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Abstract  

This paper reports improvements to the 
accuracy and practicality of an approach using 
linear regression in the azimuth domain to 
synthesize loads on helicopter dynamic 
components. Major improvements result from 
the addition of flight parameters as predictor 
variables, and the ability to perform concurrent 
regression at multiple azimuth locations. Their 
effectiveness is demonstrated by improvements 
in the predictive accuracy and model parsimony 
of load synthesis models developed for 160 
representative level flight runs selected from a 
Black Hawk helicopter strain survey. 

Nomenclature 

î  regression coefficient of ith predictor 

β̂  vector containing  î

j  residual error of model at jth event 

ε  vector containing j  

  azimuth angle of main rotor in degrees 

o  azimuth angle of main rotor at  0Rt

R
N  ratio between measured and nominal main rotor 

rotational speeds in percentage 

pR  correlation coefficient matrix 

2R  multiple correlation coefficient 
RSS  residual sum of squares 
Vh

 maximum horizontal speed of helicopter 

X  matrix containing  ijx

a  element of inverse correlation 

MRf  nominal (NR = 100%) main rotor frequency in Hz  

m  number of events 

n  number of candidate predictors 
p  number of selected predictors for a predictive 

model 

Rt  elapsed time at event recording, in seconds 

ijx  normalized value of ith candidate predictor at jth 

event 

jy  normalized response variable at jth event 

y  vector containing jy  

 
Subscripts: 
Te  taken from test data set 
Tr  taken from training data set 
i  index of candidate predictor variable 
j  index of event within a data set 

1   Introduction 

Applying individual loads monitoring to 
fatigue-critical dynamic components on 
helicopters can lead to reductions in 
maintenance costs and improvements in fleet 
management. These benefits arise from the 
ability to use actual loads instead of assumed 
loads in the calculation of component fatigue 
lives, thereby improving the accuracy of the 
calculated life for a specific component. 

Fatigue damage in helicopter dynamic 
components is generally managed using the 
safe-life methodology and lives are calculated 
based on an assumed load spectrum [1]. This 
spectrum is a combination of an assumed usage 
spectrum and loads generated by either flight 
tests or detailed analysis. It can be significantly 
different from the actual loading that a 
component will experience [2], which means 
that the actual fatigue life of the component may 
vary significantly from the calculated life [1]. 
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By applying individual loads monitoring to 
a helicopter, measured instead of assumed load 
spectrums can be used to calculate fatigue lives. 
These lives would have greater accuracy and 
allow for the fatigue life of components to be 
managed on an individual aircraft basis. These 
refined lives would result in improved safety for 
those cases where the monitored fatigue life is 
less than the originally-calculated safe-life; and 
potential reductions in maintenance costs where 
the monitored life exceeds the original. 

Although beneficial, directly monitoring 
loads on helicopter dynamic components is not 
an easy task. During flight testing these 
components can be monitored with strain 
gauges whose signals are passed via sliprings 
from the rotating components to the recording 
system in the aircraft.  However, these systems 
are ill-suited for monitoring larger numbers of 
aircraft in an operational environment due to 
their excessive maintenance requirements. If a 
fleet-wide direct load monitoring program is to 
be implemented, alternative monitoring 
techniques must be used. 

Wireless technology is one potential 
alternative. Using wireless transmission, 
measurements made on dynamic components 
can be transferred to nearby data acquisition 
systems without requiring costly intermediate 
assemblies. Although potentially an attractive 
solution, high power requirements associated 
with current wireless technologies prevent their 
immediate use in direct load monitoring 
applications. Novel approaches to the power 
problem are being developed [3]; however these 
solutions cannot currently generate enough 
power to allow for continuous monitoring at 
high-sampling rates, without resorting to 
techniques such as duty sampling [4]. 

Another potential monitoring approach, 
and the focus of this paper, is load synthesis. 
This area of research, also known as load 
prediction, involves developing transfer 
functions which calculate loads in hard-to-
measure locations, from easily measured inputs. 
The benefits of this approach depend on the 
inputs to the transfer functions. If input data is 
not monitored by existing instrumentation, 
installation of the additional instrumentation 
may lessen the benefit of the approach. Hence, 

load synthesis approaches generally place 
emphasis on eliminating or minimising the 
number of inputs that require additional 
instrumentation. 

Many investigations have used load 
synthesis to predict helicopter loads with 
varying degrees of success. One investigation 
compared the ability of three independent 
approaches to predict main rotor pitch-link 
loads using airframe-mounted strain gauges [5]. 
Despite the use of relatively simple linear 
models, the accuracy of each approach proved 
promising, highlighting the presence of linear 
relationships between dynamic component and 
static airframe loads. Some more recent efforts 
make use of non-linear models to predict 
dynamic component loads using flight state and 
control parameter data as input [6]. As this data 
is recorded by existing instrumentation, its use 
minimises the requirement for additional 
instrumentation. This approach [6] 
demonstrated reasonable predictive accuracy, 
although adjustments had to be made to counter 
some underestimation of loads. 

The work detailed within this paper is an 
extension of an approach which used linear 
regression in the azimuth domain to predict 
main rotor pitch-link loads [5]. This approach 
was selected because it demonstrated reasonable 
predictive capability, and meanwhile had two 
areas where obvious improvements can be 
made. One of the areas relates to the limiting of 
candidate predictors to the strain gauge and 
accelerometer measurements on stationary 
components. As noted in [5], the reaction-less 
effects prevent some load features being 
transmitted through the swash-plate to 
stationary components, therefore the 
information from the stationary components 
alone are insufficient to build a deterministic 
model. The other area relates to model 
parsimony. Ref [5] did not investigate a 
technique to guide all azimuth locations to 
select a common set of these inputs. Since 
different inputs were selected at different 
azimuth locations, total input requirements 
could be excessive. 

To address the above deficiencies, two 
changes are proposed in the present study: one 
is to expand the candidate predictor variables to 
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include flight state and control parameters, and 
the other is to develop a concurrent regression 
technique that allows a common set of 
predictors to be selected over multiple azimuth 
locations. The effects of these changes on 
predictive accuracy and model parsimony are to 
be investigated using 160 level flight runs of a 
Blackhawk flight strain survey. 

2   Data Preparation 

2.1   Essential Role of Data 

The ultimate purpose of the present 
investigation on load synthesis is to develop a 
generic approach that can be used on various 
helicopter platforms. The development of such 
an approach is heavily based on, and driven by, 
available experimental data. This is especially 
the case when the predictive model is to be 
revealed through a data mining process like 
linear regression. 

The data used in the present study was 
selected from a Black Hawk Flight Strain 
Survey detailed below. 

2.2   Black Hawk Flight Strain Survey 

This survey was jointly conducted in 2000 
by the United States Air Force (USAF) and 
Australian Defence Force (ADF). The major 
objective was to utilize a large number of strain 
gauges and accelerometers to measure the 
strains in areas known to have cracks or other 
forms of structural distress [7]. Not including 
duplicate gauges installed for redundancy, a 
total of 421 strain gauges were installed on the 
test aircraft. The outputs of these gauges were 
combined to provide 217 channels of airframe 
strain gauge data, and 20 channels of dynamic 
component data. In addition to the strain gauge 
channels, 18 channels of accelerometer data 
were measured at various locations on the 
airframe, and 28 standard flight state and 
control system parameters were recorded. 

In total, 65 hours of useful flight test data 
was recorded during the program, comprising 
3759 runs of 98 unique manoeuvres. The flight 
tests were conducted for varying aircraft 

configurations, gross-weight values, altitude, 
and centre of gravity locations. 

2.2   Subset for This Study 

This study was based on a subset of the 
Flight Strain Survey data, consisting of 160 
unique runs of level flight, evenly drawn from 8 
manoeuvre groups corresponding to level flight 
at speeds from 0.3Vh to 1.0Vh. These 160 runs 
were representative of all configuration, gross-
weight, centre of gravity, and altitude points 
tested during the flight test program. 

A number of choices were made to select 
this subset; these included: (i) restricting runs to 
level flight manoeuvres, which limited 
variability in load relationships and simplified 
model development; (ii) including runs 
conducted at various flight speeds, which 
allowed for the development of generalized 
models - the even distribution of these runs (20 
runs from each speed regime) prevented bias; 
and (iii) a range of gross-weight, configuration 
and centre of gravity test points were included 
to develop a generalized model. 

The main rotor pitch-link load was selected 
as the target for prediction for two main reasons. 
Firstly, pitch-link loads form a basis for the 
fatigue substantiation of numerous dynamic 
components [8], and therefore refinements in 
their prediction have a wide impact. Secondly, 
pitch-link loads are complicated load signals, 
which ensured the prediction problem was not 
unrealistically simple. 

2.3   Re-sampling to Azimuth Domain 

The strain data consists of measurements 
of various outputs (e.g. strain, loads, and 
accelerations) in the time-domain. Due to 
variations of main rotor speed and inconsistency 
of starting azimuth locations, the time variable 
alone is not a valid indicator of the azimuth 
location across all selected runs. The survey 
data therefore need to be re-sampled into the 
azimuth domain before a predictive model can 
be developed in that domain. Unfortunately, for 
this dataset, the main rotor azimuth was not 
recorded, and therefore needs to be derived from 
other recorded data based on Eq. (1): 
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R

R

t

RMRoR dtfNt
0

360)(   
(1) 

Where,  is recorded time, starting from 

zero for each run,  is actual main rotor 

frequency, 

Rt

o

MRfN
R

  is azimuth location at , and 0Rt

)( Rt  is the derived azimuth location in 

degrees. o  was calculated for each run from the 

first harmonic of the main rotor shaft bending 
moment, based on the assumption that the 
direction of thrust of the main rotor was similar 
between runs. 

Once all time samples within the subset 
were assigned an azimuth, they could be 
restructured and categorised according to that 
value, as illustrated in Fig. 1 using a 2-second 
pitch-link measurement as an example. For the 
work detailed within this paper, 360 azimuth 
“bins” were used, each 1° wide. In the 
subsequent regression analysis (see Section 3.1), 
each of the data points within a bin corresponds 
to an individual “event”. 

Along with the re-sampling process, minor 
data correction and elimination was performed 
to account for missing values within the data. 
This involved either removing entire data 
channels if they were missing excessive 
amounts of data, or removing isolated events 
corresponding to missing values. 

2.4   Partition of Runs for Cross-Validation 

A 10-fold cross validation was adopted in 
this study for a more effective use of the strain 
survey data. The process involved partitioning 
the data into 10 folds. Of these 10 folds, one 
was retained for evaluating the model, and the 
remaining nine were used as training data. This 
process was repeated 10 times with each fold 
used once as the testing data. 

To realistically assess the predictive ability 
of a model produced by a regression process, 
the testing data must not be seen by the model 
during training and must approximate the 
unseen events that the model may experience. 
As helicopter flight data is periodic in nature, 
events from within the same run may be nearly 
identical and must not be included in both 

training and test data sets. This required proper 
partitioning of the available data, to ensure that 
a run was contained wholly within one of the 
ten folds and not split amongst them, and that 
each fold was representative of the fold being 
withheld as testing data. 

 

 

 

Fig. 1. Illustration of pitch-link 
measurements: (a) in the time domain, and 
(b) re-sampled to the azimuth domain. 

 
The construction of the 10-folds data sets is 

illustrated in Fig. 2, where the tabulated 
numbers are indexes of level flight runs. Each of 
the 10 folds contained 16 level flight runs, 2 for 
each speed regime, with the 2 runs randomly 
selected from a set of 20 runs at each speed. 
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Fig. 2. Illustration of the 10-fold datasets. 

3   Regression Approaches 

3.1   Overview 

The fundamental assumption of this study 
is a linear relationship between the dependent 
variable  (here the main-rotor pitch link 
force), and a collection of independent predictor 
variables  (consisting of strain gauge and 

accelerometer measurements on the stationary 
components and, unless otherwise stated, flight 
state and control parameters

y

ix

1). At each azimuth 
location, Eq. (2) gives a mathematical 
description of this assumption: 

                                                 
1 The inclusion of flight state and control parameters  
relates to the first change introduced by the present study. 

j

n

i
ijij xy  

1

ˆ ,   j = 1, .., m 
(2) 

where,  and  are normalized values of  

and , respectively, at the j-th “event”, n is the 
total number of candidate predictors, m is the 
total number of “events”,  (i = 1, .., n) are to-
be-determined coefficients, and

jy ijx y

ix

î

j is a residual 

term accounting for noise and modelling errors. 
Normalization was performed individually o  n
y  an ix , such that the values were centred and 

scaled to have a unit length of 1. 

d 

When , , and  are vectors containing 

, , and 

y β̂ ε

jy î j , respectively; and is a matrix 

containing , Eq. (2) can be re-written into a 

matrix form as in Eq. (3), 

X

ijx

εβXy  ˆ  (3) 

Eq. (3) can be established, and solved, 
which leads to a load synthesis model at each of 
the 360 azimuth locations. To obtain the 
capability of predicting “unseen” events, the 
models should only rely on a small subset of the 
predictor  variables, which means that most 

 are equal to zero. Also, to retain model 
parsimony, a common set of variables should be 
selected across all azimuth locations. 

ix

î

The above requirements, especially the 
second one, are not trivial and cannot be readily 
fulfilled by existing advanced regression 
approaches, such as Ridge [9], LASSO (least 
absolute shrinkage and selection operator) [10] 
or Elastic-Net [11]. These regression 
approaches only apply to “independent 
regressions”, where variable selection and 
model development at one azimuth location are 
independent from those at other azimuth 
locations. 

A new approach called “concurrent 
regression” was developed in this study to 
synchronise variable selection across all 
azimuth locations, while  values relating to 
selected variables were independently 
determined at each azimuth location. This 
development was made based on two forms of 

î

stepwise linear regression, as they were more 
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adaptable than other regression approaches to 
incorporate the concurrent regression algorithm. 

Stepwise regression is a technique which 
uses

3.2   Independent Regression 

used

wise Linear Regression – Adjusted 

The selection criterion used within the first 
techn

ned as 

number of predictors wi

(5) 

 feature selection to set most î  in Eq. (2) 
equal to zero. The technique erates by 
ranking each candidate predictor according to 
specific criteria and allowing only the highest 
ranked predictors to have non-zero î . This 
process selects and deselects predictors 
iteratively with the final models, often chosen 
using forms of cross-validation, representing the 
selection of predictors that best predicts the 
response variable. 

op

Two stepwise regression techniques were 
 within this paper, with their sole difference 

being the selection criterion used. These 
techniques were initially used for independent 
regression and later adapted for concurrent 
regression. 

3.2.1   Step
R2 

ique was the adjusted multiple correlation 
coefficient, R2. This value was calculated for 
each potential predictor subset, and 
subsequently used to rank predictors. As 
proposed in [12], R2 was calculated from the 
inverse of the correlation matrix, pR , as 

elaborated in Eqs. (5) and (6). R was 

calculated from a matrix defi
] ofsubset  potential ,[ TRTR Xy , with p being the 
thin the subset. To 

discount potential improvements in R2 due to 
chance, R2 was adjusted according to Eq. (7). 

p  

(6) 

 
1

1
11 22
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m
RRadjusted kk  (7) 
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12   

After selection,  values for predictors 
selected by the technique were calculated using 
an ordinary least-square approach, while 
unselected predictors had  equal to zero. The 
predictive error of the resultant model, ε  within 
Eq. (3), was then calculated using the fold of the 
flight data withheld from training. 

î

î

The above process was repeated ten times, 
with a different set of data withheld each time, 
and the mean error was then calculated to assess 
predictive capability. 

3.2.3   Stepwise Linear Regression – RSS 
For this technique, the selection criterion 

RSS (residual sum of squares) as defined in Eq. 
(8) was used to rank and select predictive 
variables: 

2

β̂Xy TrTr RSS  (8) 

As  is calculated using the ordinary least 
square approach from the training datasets, Eq 
(8) can be transformed into: 

β̂

  Tr
T
TrTr

T
TrTr

T
TrTr

T
Tr yXXXXyyy

1
RSS  (9) 

3.3   Concurrent Regression 

to se

 was to 
com

dation, the above 
techn

The purpose of concurrent regression was 
lect a common set of predictive variables 

for all 360 azimuth locations. To accommodate 
this purpose, a concurrent variable selection 
technique was proposed in this study. 

The essence of this technique
bine ranking from all azimuth locations and 

select predictor variables that contribute the 
most across all azimuths. This technique can be 
integrated with the stepwise linear regression 
approaches by substituting the variable selection 
criterion with an average of the same criterion 
across all azimuth locations. 

In a 10-fold cross-vali
ique allows for the selection of a common 

set of predictive variables for each set of 
training data. However, different sets of 
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predictors might be chosen when different sets 
of the cross-validation data were used. To 
account for this, an extra stage of subset 
reduction was added to the concurrent 
regression technique. 

This new stage of subset reduction 
oper

al stage of subset reduction 
was 

4   Results and Discussion 

4.1   Effect of Including Standard Flight State 

and 

shows the residual error of each 
expa

ated by combining the predictor subsets 
selected by each cross-validated model, and 
discarding the least used predictor. Once a 
predictor had been eliminated, regression 
models at each azimuth were rebuilt using this 
reduced set of predictors. The predictive 
accuracies of these models were evaluated, 
recorded, and the process repeated. This stage of 
subset reduction continued until only one 
predictor was left. 

Once this fin
complete, the predictive accuracies for the 

models at all iterations were analysed. The 
models and subset with the best performance 
were selected as the final output of the 
concurrent regression process. 

and Control Parameters 

The effect of including standard flight state 
control parameters was assessed using the 

azimuth-by-azimuth independent regressions. 
For each regression approach described in 
Section 3.2., two classes of regression models 
were developed: a base-line model that only 
used strain gauge and accelerometer data as 
candidate predictors, and an expanded model 
which also included flight state and control 
parameters. 

Fig. 3 
nded model as a percentage of the residual 

error of the corresponding base-line model, 
these residual errors were used as a measure of 
predictive accuracy for each model. It can be 
seen that the average residual error across all 
azimuth locations decreased when the additional 
parameters were included. This improvement in 
accuracy was seen in each of the regression 
techniques, with the stepwise regression using 
adjusted R2 showing the most improvement. 

This improvement in accuracy demonstrates that 
even when using simple linear relationships, the 
flight state and control parameters provide 
predictive information not present in the other 
input data. 

 

a) 
 

b) 

Fig. 3. Polar plots showing expanded model 

Although the overall accuracy improved, it 
can 

Radial axis: relative error; 
A n ngular axis: azimuth locatio

error as percentage of base-line model error. 
a) Stepwise – adjusted R2, b) Stepwise – RSS. 

 

be seen in Fig. 3 that some azimuth 
locations experienced a reduction in predictive 
accuracy for the expanded model. As no 
information was removed from the expanded 
model, it may be asked how the models at these 
azimuth locations can perform worse than the 
base-line model. This question is not easy to 
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answer because of the complexity of the 
regression and error estimation processes. A 
possible explanation may relate to the method 
used to calculate model accuracy. The residual 
errors displayed in Fig. 3 are calculated based 
on how well each model predicts unseen flight 
test data. As such, any over-fitting of the model 
to training data would result in poorer 
performance on unseen data, and therefore an 
increase in predictive error. It is possible that, 
for those azimuth locations with poorer 
performance, the additional predictors tuned the 
model to aspects of the training data not seen in 
the validating data, reducing the predictive 
accuracy at these locations. 

In addition to the overall improvements in 
accu

Table 1. Effects of including flight state and 
. 

racy, the expanded models rely on fewer 
strain gauge measurements than the base-line 
models. This is the case for each of the 
regression approaches as tabulated in Table 1. 
As discussed earlier, this reduction in strain 
gauge usage increases the practicality of the 
model by reducing the requirement for 
additional instrumentation. 

 

control parameters within regression models

 adjusted R2 RSS 
Average im ent 

3  
provem

in predictive accuracy 
4.87% .88%

Average reduction in 
strain gauges required 

2 4 

4.2   Concurrent Regression 

ing concurrent 
regre

racy 
and 

variable 
selec

rs between 
the c

perform as well as those chosen specifically at 

The effect of perform
ssion was investigated for both regression 

techniques, with both showing similar levels of 
improvements. Nevertheless, the technique 
using the RSS variable selection criterion 
performed slightly better in all aspects and 
therefore its results are detailed as follows. 

In order to compare changes to accu
predictor selection as a result of concurrent 

regression, an independent regression model 
was developed using the same RSS stepwise 
regression technique. Both models included all 
flight state and control parameters as candidate 
predictors. The independent regression model 
differed from those discussed in section (4.1) by 

limiting the maximum number of predictor 
variables used at each azimuth location. This 
limit was imposed to mimic the same limit 
which exists in the concurrent regression 
techniques for computational reasons. 

Fig. 4 compares predictor 
tions between the concurrent and 

independent regressions. A variable is deemed 
to be selected if it is used by at least one of the 
360 azimuth models. For the independent 
regression, a total of 173 variables were 
selected. Although nearly all the candidate 
predictors were selected, most of these were 
only used in a small number of azimuth models. 
In contrast, for the concurrent regression, a total 
of 31 predictive variables were selected across 
all azimuth locations and each selected variable 
was used in all 360 azimuth models. 

Fig. 5 compares predictive erro
oncurrent and independent regressions. It 

shows that the concurrent regression led to 
improved predictive accuracy at most of the 
azimuth locations with reduced accuracy at a 
small number of azimuth locations. Overall, the 
average predictive accuracy was improved 
despite the reduction of 142 predictor variables. 
This accuracy improvement may seem counter 
intuitive at first; however, the reduction of 142 
predictor variables must be put into perspective. 
Although the independent regression model 
used a total of 173 predictors, Fig. 4 shows that 
these were spread across all azimuth models. In 
fact, no one azimuth model used more than 30 
predictors. This means that while the concurrent 
model selected less predictors overall, the 
efficiency with which they were used was 
greatly increased. Additionally, although the 
predictors selected by the independent model 
were optimized for each location, the highly 
correlated nature of the flight load data means 
that, for any predictor, there are a number of 
alternatives that would perform nearly as well. 
If one imagines a group of highly correlated 
predictors, the independent regression may pick 
a different predictor from this group for each 
azimuth location. This is in contrast to the 
concurrent regression which would pick one 
predictor from the group that best informs all 
azimuth locations. While this predictor may not 
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Fig. 4. Selected predictor variables, a imuth locations for each

each location, for those highly correlated it 

reasons account for a 
lack of

common subset would therefore improve the 

nd frequency of selection across az  
regression technique. 

 

would perform similarly. 
While the above 
 degradation in predictive accuracy, they 

do not explain the improvement, as seen in Fig. 
5. The improvement to predictive accuracy can 
be explained by a reduction of over-fitting in the 
model. As shown in Fig. 6 there is a gradual 
reduction in model error, and therefore an 
improvement in accuracy, as predictors are 
eliminated. This gradual reduction in error 
reaches a minimum at the selected model 
(N=31) and increases with further elimination of 
predictors. This gradual reduction in error can 
be explained as a reverse of the over-fitting 
effect described in section 4.1. Predictors are 
eliminated based on their frequency of selection 
amongst cross-validation folds, with the 
predictors used least being the first eliminated. 
The fact that these predictors are chosen by few 
of the cross-validation tests implies that they are 
selected because of features specific to their 
training data. As they bias the model towards 
the training data, they simultaneously degrade 
the predictive accuracy of the model towards 
unseen data. Their elimination from the 

predictive accuracy of the overall model. 
 

 
 
 

Fig. 5. Pola  errors of 
concurrent regress  
percentage of predictive errors of the 
independent regression model (N=173). 

 

Radial axis: relative error; 
Angular axis: azimuth location 

r plot showing predictive
ion model (N=31) as a
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Fig. 6. Surface plot displaying normalized error for all azimuths and predictor subsets. 

 

4   Conclusion 

ynamic components using linear regression in 
main was improved by two 

pproach: one was to include the 
stand

ncurrent 
regre
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ard flight state and control parameters as 
candidate predictive variables, and the other was 
to perform concurrent regression at multiple 
azimuth locations. The effects of these changes 
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