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Abstract

The implications of distributed roughness on the
stability of boundary-layer flows present in rotor-
stator devices is to be studied, using both theoret-
ical and experimental approaches. The project is
motivated by the desire to develop passive drag-
reduction techniques in aerospace applications.
This paper is a summary of progress to date and
focusses on the theoretical study of the von Kár-
mán flow with distributed surface roughness.

The results presented here suggest that in-
creasing the level of roughness causes an overall
decrease in the stability of the flow, with transi-
tion seen at lower Reynolds numbers. Further-
more, the mechanism through which the flow
is destabilized appears to switch from the invis-
cid cross-flow mode to the viscous streamwise-
curvature mode. From this it is clear that surface
roughness affects the flow through viscous mech-
anisms, as one might expect.

1 Introduction

It is now firmly established that the classic belief
that surface roughness inevitably increases skin-
friction drag no longer holds [1–5]. The right sort
of roughness can reduce drag due to energetically
beneficial interactions between coherent, energy-
bearing eddy structures and roughness protru-
sions within the boundary layer. The challenge
for the coming decades remains to identify what
constitutes the right sort of roughness for any
given particular type of boundary layer and for

the intended specific technological application.
We investigate roughness effects on the 3D

boundary-layer flow between two concentric ro-
tating disks. Such flows are established on many
types of rotating machinery. For example, the
flow between co-rotating compressor or turbine
disks and the flow between a turbine disk and
an adjacent stationary casing can be modeled by
such rotor-stator systems. The class of theo-
retical boundary-layer flows we focus on have
previously been referred to as the BEK system
[6]. This naming is natural as the system con-
tains the familiar Bödewadt, Ekman and von Kár-
mán flows at particular parameter (Rossby num-
ber) values. The boundary-layer flows are distin-
guished by a characteristic cross-flow component
which makes the flow characteristics and transi-
tion of all such (incompressible) boundary layers
closely resemble each other. For practical and
theoretical reasons, the von Kármán flow (cre-
ated over a disk rotating in otherwise still fluid)
has served as the paradigm for studying bound-
ary layers with cross-flow component for over six
decades [7–13]. However, despite its relevance to
many practical applications, roughness effects on
the rotating disk and related boundary layers have
received little attention.

It is recognized that previous work on the
3D BEK flows is mostly limited to flow transi-
tion over smooth surfaces only. Previous exper-
imental studies have focused almost exclusively
on disks designed to test theoretical predictions
obtained for hypothetical, idealized flow condi-
tions. These are rarely present in real-world en-
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gineering environments. Shifting focus from the
idealized scenario to the real-world must be ex-
pected to yield new results of immediate practical
and scientific relevance. If we can identify, for
instance, how and where roughness leads to what
level of energy dissipation then we may subse-
quently become able to control and reduce the
energy dissipation rates and skin-friction drag.

It is emphasized that we study the effects
of realistic, uniform distributed roughness of in-
creasing levels and different types, and not the
effects of a small number of roughness elements
[14–18]. We note that the 3D flows considered
here are fundamentally different from that of the
essentially 2D flows over flat plates or inside
tubes for which roughness effects have been stud-
ied for decades following, for example, the work
of Nikuradse [19].

The beginning of the natural transition pro-
cess of the BEK boundary-layer flows is signaled
by the development of the well-known spiral vor-
tices within the transition region [9–13,17,18,20–
24]. Experimental studies [25] report the very
interesting result that a modest roughness level
decreased the number of these vortices from ini-
tially 32 for a smooth disk to 26 for the rough
disk. This raises questions as to whether rough-
ness levels above that level can reduce the num-
ber of spiral vortices further and whether transi-
tion can possibly bypass the spiral-vortex route
entirely above a certain critical roughness level?
This would indicate roughness promoting an en-
tirely different transition mechanism and war-
rants further study since it will be associated with
different energetical implications. A clarifica-
tion of this observation is the initial aim of this
project.

This paper summaries the beginnings of the
ongoing study and focusses on the von Kármán
flow.

2 Theoretical study of the modified von Kár-
mán flow

The theoretical study necessarily begins by ob-
taining steady flow profiles in the presence of
distributed roughness. There exists two previous

studies [26, 27] that tackle the theoretical modi-
fications to the classic von Kármán similarity so-
lution for the flow over successively increasing
roughness levels. In the extended project we fol-
low Yoon et al.’s [27] formulation and general-
ize it to the broader BEK system with a view to
conducting stability analyses at general Rossby
number. However, in this paper we focus on the
particular case of the modified von Kármán flow
arising from surface roughness.

2.1 The steady flow profiles

The surface of the disk is described by s∗ =
δ∗ cos(2πr∗/γ∗), with ∗ indicating a dimensional
quantity. The quantity δ∗ is the amplitude of
the surface variation from its mean value, γ∗ is
the wavelength of the surface variation, and r∗

is the distance along the disk in the radial direc-
tion. The surface function can be altered to suit
any required profile by changing the value of δ∗

and γ∗, along with the functional form (although
we use the cos function throughout this study).
The disk is considered to be rotating about its
axis of symmetry at a rotation rate Ω∗. It is natu-
ral to consider this geometry in a cylindrical po-
lar coordinate system (r∗,θ,z∗) (fixed in the sta-
tionary frame) in which the governing Navier–
Stokes equations are well known. The steady-
flow components in these directions are denoted
(u∗,v∗,w∗).

All dimensional quantities are scaled on
a characteristic length-scale given by the
boundary-layer thickness, λ∗, and the velocity
scale given by λ∗Ω∗. This leads to the Reynolds
number Re = Ω∗λ∗2/ν∗ which is interpreted as
a measure of the spin rate. The surface function
nondimensionalizes to

s = δcos
(

2πr
γ

)
, (1)

with amplitude and wavelength parameters δ and
γ, respectively. These are our control parame-
ters and are expressed in units of boundary-layer
thickness as a consequence of the scalings.

Before attempting to solve the governing
equations, it is necessary to transform out the sur-
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face distribution. To this end we use a new co-
ordinate system (r,θ,η) defined by the transfor-
mation η = z− s(r). In this modified coordinate
system the flow components are transformed to
be

U = u, V = v, W =−s′u+w, (2)

where the prime denotes differentiation with re-
spect to r. At this stage we make the boundary-
layer assumption, Re−1 << 1, and set

ζ = Re1/2
η, W̃ = Re1/2W.

The governing equations for the steady flow
are obtained after introducing variables closely
related to the von Kármán similarity variables,

f (r,ζ) =
U
r
, g(r,ζ) =

V
r
, h(r,ζ) = W̃ , (3)

and are stated as

2 f + r
∂ f
∂r

+
∂h
∂ζ

=0, (4)

r f
∂ f
∂r

+h
∂ f
∂ζ

+ f 2
(

1+ r
s′s′′

1+ s′2

)
=(1+ s′2)

∂2 f
∂ζ2 +

g2

1+ s′2
,

(5)

r f
∂g
∂r

+h
∂g
∂ζ

+ f g =(1+ s′2)
∂2g
∂ζ2 − f g.

(6)

These are subject to the boundary conditions

f (r) = h(r) = 0, g(r) = 1 at ζ = 0,
f (r) = g(r) = 0 as ζ→ ∞, (7)

which represent the no slip and quiescent fluid
conditions at all radial positions in this frame of
reference. Note that this system reduces to the
standard von Kármán system of ODEs in ζ when
s(r)→ 0, as would be expected.

Equations (4)–(7) can be solved to find the
velocity profiles for a disk with a surface distribu-
tion parameterized by δ and γ using the commer-
cially available NAG routines. The resulting the-
oretical flow profiles are dependent on the radial
position r, owing to the use of s(r). However, the
cyclical nature of s(r) means that the flow profiles
have a cyclical nature themselves, characterized

by the wavelength parameter γ. This is in con-
trast to the usual von Kármán solution, where all
position dependence is contained within the sim-
ilarity transformation of equation (3). However,
given the small wavelengths involved in these
distributions (γ∗ = O(λ∗)), it is possible to revert
back to a von Kármán type flow for the purposes
of the stability analysis by using a single profile
obtained from the ensemble-averaged flow from
100 flows at evenly spaced locations over one
wavelength. Physically, the roughness distribu-
tion is expected to be of sufficiently small wave-
length that a homogeneous flow response is to be
expected across the disk, with only a larger scale
spatial variation given by the similarity transfor-
mation. This approach has the significant advan-
tage that, in this preliminary study at least, pre-
vious stability codes developed for the smooth
disk [22, 23] can be used enabling a direct com-
parison between the results over smooth (δ = 0)
and rough (δ > 0) disks. This approach will be
taken and the relevance of this method will be
the subject of experimental verification at a later
date.

Figures 1 shows the results from ensemble
averages of flows with γ = 1 and a range of δ

to 0.3 over one wavelength from r = 3 (although
the solution is independent of this location). For
the radial flow ( f -velocity profile, upper plot),
roughness is seen to decrease the maximum fluid
velocity within the boundary layer, i.e. rough-
ness acts to reduce the wall jet. This is phys-
ically sensible as roughness would increase the
friction holding the base of the wall jet back as
it moves along the radius of the disk. For the
azimuthal case (g-velocity profile, middle plot),
roughness is seen to broaden the boundary layer
through a thickening of this profile; again, this is
physically sensible. The normal flow (h-velocity
profile, lower plot) appears to increase the flow
entrained into the boundary layer. However the
interpretation of the normal profile requires a re-
versal of the transformation applied in equation
(2). We note that the use of the boundary-layer
assumption means that this component is actu-
ally an order of magnitude smaller than the other
components and has only minor implications for
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the stability of the flow.

2.2 Stability analysis

Now that the steady flows for the rough disks
have been obtained, the next stage in the theo-
retical study is to perform linear stability anal-
ysis for a range of values of parameters δ and
γ. Equation (2) shows that the averaged radial-
and azimuthal-velocity components are untrans-
formed and consistent with von Kármán solu-
tions used in previous studies of smooth disks.
Furthermore, the averaged normal component
can be obtained from reversing the transforma-
tion. Applying the reverse transformation en-
ables an analysis of the steady flows using per-
turbation equations identical to those in previous
studies [21–24, 28]. The perturbations applied
to the steady flow are assumed to have normal
mode form and this introduces further parame-
ters for the disturbances: α, the radial wavenum-
ber; β, the azimuthal wavenumber; ω, the fre-
quency. In what follows, we conduct a spatial
analysis and so assume α is complex with the
imaginary part giving the spatial growth rate of
disturbances. Both β and ω are assumed to be
real and, in order to ensure periodicity round the
disk, n = βRe (identified as the number of vor-
tices) must be interpreted at real integer values
only.

Imposing boundary conditions on the pertur-
bation equations ensures that the disturbances are
contained within the boundary layer and forms
an eigenvalue problem that is solved for particu-
lar combinations of values of α, β and ω at each
parameter set (Re,δ,γ). From these we form the
dispersion relation, D(α,β,ω;Re,δ,γ) = 0, with
the aim of studying the occurrence of convective
instabilities. In each analysis the α-branches are
calculated using a fourth-order Runge–Kutta in-
tegrator with Gram–Schmidt orthonormalization
and a Newton–Raphson linear search procedure
[21, 28].

Since we are supposing here that the flow
is not absolutely unstable, it follows that in the
Briggs–Bers procedure [21,28] we can reduce the
imaginary part of the frequency down to zero,
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Fig. 1 Steady-flow profiles for γ = 1 and δ to 0.3
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so that ωi = 0. To produce the neutral curves
for convective instability a number of approaches
can be taken in this stationary frame of reference.
One approach is to insist that the vortices rotate
at some fixed multiple of the disk surface veloc-
ity, thereby fixing the ratio ωr/β, and then α and
β are calculated using the spatial analysis. This
is the approach taken here. In particular, we ex-
plicitly assume that the vortices rotate with the
surface of the disk (i.e. are stationary relative to
the rotating disk) so that ωr = β. This is consis-
tent with experimental observations [25].

Two spatial branches were found to deter-
mine the convective instability characteristics for
all parameter sets considered. These branches
arise from the cross-flow (type I) instability mode
and the streamline-curvature (type II) mode, and
are identical to those discussed in related publica-
tions concerned with smooth bodies [21–24, 28,
29]. The type I mode is known to arise from the
inflectional nature of the streamwise steady ve-
locity component; the type II mode corresponds
to a viscous instability associated with the way in
which the outer-flow streamlines are curved by
an O(Re−1) amount close to the outer edge of the
boundary layer.

Figure 2 demonstrates the results of the lin-
ear stability analysis for γ = 1 and values of δ to
0.3. The neutral curve found at δ = 0 is identical
to that computed in the literature for flows over
smooth rotating disks. The upper lobe of each
neutral curve represents the type I mode, and the
lower lobe the type II mode. We see that the
effect of increasing δ is to increase the critical
Reynolds number of the type I lobe, furthermore
the range of unstable parameters narrows - both
are stabilizing effects. However, we also see that
critical Reynolds numbers for the type II (lower)
lobe is reduced and becomes increasingly impor-
tant relative to the type I lobe with roughness. Ul-
timately, the effect of increased roughness is seen
to be a reduction in critical Reynolds number of
the most dangerous mode; roughness is therefore
seen to be destabilizing. Similar results were ob-
tained for γ 6= 1. The type II mode arises from
viscous effects, and it is of no surprise that the
surface roughness appears to influence the flow
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Fig. 2 Neutral curves for γ = 1.0 and various δ.

through viscous mechanisms.
Furthermore, the lower plot of Figure 2 shows

a reduction in the predicted number of vortices
(associated with the disturbance wavenumber in
the azimuthal direction). These preliminary re-
sults are qualitatively consistent with experimen-
tal observations [25] that the number of vortices
reduces with roughness height. This gives credi-
bility to idea that the usual spiral-vortex route to
turbulence within von Kármán flows could be by-
passed by distributed roughness of sufficient am-
plitude.

3 Experimental approach

The experimental rig and measurement tech-
niques used in this research already exist at War-
wick, and have previously been used successfully
for research into the effects of compliance on
transition over rotating disks [17, 18]. Our facil-
ity essentially consists of a water-filled tank (di-
ameter 1m) housing the computer-controlled disk
(diameter 0.4m), as show in Figure 3. The main
measurements are carried out with a TSI IFA 300
constant-temperature hot-film anemometry sys-
tem. The hot-film probe on its support traverse is
fully computer controlled and can be calibrated in
situ. In order to characterize the roughness of the
disks we have so far employed the classic classi-
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Fig. 3 The rotating-disk facility.

fication scheme of hydraulically smooth, transi-
tional or completely rough used, for instance, for
flat-plate boundary layers or for the flow inside
tubes with rough walls. However, considering the
general background [20] that led to this scheme
and, in particular, the fact that it was developed
for fully turbulent flow, it is by no means clear
in how far it will directly translate to the (transi-
tional) rotating-disk flow. This classic roughness-
classification scheme relies on the roughness pa-
rameter, Θ = ksν

?/ν, where ks is typical rough-
ness height, ν? =

√
τ0/ρ is the friction veloc-

ity, and τ0 the wall shear stress. The larger its
value the more pronounced the expected influ-
ences of roughness. Walls are classified as hy-
draulically smooth for Θ < 5 and as completely
rough for Θ > 70. Roughness effects appear
within the transitional regime 5 ≤ Θ ≤ 70. For
typical operating conditions of our rotating-disk
facility we estimate that we will need roughness
protrusions within, roughly, 36µm and 500µm to
cover the transitional regime - provided the clas-
sic roughness scheme for 2D flows does indeed
extend to the 3D rotating disk flow. If our contin-
uing research reveals that the classic roughness-
classification scheme is not suited for fully 3D
flows with cross-flow component then we will at-
tempt to adapt the scheme for this particular type
of flow.

There have been many different techniques
used to manufacture the necessary rough disks,
including sand blasting, wire mesh, laser etch-
ing and rapid prototyping. However, the elected
method was to cut shallow grooves into alu-
minium disks using a lathe. The grooves can be
cut at a range of depths and pitches to simulate
the amplitude and wavelength of the theoretical
surface function. The surface roughness of these
disks has been measured with our Rank-Taylor-
Hobson Talysurf facility (see [17, 18]) and has
been found to be consistent with the theory. The
experimental study is ongoing.

4 Conclusion

This paper presents a summary of progress on
an ongoing project into the impact of distributed
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surface roughness on BEK flows; only results
from the theoretical analysis of the von Kármán
flow are available at this time. In this partic-
ular case, surface roughness is seen to desta-
bilize the boundary-layer flow, as demonstrated
by a reduction in the most dangerous critical
Reynolds number with increased δ. The anal-
ysis shows a change in the dominant instability
mode from the inviscid cross-flow mode to the
viscous streamline-curvature mode. Given that
an introduction of roughness is a surface effect,
one would expect the effects to be felt through
the viscosity of the fluid - this has been demon-
strated. Furthermore, the result that roughness
acts to reduce the number of spiral vortices in the
transitional region is consistent with experimen-
tal observations in the literature.

These preliminary results give credibility to
idea that the usual spiral-vortex route to turbu-
lence within von Kármán flows could be by-
passed by distributed roughness of sufficient am-
plitude. However, the linear approach detailed in
this paper is limited in that it can only realisti-
cally cope with small levels of roughness before
non-linear effects become dominant and a modi-
fied theoretical approach is needed.

Future planned work involves the experimen-
tal study, not least to clarify the validity of the
theoretical approach, and the broadening of the
theoretical study to general flows within the BEK
system. The long-term aims are towards an un-
derstanding of the flow physics needed in order
to determine the right sort of roughness.

Financial support is acknowledged from the Uni-
versity of Leicester and University of Warwick.
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