complex

geometry, this is a difficult task, especially

when the feature curves are close to each other.

Fig. 6. Solid Surface Capturing.

Fig. 7. Feature Capturing.

2.1.4 Prismatic Grid Generation

Prismatic grid layers are constructed on the

snapped surface (Fig. 8). The total thickness of

prismatic grid is determined by the size of

Cartesian grid cell removed. Note that the

prismatic grid cells are perpendicular to surface.

Fig. 8. Prismatic Grid Generation.

PAULUS LAHUR, TAKASHI ISHIDA

4

2.1.5 Quality Improvement

The grid cells at the interface of Cartesian

and prismatic grids are smoothed so they blend

well (Fig. 9). A smooth transition of grid cell’s

size and shape is very important in Navier-

Stokes computation.

Fig. 9. Quality Improvement.

2.2 Geometry Defects

Due to various factors, defective or “dirty” STL

data may be produced. At this stage, we need to

specify which conditions are considered

defective.

1) Gap between triangles.

2) Triangles overlapping or intersecting

with each other.

3) Useless triangle (inside a solid body).

4) Very small triangle that degenerate into

line or point.

5) Inconsistent vertex ordering within

triangle, which results in some normal

vectors point into solid, and others into

fluid.

6) Irregular normal vector distribution of

triangles.

7) Irregular size distribution of triangles.

8) Lack of resolution.

9) Excessive resolution.

The top three are the most serious, because they

prevent us from constructing a valid boundary.

Because the grid is generated from the

Cartesian grid first, and then snapped to solid

surface, defects in the surface such as gap and

triangle overlap are ignored. Thus the resulting

surface grid is a valid surface. The snapping

algorithm is very simple and powerful in

solving the problem of defective solid surface.

A grid node will never step into a gap between

triangles (as long as the gap is reasonably

small). Even if triangles overlap or intersect

each other, snapping will always get the closest

location. Even if an unused triangle exists inside

the solid, it will be completely ignored.

Moreover, the resulting surface grid already has

a smoothly distributed face size and orientation.

However, snapping algorithm has an

inherent weakness, that is, it fails to capture

(sharp) concave features of solid surface.

In our previous study, this is dealt by first

constructing the concave feature directly from

the STL data. The simplest method is to

compute the angle between neighboring

triangles. If the angle exceeds certain threshold,

then the line segment shared by the two

triangles is declared as feature. Connecting the

line segments will result in a discretized form of

feature curve. Having done this, we then move

the appropriate surface grid nodes onto the

feature.

The problem with this approach is the

implementation is highly prone to surface

defect. The root of the problem lies in the first

step. When the STL data is dirty, extracting a

feature is prone to failures. As in the case of the

body surface, a dirty feature curve consisting of

line segments also has similar traits.

Additionally, we depend on the threshold

angle as a parameter. If the threshold is small, a

large number of line segments will be produced,

resulting in “fake” features. If the threshold is

large, only a small line segments will be

produced, resulting in loss of important features.

Thus we need an algorithm that, just like

the snapping algorithm, provides a powerful yet

simple way to conveniently sidestep the dirty

STL problem. In this study we propose the

following method.

2.3 Procedure to Capture Concave Feature

Let us first note that by the time the Cartesian

grid is snapped to body surface, we already have

a very good approximation of the body surface.

Thus, instead of trying to construct body feature

directly from the original surface data (which

may contain defects), we can make use of the

5

AUTOMATIC HANDLING OF DEFECTIVE SURFACE GEOMETRY

WITHIN GRID GENERATION FOR NAVIER-STOKES COMPUTATION

grid surface (which does not contain any

defect).

The idea is to use the data during the

snapping of grid surface around the concave

feature to reconstruct the line segments that

form the feature. A bi-planar assumption is a

natural choice due to its simplicity. As the grid

resolution increases, so the quality of

approximation also increases. The main idea of

the algorithm is illustrated in Fig. 10. The

method is as follows. For each grid face:

1) Detect whether concave feature

capturing is necessary (if the distance

between the face of surface grid and

solid surface is large).

2) If feature capturing is necessary, using

the information from surface grid

snapping, group the nodes of the face

into two sides.

3) Construct two planes that approximate

the local body surface at either side of

the feature.

4) Intersect the two planes to form

approximate feature line.

5) Move the appropriate nodes to the

feature line. Note that at this stage, we

need to synchronize the movement of the

nodes of this face with those of

neighboring face.

Currently we are working on other model of

approximation to handle other types of concave

features, such as feature point at concave-

convex saddle point and concave corner. Such

models will require more than two planes, and

perhaps a combination between line and plane.

Note that in certain cases, the

approximation may result in a grid node moving

far away from its original location, such as in

deep concavity. The approximation may result

in grid surface intersecting itself. This condition

is thus checked and prevented from occurring.

Furthermore, higher degree of

approximation (quadratic) is also worth

exploring in our future work.

Approximate feature line

Approximate body
surface

Fig. 10. Approximate Concave Feature

3 Sample Cases

A couple of samples that help with qualitative

assessment are shown below.

3.1 Aircraft Model

This case is chosen because of the proximity of

its feature curves provides us with an insight on

how the method behaves in such situation (Fig.

11). Fuselage and horizontal tail junction has

two concave feature curves close to each other.

Result in Fig. 12 shows that the coarse

grid, with cell size comparable to distance

between features, cannot capture the feature.

However, this problem is rectified as soon as the

grid resolution is increased (Fig. 13). It seems

that, at least in this case, two or three cells

between feature lines are sufficient for a

reasonable capture. As the resolution is

increased further, naturally the approximation

quality becomes better (Fig. 14 – 16).

Fig. 11. Body surface geometry (STL)

PAULUS LAHUR, TAKASHI ISHIDA

6

Fig. 12. Grid with minimum cell size = 2.0

Fig. 13. Grid with minimum cell size = 1.0

Fig. 14. Grid with minimum cell size = 0.5

Fig. 15. Grid with minimum cell size = 0.25

Fig. 16. Grid with minimum cell size = 0.125

3.2 Aircraft Model in Wind Tunnel

The end target of this project is the CFD

simulation of an aircraft model in wind tunnel

testing environment, complete with the support

system, as shown in Fig. 17 and 18. Note that

the components are not trimmed against each

other. Each component (shown in different

color) is discretized without any regard to its

neighbors. Furthermore, it is clear that the sting

support components protrude into the aircraft

fuselage and vertical support component (Fig.

18). The grid generator simply ignores these

“defects” and generate grid straight from this

input. Clearly, the time saved by not having to

clean up this surface is significant.

The grids are shown in subsequent figures.

Reasonable grid has been obtained, although

more work is still necessary at this stage to

improve its quality. Concave geometry features

are well captured.

Fig. 17. Wind Tunnel Geometry.

7

AUTOMATIC HANDLING OF DEFECTIVE SURFACE GEOMETRY

WITHIN GRID GENERATION FOR NAVIER-STOKES COMPUTATION

Fig. 18. Model and Support System Geometry.

Fig. 19. Grid around Model.

Fig. 20. Grid around Fuselage and Wing

Junction (Top).

Fig. 21. Grid around Fuselage and Wing

Junction (Bottom).

Fig. 22. Grid around Fuselage and Sting Support

Junction.

PAULUS LAHUR, TAKASHI ISHIDA

8

4 Concluding Remarks

In this study we proposed a robust method to

automatically generate grid for Navier-Stokes

flow computation, even when the input solid

surface geometry contains some defects such as

small gaps, overlaps and degenerate triangles.

Such defects are often found in surface

represented in STL (Stereo Lithography)

format, which consists of triangles. This

capability means that surface clean-up prior to

grid generation is minimized, which is a

significant advantage, as it saves a lot of time

and manual labor. The grid itself is a hybrid of

Cartesian grid (for region far from body surface)

and prismatic grid (for boundary layer). Of

particular interest is a new technique to handle

concave feature of body surface. An

approximation technique that minimizes

reliance on the original surface geometry (which

may contain defects) has been devised. Results

have shown that the technique is effective.

Our future work includes adding more

approximation model to capture other types of

feature, as well as improving the quality of the

grid. Higher degree of approximation is also

being considered.

We would like to conclude that the

capability to generate grid without cleaning up

the input surface opens up the possibility of

fully automated CFD simulations.

References

[1] Watanabe, S., Kuchi-ishi, S., Aoyama, T., “A

Prototype System towards EFD/CFD Integration:

Digital/Analog-Hybrid Wind Tunnel”, Proceedings

of 27th Congress of International Council of the

Aeronautical Sciences, 2010.

[2] Lahur, P. R., “Automatic Hexahedra Grid Generation

Method for Component-based Surface Geometry,”

AIAA paper 2005-5242, 2005.

[3] Hashimoto, A., Murakami, K., Aoyama, T., Lahur P.,

“Lift and Drag Prediction Using Automatic

Hexahedra Grid Generation Method,” AIAA paper

2009-1365.

[4] Hashimoto, A., et al., “Drag Prediction on NASA

CRM using Automatic Hexahedra Grid Generation,”

AIAA Paper 2010-1417, 2010.

[5] Vassberg JC, Tinoco EN, Mani M, Rider B, Zickuhr

T, Levy DW, Brodersenk OP, Eisfeldk B, Crippak S,

Wahls RA, Morrison JH, Mavriplis DJ, Murayama

M, “Summary of the Fourth AIAA CFD Drag

Prediction Workshop,” AIAA 2010-4547, 2010

[6] Vassberg, J.C., DeHaan, M.A., Rivers, S.M., Wahls,

R.A., “Development of a Common Research Model

for Applied CFD Validation Studies,” AIAA paper

2008-6919.

[7] Deister, F. and Hirschel, E.H., “Adaptive

Cartesian/Prism Grid Generation and Solutions for

Arbitrary Geometries,” AIAA paper 99-0782, 1999.

[8] Leatham, M., Stokes, S., Shaw, J.A., Cooper, J.,

Appa, J., and Blaylock, T.A., “Automatic Mesh

Generation for Rapid-Response Navier-Stokes

Calculations,” AIAA paper 2000-2247, 2000.

[9] Karman, S.L.Jr., “SPLITFLOW: A 3D Unstructured

Cartesian/Prismatic Grid CFD Code for Complex

Geometries,” AIAA paper 95-0343, 1995.

[10] Aftosmis, M.J., “Solution Adaptive Cartesian Grid

Methods for Aerodynamic Flows with Complex

Geometries,” VKI Lecture Series, 1997-02, 1997.

[11] Tchon, K.F., Hirsch, C., and Schneiders, R., “Octree-

based Hexahedral Mesh Generation for Viscous Flow

Simulations,” AIAA paper 97-1980, 1997.

[12] Wang, Z.J. and Chen, R.F., “Anisotropic Solution-

Adaptive Viscous Cartesian Grid Method for

Turbulent Flow Simulations,” AIAA Journal, Vol.

40, No. 10, 2002, pp. 1969-1978.

Copyright Statement

The authors confirm that they, and/or their company or

organization, hold copyright on all of the original material

included in this paper. The authors also confirm that they

have obtained permission, from the copyright holder of

any third party material included in this paper, to publish

it as part of their paper. The authors confirm that they

give permission, or have obtained permission from the

copyright holder of this paper, for the publication and

distribution of this paper as part of the ICAS2012

proceedings or as individual off-prints from the

proceedings.

