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Abstract  

In this study we proposed a robust method to 

automatically generate grid for Navier-Stokes 

flow computation, even when the input solid 

surface geometry contains some defects such as 

small gaps, overlaps and degenerate triangles. 

Such defects are often found in surface 

represented in STL (Stereo Lithography) format, 

which consists of triangles. This capability 

means that surface clean-up prior to grid 

generation is minimized, which is a significant 

advantage, as it saves a lot of time and manual 

labor. The grid itself is a hybrid of Cartesian 

grid (for region far from body surface) and 

prismatic grid (for boundary layer). Of 

particular interest is a new technique to handle 

concave feature of body surface. An 

approximation technique that minimizes 

reliance on the original surface geometry 

(which may contain defects) has been devised. 

Results have shown that the technique is 

effective. This opens up the possibility to carry 

out the whole process of Computational Fluid 

Dynamics fully automatically.  

1   Introduction  

This study is a joint effort between Japan 

Aerospace Exploration Agency (JAXA) and 

Research Center of Computational Mechanics, 

Inc. (RCCM). It is a part of JAXA’s Hybrid 

Wind Tunnel project, which aims to carry out 

fast Computational Fluid dynamics (CFD) 

simulation of Navier-Stokes flows, in 

conjunction with wind tunnel experiments [1]. 

Our research in automatic grid generation is 

implemented in software called HexaGrid [2]. 

Previous results suggested that the method has a 

lot of potentials, as presented in the 4th Drag 

Prediction Workshop (DPW4) [3]. The results 

are competitive with that of manual grid 

generation, which is quite remarkable, 

considering that the grid is generated 

automatically [4-6]. 

Traditionally, the most accurate Navier-

Stokes flow simulation uses multi-block 

structured grid, which takes a long time to 

generate and requires highly skilled manual 

labor. The time to generate the grid may be in 

the order of weeks.  

With some compromise on solution 

accuracy, the turn-around cycle can be reduced 

to drastically to within days, by employing 

automatic grid generation. The grid is usually 

unstructured, which comes in the form of hybrid 

between either tetrahedral or hexahedral grid in 

the far-field region (away from solid surface), 

and prismatic grid in the near-field, to resolve 

boundary layer. In this study, Cartesian grid was 

chosen, due to its speed and simplicity in filling 

the far-field region, as well as the cell geometry 

that leads to accurate flow solution.  

There are three ways to construct a hybrid 

between Cartesian and prismatic grid, all of 

which can be automatically generated. In the 

first approach, the grids are independently 

generated and then simply overlapped (Fig. 1). 

This requires the solution to be interpolated 

back and forth between the grids during flow 
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solving. This introduces interpolation error, 

which scales with the grid resolution difference 

in the overlapping region, as well as the solution 

gradient.  

The second approach is to cut the Cartesian 

grid cells so that they match the outermost 

surface of prismatic grid (Fig. 2) [7-9]. This is 

the extension of cut cell approach [10]. It 

effectively results in a hybrid of three types of 

grid: prismatic grid, Cartesian grid, and cut-cell 

grid. The last grid cell has an arbitrary 

polyhedron shape, which also varies greatly in 

size. This property is undesirable in the 

computation of viscous effects. 

 

 
 

Fig. 1. Overlapping Grids. 

 

 
 

Fig. 2. Cut Cartesian Grid. 

 

 
 

Fig. 3. Deformed Cartesian Grid. 

 

The third approach is to remove solid 

Cartesian grid cells, deform the cells around 

solid surface, and generate prismatic grid from 

them (Fig. 3) [2, 11, 12]. This approach is taken 

in this study, because the shape and size of the 

Cartesian and prismatic grid cells blend well at 

the interface. This is a highly desirable property 

when computing viscous effects, as has been 

demonstrated in the previous results. 

Now that the grid generation process has 

become automatic and fast, our focus shifts to 

the next bottleneck: the manual clean-up of 

solid surface, which is in STereoLithography 

(STL) format. This ubiquitous format consists 

of triangles, and can be produced by virtually 

any CAD software. However, it is common for 

this surface to contain defects such as gap and 

triangle overlap.  

The objective in this particular study is 

thus to improve the grid generation process so 

that it tolerates surface with defects. This will 

allow us to skip the time-consuming surface 

cleaning step. Of particular interest, we address 

the weakest link in this grid generation 

approach, namely the capturing of concave 

features of the solid surface. A new method 

called approximate concave feature is proposed, 

which greatly improves tolerance to surface 

defects. 

2    Grid Generation Method 

2.1   General Procedure  

2.1.1   Cartesian Grid Generation 

Cartesian grid (Fig. 4) is generated by means of 

successive local refinement. This step starts 

with one cell that covers the whole 

computational domain, whose size is set by 

user. In three-dimensional space, each 

refinement divides a cell isotropically into eight 

child cells of equal size and shape. At the 

beginning, the grid is locally refined until the 

size of cells intersecting solid surface is smaller 

than a maximum grid size set by user. Then the 

grid is further refined until the size of cells 

intersecting the solid surface with large 

curvature reaches a minimum grid size. In 

addition, with the help of GUI, we can also 

explicitly control grid size anywhere using 

“Refinement Region.”  
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Fig. 4. Cartesian Grid Generation. 

 

2.1.2   Removal of Non-Computational Cells 

The purpose of this step is to remove 

unnecessary grid cells and create sufficient 

space for prismatic grid around the solid surface 

(Fig. 5). Removal of cells is carried out for 

those intersecting the solid object and those 

around the solid surface. 

 

 
 

Fig. 5. Removal of Grid Cells. 

2.1.3   Solid Surface Capturing 

The surface of Cartesian grid is then snapped 

onto the solid surface (Fig. 6). This is done by 

moving a node on Cartesian grid surface to the 

closest location on the solid surface. Note that 

snapping always finds a unique location closest 

to the present position. This is a very important 

advantage, because it means that the method 

works even when there is a small gap between 

triangles that form a solid surface, and when the 

triangles overlap or intersect each other.  

However, the weakness of the snapping 

method is that it cannot capture significantly 

concave geometry, because it will always move 

to the closest location. Thus this method is 

followed by feature capturing method, which 

forces the snapped Cartesian grid surface to 

move into the concavity (Fig. 7). For complex 

geometry, this is a difficult task, especially 

when the feature curves are close to each other.  

 

 
 

Fig. 6. Solid Surface Capturing. 

 

 
 

Fig. 7. Feature Capturing. 

2.1.4   Prismatic Grid Generation 

Prismatic grid layers are constructed on the 

snapped surface (Fig. 8). The total thickness of 

prismatic grid is determined by the size of 

Cartesian grid cell removed. Note that the 

prismatic grid cells are perpendicular to surface. 

 

 
 

Fig. 8. Prismatic Grid Generation. 
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2.1.5   Quality Improvement 

The grid cells at the interface of Cartesian 

and prismatic grids are smoothed so they blend 

well (Fig. 9). A smooth transition of grid cell’s 

size and shape is very important in Navier-

Stokes computation.  

 

 
 

Fig. 9. Quality Improvement. 

2.2    Geometry Defects 

Due to various factors, defective or “dirty” STL 

data may be produced. At this stage, we need to 

specify which conditions are considered 

defective. 

1) Gap between triangles. 

2) Triangles overlapping or intersecting 

with each other. 

3) Useless triangle (inside a solid body). 

4) Very small triangle that degenerate into 

line or point. 

5) Inconsistent vertex ordering within 

triangle, which results in some normal 

vectors point into solid, and others into 

fluid. 

6) Irregular normal vector distribution of 

triangles. 

7) Irregular size distribution of triangles. 

8) Lack of resolution. 

9) Excessive resolution. 

The top three are the most serious, because they 

prevent us from constructing a valid boundary. 

Because the grid is generated from the 

Cartesian grid first, and then snapped to solid 

surface, defects in the surface such as gap and 

triangle overlap are ignored. Thus the resulting 

surface grid is a valid surface. The snapping 

algorithm is very simple and powerful in 

solving the problem of defective solid surface. 

A grid node will never step into a gap between 

triangles (as long as the gap is reasonably 

small). Even if triangles overlap or intersect 

each other, snapping will always get the closest 

location. Even if an unused triangle exists inside 

the solid, it will be completely ignored. 

Moreover, the resulting surface grid already has 

a smoothly distributed face size and orientation. 

However, snapping algorithm has an 

inherent weakness, that is, it fails to capture 

(sharp) concave features of solid surface. 

In our previous study, this is dealt by first 

constructing the concave feature directly from 

the STL data. The simplest method is to 

compute the angle between neighboring 

triangles. If the angle exceeds certain threshold, 

then the line segment shared by the two 

triangles is declared as feature. Connecting the 

line segments will result in a discretized form of 

feature curve. Having done this, we then move 

the appropriate surface grid nodes onto the 

feature.  

The problem with this approach is the 

implementation is highly prone to surface 

defect. The root of the problem lies in the first 

step. When the STL data is dirty, extracting a 

feature is prone to failures. As in the case of the 

body surface, a dirty feature curve consisting of 

line segments also has similar traits. 

Additionally, we depend on the threshold 

angle as a parameter. If the threshold is small, a 

large number of line segments will be produced, 

resulting in “fake” features. If the threshold is 

large, only a small line segments will be 

produced, resulting in loss of important features.  

Thus we need an algorithm that, just like 

the snapping algorithm, provides a powerful yet 

simple way to conveniently sidestep the dirty 

STL problem. In this study we propose the 

following method. 

2.3   Procedure to Capture Concave Feature 

Let us first note that by the time the Cartesian 

grid is snapped to body surface, we already have 

a very good approximation of the body surface. 

Thus, instead of trying to construct body feature 

directly from the original surface data (which 

may contain defects), we can make use of the 
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grid surface (which does not contain any 

defect).  

The idea is to use the data during the 

snapping of grid surface around the concave 

feature to reconstruct the line segments that 

form the feature. A bi-planar assumption is a 

natural choice due to its simplicity. As the grid 

resolution increases, so the quality of 

approximation also increases. The main idea of 

the algorithm is illustrated in Fig. 10. The 

method is as follows. For each grid face: 

1) Detect whether concave feature 

capturing is necessary (if the distance 

between the face of surface grid and 

solid surface is large). 

2) If feature capturing is necessary, using 

the information from surface grid 

snapping, group the nodes of the face 

into two sides. 

3) Construct two planes that approximate 

the local body surface at either side of 

the feature. 

4) Intersect the two planes to form 

approximate feature line. 

5) Move the appropriate nodes to the 

feature line. Note that at this stage, we 

need to synchronize the movement of the 

nodes of this face with those of 

neighboring face.   

Currently we are working on other model of 

approximation to handle other types of concave 

features, such as feature point at concave-

convex saddle point and concave corner. Such 

models will require more than two planes, and 

perhaps a combination between line and plane.  

Note that in certain cases, the 

approximation may result in a grid node moving 

far away from its original location, such as in 

deep concavity.  The approximation may result 

in grid surface intersecting itself. This condition 

is thus checked and prevented from occurring. 

Furthermore, higher degree of 

approximation (quadratic) is also worth 

exploring in our future work. 

 

Approximate feature line

Approximate body 
surface

 
 

Fig. 10. Approximate Concave Feature 

3   Sample Cases 

A couple of samples that help with qualitative 

assessment are shown below. 

3.1   Aircraft Model 

This case is chosen because of the proximity of 

its feature curves provides us with an insight on 

how the method behaves in such situation (Fig. 

11). Fuselage and horizontal tail junction has 

two concave feature curves close to each other.  

Result in Fig. 12 shows that the coarse 

grid, with cell size comparable to distance 

between features, cannot capture the feature. 

However, this problem is rectified as soon as the 

grid resolution is increased (Fig. 13). It seems 

that, at least in this case, two or three cells 

between feature lines are sufficient for a 

reasonable capture. As the resolution is 

increased further, naturally the approximation 

quality becomes better (Fig. 14 – 16). 

 

 
Fig. 11. Body surface geometry (STL) 
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Fig. 12. Grid with minimum cell size = 2.0 

 

 
Fig. 13. Grid with minimum cell size = 1.0 

 

 
 

Fig. 14. Grid with minimum cell size = 0.5 

 

 
 

Fig. 15. Grid with minimum cell size = 0.25 

 

 
 

Fig. 16. Grid with minimum cell size = 0.125 

 

3.2   Aircraft Model in Wind Tunnel 

The end target of this project is the CFD 

simulation of an aircraft model in wind tunnel 

testing environment, complete with the support 

system, as shown in Fig. 17 and 18. Note that 

the components are not trimmed against each 

other. Each component (shown in different 

color) is discretized without any regard to its 

neighbors. Furthermore, it is clear that the sting 

support components protrude into the aircraft 

fuselage and vertical support component (Fig. 

18). The grid generator simply ignores these 

“defects” and generate grid straight from this 

input. Clearly, the time saved by not having to 

clean up this surface is significant. 

The grids are shown in subsequent figures. 

Reasonable grid has been obtained, although 

more work is still necessary at this stage to 

improve its quality. Concave geometry features 

are well captured. 

 

 
 

Fig. 17. Wind Tunnel Geometry. 
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Fig. 18. Model and Support System Geometry. 

 

 
 

Fig. 19. Grid around Model. 

 

 
 

Fig. 20. Grid around Fuselage and Wing 

Junction (Top). 

 

 

 
 

Fig. 21. Grid around Fuselage and Wing 

Junction (Bottom). 

 

 
 

Fig. 22. Grid around Fuselage and Sting Support 

Junction. 
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4   Concluding Remarks  

In this study we proposed a robust method to 

automatically generate grid for Navier-Stokes 

flow computation, even when the input solid 

surface geometry contains some defects such as 

small gaps, overlaps and degenerate triangles. 

Such defects are often found in surface 

represented in STL (Stereo Lithography) 

format, which consists of triangles. This 

capability means that surface clean-up prior to 

grid generation is minimized, which is a 

significant advantage, as it saves a lot of time 

and manual labor. The grid itself is a hybrid of 

Cartesian grid (for region far from body surface) 

and prismatic grid (for boundary layer). Of 

particular interest is a new technique to handle 

concave feature of body surface. An 

approximation technique that minimizes 

reliance on the original surface geometry (which 

may contain defects) has been devised. Results 

have shown that the technique is effective.  

Our future work includes adding more 

approximation model to capture other types of 

feature, as well as improving the quality of the 

grid. Higher degree of approximation is also 

being considered. 

We would like to conclude that the 

capability to generate grid without cleaning up 

the input surface opens up the possibility of 

fully automated CFD simulations. 
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