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Abstract

There is a drop in the flutter boundary of an
aeroelastic system placed in a transonic flow due
to compressibility effects and is known as the
transonic dip. Viscous effects can shift the lo-
cation of the shock and depending on the shock
strength the boundary layer may separate lead-
ing to changes in the flutter speed. An unsteady
Euler flow solver coupled with the structural dy-
namic equations is used to understand the effect
of shock on the transonic dip. The effect of var-
ious system parameters such as mass ratio, loca-
tion of the center of mass, position of the elas-
tic axis, ratio of uncoupled natural frequencies in
heave and pitch are also studied. Steady turbu-
lent flow results are presented to demonstrate the
effect of viscosity on the location and strength of
the shock.

1 Introduction

Flutter is a dynamic aeroelastic instability
wherein at a particular flow speed a self-sustained
oscillation of the structure persists. A further in-
crease in flow speed leads to oscillations of the
structure with increasing amplitude. Flutter oc-
curs because the wings can absorb energy from
the airstream. In classical bending-torsion flutter,
the phase difference between the bending and the
torsional motions lead to flutter with no appear-
ance of separation nor strong shocks [1]. The en-
ergy absorbed by an airfoil in pitching alone can
become positive provided there is a phase differ-

ence between the airfoil pitching motion and the
aerodynamic pitching moment. This phase dif-
ference is due to the shed vortices and the flow
compressibility [2]. The transonic flutter bound-
ary drops because of this pronounced compress-
ibility effect, and this is known as the transonic
dip. Viscous effects can shift the location of
the shock and also depending upon the shock
strength, the boundary layer may separate lead-
ing to changes in the flutter speed.

Linearized aerodynamic theory cannot pre-
dict transonic flutter instability due to the pres-
ence of part-chord shock. Also, the motion of
the shock is not in phase with the airfoil motion.
To predict this behavior, the exact location and
strength of the shock needs to be computed. At
the same time, the phase difference between the
motion of the airfoil and the aerodynamic forces
including the effect of shed vortices and shock
motion should be captured. For this it is re-
quired to solve the unsteady Navier-Stokes equa-
tions coupled with the structural dynamic govern-
ing equations.

Ashley [3] gave a qualitative estimation of
transonic flutter for a lifting surface. The impor-
tance of the influence of shock and other system
parameters on flutter was highlighted. The un-
steady air load was expressed as the sum of the
load due to linearized theory and a shock force
doublet centered at the steady shock location.
The role of shocks on flexure-torsion flutter was
explained by calculating the energy transferred to
the structure due to the shock motion. Besides,
the effect of parameters such as mass ratio, loca-
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tion of center of mass, and the ratio of heave and
pitch spring stiffness were also described. Isogai
[2] studied the effect of various system parame-
ters and the effect of shock on the flutter charac-
teristics of an airfoil in the transonic regime. The
system parameters considered were the mass ra-
tio, stiffness of the spring in pitch and heave, lo-
cation of the elastic axis and the position of mass
center. The unsteady aerodynamic calculations
used a linearized subsonic theory. Later Isogai
[4] took up the same study with the unsteady air
loads being calculated using the transonic small
perturbation theory. The assumption that there
is no entropy production and vorticity generation
across the shock in the potential flow equation
make these analysis limited in scope. Though
Bendiksen [5] showed energy transfer by aero-
dynamic forces into the wing, this was demon-
strated only in order to determine the contribu-
tions from different regions of the flow. The lo-
cation of the shock and its dynamics were used to
explain the transonic dip phenomenon.

In the present work a quantitative study of the
energy transfer from the fluid to the structure due
to the shock motion is made which helps in un-
derstanding the transonic dip in a better way. In
the present work an unsteady Euler flow solver
on a moving grid using the algorithm with central
space discretization is carried out with dissipative
terms added to eliminate unphysical oscillations
in the solution [6]. An explicit Runge-Kutta time
integration is done for time marching. The aeroe-
lastic equations are solved using a linear acceler-
ation technique. The contribution of the shock
motion to the energy input into the structure is
computed. An attempt to understand the tran-
sonic dip through energy concepts is made. The
flutter behavior for variation in the structural pa-
rameters is also studied. The effect of viscosity
in shifting the shock location is presented.

2 Mathematical formulation

2.1 Flow solver

The unsteady Euler equations in integral form for
a two dimensional moving mesh can be written as

∂

∂t

ZZ
Ω

Wdxdy+
Z

∂Ω

f dy−gdx = 0. (1)

Here

f =


ρ(u− xτ)

ρ(u− xτ)u+ p
ρ(u− xτ)v

ρE(u− xτ)+ pu

 , g =


ρ(v− yτ)

ρ(v− yτ)u
ρ(v− yτ)v+ p

ρE(v− yτ)+ pv

 .

W is a vector of conserved variables, f and g
are the flux vectors in the x and y directions re-
spectively, ρ is the density. u and v are velocities
in the x and y directions respectively. xτ and yτ

are velocities of the moving mesh in the x and y
directions respectively. p is the pressure and E
is the total internal energy of the fluid. From the
equation of state for a perfect gas, the total spe-
cific internal energy is

E =
1

γ−1
p
ρ

+
1
2
(
u2 + v2) .

Finite volume discretization of Equation (1)
for each cell with cell centered scheme yields

d
dt

(
Si jWi j

)
+Qi j = 0, (2)

where

Qi j =
4

∑
k=1

∆yk fk−∆xkgk.

Here Si j is the area of the cell i, j and ∆yk and
∆xk are the length of the face k in y and x direc-
tions of the quadrilateral cell. As we are solving
the weak form of the governing equations, un-
physical solutions such as oscillations near the
shock are part of the solution. In order to get a
physically correct solution, numerical dissipation
is added as

d
dt

(
Si jWi j

)
+Qi j−Di j = 0. (3)

The dissipative terms Di j constructed here is
based on the work of Jameson [6]. Since the
grids are non-deforming, Si j is a constant. Hence
Equation (3) becomes
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dW
dt

+R(W ) = 0, (4)

where R(W ) is the residue defined as

Ri j =
1

Si j

(
Qi j−Di j

)
.

Time stepping is done using a four-stage
Runge-Kutta scheme with single evaluation of
the dissipative terms. This allows a Courant num-
ber of 2

√
2. A typical k stage scheme is

W (0) = W n,

W (1) = W (0)−α1∆tR(0),

· · ·
W (k) = W (0)−αk∆tR(k−1),

W n+1 = W (k).

The maximum time-step allowed in the cal-
culation is found using the eigenvalues of the flux
Jacobian matrices as

∆t =
Si, j

max(λi+ 1
2 , j,λi− 1

2 , j,λi, j+ 1
2
,λi, j− 1

2
)
CFL.

Here CFL is Courant number and λk is the
spectral radius on face k defined as

λk =| (u−xτ)∆yk−(v−yτ)∆xk |+C
√

∆x2
k +∆y2

k .

The fluid velocity normal to the airfoil is the
same as the component of velocity of the moving
surface in the normal direction. That is

V.n̂ = Vn.

Three other numerical boundary conditions
are imposed by extrapolation from the computa-
tional domain onto the solid surface. Assuming
that the flow is subsonic at the outer boundary,
boundary conditions are imposed using Riemann
invariants. The Riemann invariants

R∞ = Vn∞
+

2C∞

γ−1
,

Re = Vne−
2Ce

γ−1
,

correspond to incoming and outgoing waves.
The above equations are added and subtracted to
give

Vnb =
1
2

(R∞ +Re) ,

Cb =
γ−1

4
(R∞−Re) .

At an outflow boundary the tangential ve-
locity and entropy are specified by extrapolation
from the computational domain where-as for an
inflow boundary they are the free stream values.
These four quantities give a complete definition
of the flow in the far field. If the flow is super-
sonic then all the flow quantities are specified as
free stream values at the inflow boundary and are
extrapolated at the outflow boundary.

2.2 Aeroelastic solver

The motion of the wing section is described us-
ing two degrees of freedom, that is, pitching and
heaving. These motions are elastically restrained
by two linear springs that model the elasticity of
the wing in torsion and bending. The structural
parameters of the configuration such as spring
stiffness, mass, moment of inertia, and position
of the elastic axis, are chosen such that it mim-
ics the motion of the wing section defined by the
first two modes of the wing. A flow of uniform
velocity is allowed to pass over this airfoil con-
figuration. Due to the airfoil geometry, the Mach
number in some regions of flow reaches super-
sonic speeds leading to shocks. A disturbance to
this airfoil can lead to the motion of the shock,
which if not in phase with the motion of the air-
foil, can lead to energy transfer from the flow to
the airfoil leading to flutter.

Since the elastic axis and the center of mass
of the airfoil are different for the system, the gov-
erning equations are a coupled system of equa-
tions. The forcing functions are derived from the
flow governing equations. The aeroelastic gov-
erning equations of motion are

mḧ+Sαα̈+Khh = L,

Sαḧ+ Iαα̈+Kαα = Mea.
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In the above equations h is the heaving degree
of freedom of the system, α is the pitching de-
gree of freedom about the elastic axis, Kh is the
spring stiffness in heave, Kα is the spring stiff-
ness in pitch, L is the lift on the airfoil, Mea is the
aerodynamic moment about the elastic axis, Sα is
the static imbalance due to the offset of the mass
center from the elastic axis, Iα is the moment of
inertia of the airfoil about the elastic axis, and m
is the mass per unit span of the airfoil.

Non-dimentionalizing the above equations as

τ = ωαt, xα =
Sα

mb
, r2

α =
Iα

mb2 ,

ωh =

√
Kh

m
, ωα =

√
Kα

Iα

, µ =
m

πρb2 ,

kc =
ωαb
U∞

,

yield

[M]{q}′′+[K]{q}= {F} . (5)

In the above equation

[M] =
[

1 xα

xα r2
α

]
, [K] =

(ωh

ωα

)2

0

0 r2
α

 ,

[F ] =
1

πµk2
c

[
Cl

2Cm

]
, {q}=

{h
b
α

}
.

In the above, τ is non-dimensional time, xα is
non-dimensional distance between center of mass
and elastic axis, rα is radius of gyration about the
elastic axis, ωh and ωα are uncoupled natural fre-
quencies of the system in heave and pitch respec-
tively, µ is mass ratio, kc is reduced frequency, Cl
and Cm are coefficients of lift and moment about
the elastic axis respectively.

In order to solve Equation (5) the linear accel-
eration method of time integration is used [10].

3 Results and Discussion

Fig. 1 Damped response for M=0.85 and Vf = 0.439
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3.1 Transonic flutter

Isogai’s [2] test case A was considered for the
aeroelastic calculations with the following pa-
rameters for a NACA64A010 airfoil section

xα = 1.8, r2
α = 3.48, µ = 60, a =−2.0,

ωh

ωα

= 1.0.

O-grids of size 128× 32 extending upto 25
chord-lengths away from the airfoil was used for
the study. The airfoil was forced in pitching
about the elastic axis at a given Mach number
for three cycles at a set frequency of 100 rad/sec
and an amplitude 1◦. Then the imaginary hinge
about which it was pitching was set free, and at
the same time the forcing was removed. The evo-
lution in time of the solution was thereafter stud-
ied.

The flutter index on the flutter boundary at a
given Mach number represents the velocity of the
fluid at which the airfoil of unit mass ratio, semi-
chord length, and uncoupled natural frequency in
pitch, flutters. The frequency at which it flutters
is called the flutter frequency. Flutter indices are
varied for the given airfoil at each Mach number
till a self-sustained neutral response is reached.
Flutter boundary is drawn for the given structure.
For flutter indices lower than the flutter indices
on the flutter boundary a damped response can
be observed as in Figure 1. A self-sustained os-
cillation can be seen as in Figure 2 during flutter.
At speeds beyond the flutter speed a diverging re-
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Fig. 2 Neutral response for M=0.825 and Vf = 0.612

15 20 25 30 35 40 45 50 55 60 65
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

 

 
h
b

α

Fig. 3 Divergent response for M=0.875 and Vf =
1.420
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Fig. 4 Second mode response for M=0.9 and Vf
= 2.840
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Fig. 5 Limit cycle response for M=0.75 and Vf =
1.320
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Fig. 6 Vf versus M
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sponse can be observed as shown in Figure 3. In
all these cases it can be seen that the response of
the aeroelastic system is close to the first mode
of the structure. The heave and pitch motion are
in-phase. A second mode response of the config-
uration is shown in Figure 4.

At a given Mach number and beyond the flut-
ter speed the aeroelastic system need not exhibit

Fig. 7 ω f
ωα

versus M
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a divergent response for ever. Figure 5 shows the
limit cycle response behavior of the system be-
yond the flutter speed. The amplitude of the re-
sponse increases initially and later the nonlinear-
ities in the coupled fluid structure problem limit
the amplitude of the response.

For the given configuration, at different Mach
numbers, the flutter indices and flutter frequen-
cies are determined and graphed as in Figure
6 and 7. These constitute the flutter boundary
for the aeroelastic system. Similarly the flut-
ter boundaries are found and shown for different
mass ratios on same figures. At a given Mach
number multiple flutter points are possible due to
the bending back of the flutter boundary. In these
figures, we have also shown the results computed
by Jameson, et al. [6]. Our numerical results are
in good agreement with those of [6]. Note that for
µ = 20, there is a substantial change in the flutter
boundary.

3.2 Shock motion

It is known that the net energy input into the sys-
tem during flutter is zero, that is, the net energy
flow into the airfoil per cycle of oscillation

Z T

0
[K]{q}·{q′}dτ =

Z T

0
[{F}− [M]{q′′}]·{q′}dτ

• Net energy > 0 Diverging response

• Net energy < 0 Damped response

• Net energy = 0 Neutral response.

In all transonic flow results, the shocks ap-
pear on the surface of the airfoil. This is the
characteristic of transonic flows. These shocks
are called part-chord shocks [3]. When the air-
foil oscillates, these part-chord shocks move on
the airfoil surface. During transonic flutter when
the net energy is zero, we determine the energy
contribution by the shock motion into the struc-
ture at different locations of the flutter bound-
ary. In order to calculate the energy transfer into
the structure due to the shock movement alone,
the unsteady air-loads are subtracted from the

steady air-loads in the region between unsteady
and steady shocks, and integrated over a cycle
of oscillation after multiplying by their respective
velocities. That is the work done

WD =
Z T

0
[{Fu−Fs}] · {q′}dτ.

Here {Fu−Fs} is the force vector acting on
the aeroelastic configuration due to the change
in pressure distribution in the region between the
unsteady and steady shock locations. During one
cycle of oscillation of the neutral response, the
work done at 20 different time steps are calcu-
lated and added to find the work contribution
by the shock motion into the aeroelastic sys-
tem. In order to represent the energy contribu-
tion by the shock, this energy is compared with
the maximum potential energy of the aeroelastic
system. The maximum potential energy is equal
to [[K]·{q0}]·{q0}

2 . Here {q0} is the vector of am-
plitude of oscillation of the system during neutral
response.

For the case of mass ratio µ = 60, the energy
transferred due to shock movement into the struc-
ture in the transonic dip regime at M∞ = 0.85 is
found to be +0.7159 times the maximum poten-
tial energy of the structure. For the same con-
figuration away from the transonic dip regime,
at M∞ = 0.80, the energy transfer is found to
be +0.0936 times the maximum potential energy
of the structure. The above discussion explains
the importance of shock and its movement in the
transonic dip regime. It is also seen in the dip
regime that the frequency of oscillation of the
system drops. From Figure 8 it is seen that the
amplitude of shock displacement increases dras-
tically with the decrease in reduced frequency
hence increasing the importance of the shock in
the dip regime. The shock parameters which af-
fect the flutter behavior are the shock strength,
shock displacement amplitude which is a func-
tion of frequency of oscillation, phase shift be-
tween the motion of the shock and the airfoil mo-
tion, and also the location of the shock [3].
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3.3 System parameter effect

The effect of the location of mass center with re-
spect to the elastic axis for different ratios of the
uncoupled natural frequencies of the system in
heave and pitch on the flutter boundary is shown
in Figure 9(a). The airfoil considered for the
study is NACA64A010 at M∞ = 0.8 and the elas-
tic axis is fixed at quarter chord. With the in-
crease in the ratio of uncoupled natural frequen-
cies of the system in heave and pitch, the flutter
index decreases and with further increase it in-
creases for all values of xα. A sudden change in
the trend of the curves is seen at xα = 0.5 which
coincides with the approximate location of the
steady shock.

The effect of the location of elastic axis mea-
sured with respect to the midchord, on the flutter
boundary is shown in Figure 9(b). The center of
mass is fixed at 0.2b aft of the midchord. The
calculations are done on NACA64A010 airfoil at
M∞ = 0.8. For the case of the elastic axis aft of
the mass center, static divergence occurs before
flutter. Figure 10 shows the time response of the
system for the above configuration in which the
equilibrium point is shifted.

3.4 Viscous effects

Viscous terms are added and discretized using a
central difference scheme. A five stage Runge-
Kutta scheme is used for time integration. Local
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time stepping is used for convergence accelera-
tion. A one equation Spalart-Allmaras [7] turbu-
lence model is used along with density weighted
average Navier-Stokes equations to calculate the
average flow variables. Two standard test cases
are studied and the results are compared with the
experimental results. These results are compared
with the Euler solution of the same configuration.

Steady turbulent flow over NACA0012 air-
foil is simulated when the airfoil is held at an
angle of 1.77◦ to the free stream of Mach num-
ber 0.502, Reynolds number 2.91× 106 defined
with respect to its chord, Prandtl number 0.72
and turbulent Prandtl number 0.9. The grids con-
sidered for study are C-grids of size 256× 72.
The grid spacing on the solid surface is set equal
to 3.0× 10−5. The far-field is 25 chord-lengths
away from the solid surface. Figure 11 shows
the pressure distribution, skin friction distribution
and residue decay. It has the results computed
by an Euler solver for the same configuration.
The results are compared with the experimental
results of Thibert [8] and are in good agreement
with each other. Both Navier-Stokes pressure dis-
tribution, Figure 11(a) and Euler pressure distri-
bution, Figure 11(d) are close to the experimen-
tal results. A slight variation in pressure distri-
bution on the upper surface of the Euler solution
is because of the boundary layer effects whose
thickness increases downstream because of the
adverse pressure gradient. These results indicate
that the inclusion of viscous effects in the sub-
sonic regime at high Reynolds numbers has no
significant effect on the calculation of pressure
distribution when there are no separation of flow
on the airfoil.

An RAE2822 airfoil is considered for steady
turbulent flow analysis. The airfoil is held
at 2.79◦ to the free stream of Mach number
0.73, Reynolds number 6.5×106 based on chord
length, Prandtl number 0.72 and turbulent Prandtl
number 0.9. C-grids of size 256×72 are consid-
ered for the study with the grid spacing on the
solid surface equal to 1.0×10−5 times the airfoil
chord. The far-field is 25 chords away from the
solid surface. Figure 12 shows the pressure dis-
tribution, skin friction distribution, residue decay
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(b) Coefficient of friction
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(c) Residue decay
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Fig. 11 M∞ = 0.502, Re∞ = 2.91× 106 at α =
1.77◦ for NACA0012 airfoil.
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of the Navier-Stokes solution. The results from
the Euler solver for the same configuration is also
shown in the same figure. The results are com-
pared with the experimental results of Cook [9].
The Navier-Stokes results are in good agreement
with the experimental results where as the Euler
solution differs considerably with the experimen-
tal results.

The fluid on the upper surface of the air-
foil has reached supersonic regime because of
the airfoil geometry. This has led to the gen-
eration of the shock. Because of the shock, a
sudden jump in the pressure distribution can be
seen in the pressure distribution curves i.e., Fig-
ure 12(a) and 12(d). The location of the shock has
changed drastically in the two solutions, Navier-
Stokes solution being close to the experimental
results. The boundary layer has a dominant ef-
fect in shifting the location of the shock well be-
fore the shock location of the Euler solution. The
shock strength in the Navier-Stokes solution is
less in comparison to the Euler solution. This
case establishes the importance of viscous effects
in transonic flows.

4 Conclusions

Transonic flow is characterized by the presence
of part-chord shocks that demand atleast Euler
equations to be solved. Euler equations in inte-
gral form are used for flutter calculations using
Jameson’s artificial dissipation technique. Single
degree of freedom flutter dominates the bottom of
the transonic dip. This suggests the energy pump-
ing mechanism is the unsteady shock motion un-
like the case of classical bending-torsion flutter.
Part-chord shocks and its motion do not allow the
amplitude of motion of the airfoil to grow indef-
initely. The nonlinear effect of the shock limit
the amplitude of oscillation. The limit cycle re-
sponse is captured by the present code due to the
nonlinearities of the aerodynamics. At a given
Mach number, multiple flutter points are possi-
ble due to the flutter boundary being bent back.
Transonic dip is found to be because of the en-
ergy transfer into the structure by the shock mo-
tions. The energy input into the structure during
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(b) Coefficient of friction
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(d) Euler solution: coefficient of pressure

Fig. 12 M∞ = 0.73, Re∞ = 6.5×106 at α = 2.79◦

for RAE2822 airfoil.
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flutter because of the shock motion in the tran-
sonic dip region is found to be more than the
energy transfer away from the dip region, indi-
cating that compressibility effects are responsi-
ble for the transonic dip. The variation of flut-
ter boundary with parameters such as the loca-
tion of the elastic axis, location of the mass cen-
ter and the ratio of uncoupled natural frequencies
of the system in heave and pitch are presented.
A change in the equilibrium position of the sys-
tem is observed for the case when the elastic axis
is aft of the mass center. The amplitude of the
shift in equilibrium position suggest that the sys-
tem has undergone static divergence. Viscosity in
the flow results in shifting the shock location and
lowering the shock strength.
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