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Abstract

This paper studies an essential application of

Air Traffic Management investigating the run-

way capacity allocation with the aim of pre-

tactical planning in the time scope of approxi-

mately 24 hours. For the prediction and solv-

ing of traffic problems for such planning hori-

zon we have to control flows of aggregated flights

rather than individual flights. Hence, the length

of the queue arising from a capacity allocation

decision is the main feature of flow manage-

ment. Related standard key performance indica-

tors such as throughput, delay, etc. depend on

occurrence and behavior of arrival and departure

queues. We study and investigate properties of

weighted queues sum as a function of capacity

allocation in the case of general Pareto curve. It

results in straightforward and effective O(N2) al-

gorithm giving integer solution for the problem

of total weighted queues sum minimization over

a time period with arbitrary number of considered

time intervals. This integer problem has been

solved earlier with the linear programming meth-

ods. However, the best complexity of such meth-

ods is O(N3.5L) and linear programming solvers

based on them give a solution of the problem in a

reasonable time for the limited number of consid-

ered intervals only. Furthermore, the algorithm

developed in this paper constructs an "almost op-

timal" initial solution depending on the weight of

corresponding queues. Significant feature of the

initial solution is that it can be easily obtained by

hand for an arbitrary number of considered inter-

vals. It is also shown which intervals have to un-

dergo reallocation of capacity in order to achieve

an optimal flow. Moreover, the minimal finite

solution set which contains an optimal flow for

each weight value in the mentioned problem can

be easily constructed.

The developed algorithm finds optimal so-

lutions in “interval-to-interval” techniques. The

obtained solution method gives us the tool for

controlling and managing of flow construction

and queue outcome depending on strategies we

follow. It gives an optimal solution of considered

problem for the whole day with interval length

from 5 to 15 minutes on standard PC in maximal

0.1 seconds.

1 Introduction

Under optimization of airport runway capacity

we understand its best allocation between ar-

rivals and departures, i.e. construction of ar-

rival/departure flow, that optimally satisfies the

predicted traffic demand over a period of time

under given conditions and strategies. Airport

runway capacity reflects operational limits that

an airport has under given operational conditions

such as weather, runway configuration, time, etc.

Estimates of airport operational limits per time

interval are provided by statistical methods com-

bined with air traffic managers’ and controllers’

experience which are applied to historical airport

performance data observed over a long period of

1



OLGA GLUCHSHENKO

�

��� ���

������	 =�� ��
���	� =�

��
��		 =�

�

�����		� =�

���	
��������

��������
��������

�

�

�

�

���

�

�	
�

�	
���

�

�	

�

�	

���

�−�γ

�γ

�γ

��

��

��

��

��� ��

��� ��
��	��
����

Fig. 1 Pareto curve PCG

time [1, 7, 8]. The resulting convex piecewise

linear arrival/departure capacity curve with inte-

ger coordinates of its knots is often called Pareto

curve.

We consider its general form shown in Fig-

ure 1 and denoted as PCG. It consists of one hor-

izontal segment

[(0,MaxDep),(MinArr,MaxDep)] = [(0, p1
2),P1],

one vertical segment

[(MaxArr,MinDep),(MaxArr,0)] = [Pn,(pn
1,0)],

where MinArr/MinDep is the maximal number

of arrivals/departures which can be handled in

the given time interval by the maximal possi-

ble departure/arrival flow MaxDep/MaxArr, and

n − 1 ≥ 0 line segments [Pj,Pj+1], where each

flow point (u,v) ∈ [Pj,Pj+1] satisfies

v =− tanγ ju+b j (1)

and Pj = Pj(p j
1, p j

2), Pj+1 = Pj+1(p j+1
1 , p j+1

2 ),

u ∈ [p j
1, p j+1

1 ], j ∈ {1, ...,n− 1}, γ0 = 0◦ < γ1 <

... < γ j < ... < γn−1 < γn = 90◦, 0 < b1 < ... <
b j < ... < bn−1 <+∞.

Notwithstanding that Pareto curve provides

the detailed information about operational limits

it is difficult to decide which arrival/departure ra-

tio has to be chosen in each time interval of the

planning horizon in order to find a flow, which

fulfills the given criteria at the best. The length of

the queue arising from a capacity allocation deci-

sion is the main feature of flow management. For

this reason we consider here one of the main air-

port runway capacity optimization problems: the

problem of minimizing of total weighted queues

sum. Based on properties of weighted queues

sum an optimal flow for the given weight can

be easily constructed or the minimal finite set of

flows which contains an optimal solution for all

weights ∈ [0,1] can be specified in O(N2) time.

This paper is organized as follows. Sec-

tion 2 formulates the problem of minimizing of

total weighted queues sum. Sections 3 and 4

investigate properties and behavior of weighted

queues sums. Here two strategies of flow con-
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struction which give priority to arrivals or depar-

tures are also studied. It results in straightforward

and effective algorithm for finding of an optimal

solution in the problem of minimizing of total

weighted queues sum with arbitrary number N
of considered time intervals. The algorithm is

described in Section 5. In this section an "al-

most optimal" initial solution depending on the

weight of corresponding queues is constructed.

Mentioned solution can be obtained in a straight-

forward manner by hand for an arbitrary number

of considered intervals on a sheet of squared pa-

per with plotted Pareto curve. It is also shown

how and in which intervals capacity in the initial

solution has to be reallocated in order to achieve

an optimal flow. Effectiveness of the algorithm

is illustrated on two numerical examples in Sec-

tion 6.

The obtained solution method gives us the

tool for controlling and managing of queue gen-

eration. Moreover, the minimal finite solution

set, which contains an optimal flow for each

weight value in the mentioned problem, can be

easily constructed.

2 Problem Formulation

Let us use the following notations

T – a time period consisting of N time intervals

of equal length δ (it is generally assumed

that δ = 15 min.)

ai – arrival demand in the time interval i

di – departure demand in the time interval i

qa
i – arrival queue at the beginning of the time

interval i ∈ {1, ...,N +1}

qd
i – departure queue at the beginning of the

time interval i ∈ {1, ...,N + 1}

ui – arrival flow – number of arrivals handled

in the time interval i

vi – departure flow – number of departures

handled in the time interval i

to formulate the problem of total weighted queue

minimization for the given demand (ai,di), i ∈
{1, ...,N}, where capacity is constrained by

Pareto curve PCG (Figure 1):

Problem 1

min
F∗=(u1,...,uN ,v1,...,vN)

α
N+1

∑
i=2

qa
i +(1−α)

N+1

∑
i=2

qd
i ,

(2)

where 0 ≤ α ≤ 1, subject to

qa
i+1 = max(0,qa

i +ai −ui) (3)

qd
i+1 = max(0,qd

i +di − vi) (4)

qa
1 ≥ 0,qd

1 ≥ 0− initial queues (5)

0 ≤ ui ≤ MaxArr (6)

0 ≤ vi ≤ min(MaxDep,− tanγ jui +b j) (7)

for
i ∈ {1, ...,N}, j ∈ {1, ...,n−1}. (8)

The introduced problem has been considered

and solved, particularly in [1, 2, 3, 4], with lin-

ear programming methods. This linear program

(LP) has 2N variables. It is known [9], that the

best complexity for polynomial algorithms solv-

ing LP is O(N3.5L), where L is the data length

and N is the number of variables in LP. When the

time period T is big, for instance the whole day

is considered, or/and the length of a time interval

δ < 15 minutes the number of considered inter-

vals contributes to the significant increase of the

computational time of LP.

We have not found any investigations of

weighted queues sum as a function of capacity

allocation in the case of general Pareto curve.

Weighted queues sum was studied by author in

[5, 6] for the simple Pareto curve which is pre-

sented by three values: the maximal number

of landings MaxArr and the maximal number

of take-offs MaxDep per time interval by the

single-mode and the maximal number of flights

MaxCap per time interval by the mixed-mode of

capacity utilization at the addressed airport. Hav-

ing properties of weighted queues sum for the

general Pareto curve we can easily construct an

3
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optimal flow for given weight α or specify a min-

imal finite set of flows which contains an optimal

solutions for all weights α ∈ [0,1] in O(N2) time.

Moreover, we get a controlling tool for outcome

of arrival/departure queue which allows the con-

struction of an "almost optimal" solution of Prob-

lem 1 by hand.

Considering Pareto curve PCG it can be noted

that the units of the initial demand (ai,di) in

interval i ∈ {1, ...,N}, which exceed the maxi-

mal numbers of arrivals MaxArr or/and depar-

tures MaxDep, will be moved to the queue for

the next interval independently of capacity allo-

cation. These units can not be allocated in in-

terval i and should be accepted as unavoidable

queue (qau
i+1,q

du
i+1), i.e. the part of the demand for

the next interval:

āi = min{ai +qau
i ,MaxArr}, qau

1 = qa
1, (9)

qau
i+1 = ai +qau

i − āi, i ∈ {1, ...,N};

d̄i = min{di +qdu
i ,MaxDep}, qdu

1 = qd
1, (10)

qdu
i+1 = di +qdu

i − d̄i, i ∈ {1, ...,N}.
Hence,

min{ai,MaxArr} ≤ āi ≤ MaxArr
min{di,MaxDep} ≤ d̄i ≤ MaxDep

for i ∈ {1, ...,N}. Thus, a flow for the demand

{(āi, d̄i)}, i ∈ {1, ...,N} which gives no total ar-

rival or/and departure queue always exists.

Any flow F∗ = {(ui,vi)} of the cutted de-

mand {(āi, d̄i)}, i ∈ {1, ...,N} has the following

total weighted queue sum

α
N+1

∑
i=2

(qa
i +qau

i )+(1−α)
N+1

∑
i=2

(qd
i +qdu

i ) =

[
α

N+1

∑
i=2

qa
i +(1−α)

N+1

∑
i=2

qd
i

]
+ const. (11)

Therefore, a solution flow F∗ in Problem 1 can

be found with the demand cutted by (9)-(10).

However, queue calculated with respect to the

demand {(āi, d̄i)}, i ∈ {1, ...,N} have to be in-

creased on corresponding values of unavoidable

queue. For our following investigations we as-

sume without loss of generality that the points

of the initial demand (ai,di), i ∈ {1, ...,N} in

Problem 1 are already dominated by the point

M(MaxArr,MaxDep).

3 Weighted Distance Function

In the case of overdemand in an interval the min-

imal weighted sum of arrival/departure queues is

nothing else than the minimal weighted rectilin-

ear distance from the demand point to the points

of Pareto curve PCG, which coordinates are dom-

inated by the demand point.

Let us study properties of this function. For

this purpose we consider the difference of the

weighted rectilinear distances between the point

M(MaxArr,MaxDep) and one point of Pareto

curve Pj(p j
1, p j

2), where j ∈ {1, ...,n − 1} (see

Figure 1)

dα(M,Pj) = α(MaxArr− p j
1)+

(1−α)(MaxDep+ tanγ j p
j
1 −b j),

and the point M(MaxArr,MaxDep) and the next

point of Pareto curve Pj+1(p j+1
1 , p j+1

2 )

dα(M,Pj+1) = α(MaxArr− p j+1
1 )+(1−α)

(MaxDep+ tanγ j p
j+1
1 −b j).

The difference is equal to

dα(M,Pj)−dα(M,Pj+1) = (12)

(p j+1
1 − p j

1)(α− (1−α) tanγ j).

Since the term p j+1
1 − p j

1 is always positive, the

sign of the difference (12) depends on the sec-

ond term only. Therefore, the difference (12) is

positive for 0 ≤ γ j < arctan α
1−α , equal to zero for

γ j = arctan α
1−α and negative when arctan α

1−α <
γ j ≤ 90◦.

Because γ0 = 0◦ < γ1 < ... < γn−1 < γn =
90◦, weighted rectilinear distance dα(M,P1Pn)
between the point M and points of the curve

P1Pn is convex function with an unique mini-

mum if there are no γ j, j ∈ {1, ...,n− 1} satis-

fying γ j = arctan α
1−α and with minimum at any

point of the segment PjPj+1 if γ j = arctan α
1−α

for some j ∈ {1, ...,n− 1}. This segment is so

4
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Fig. 2 Influence of flow choice on weighted queue – Strategy ArrPriority

called "trade–off" area. Weighted rectilinear dis-

tance from any point A(a,d) with overdemand to

the part of P1Pn, which coordinates do not exceed

coordinates of the point A, have the same proper-

ties as dα(M,P1Pn).

4 Two Strategies

Let us investigate two strategies of flow construc-

tion and check for which configuration of Pareto

curve and for which weight α they contribute to

minimization of the total weighted queue.

4.1 Strategy ArrPriority: minimization of
arrival queue

Strategy ArrPriority in interval i∈ {1, ...,N} with

Pareto curve PCG (see Figure 1), demand point

A(ai,di) and queue (qa
i ,q

d
i ) at the beginning of

the time interval leads to the following flow

ui = min{ai +qa
i ,MaxArr} (13)

vi = min{di +qd
i ,− tanγ jui +b j,MaxDep} (14)

j ∈ {1, ...,n−1}.
To find out the optimal use of this strategy in

solution of Problem 1 we assume already calcu-

lated in some manner flow F so that in two fol-

lowing one after another intervals i and i+1 flow

points (ui,vi) and (ui+1,vi+1) are constructed by

(13) and (14), there is overdemand in both inter-

vals and the total arrival demand in both inter-

vals does not exceed MaxArr (Figure 2). Last

assumption does not violate the generality and al-

lows to avoid summands which will be cancelled

out in the following comparisons.

The part of the total weighted queue

which appears with the flow points (ui,vi) and

(ui+1,vi+1), situated on the segments of Pareto

curve with the slopes γ and γ̃, respectively, is

equal to

S = (1−α)qd
i+1 +(1−α)(qd

i+1 −δ tan γ̃− x),(15)

where δ > 0 and departure queue at the end of

interval i+1 is nonnegative

qd
i+1 −δ tan γ̃− x ≥ 0. (16)

We compare (15) with the change of the to-

tal weighted queue of the flow F appearing with

decreased on value δ > 0 arrival flow uδ
i = ui −δ

in the interval i and with increased at the cost of

δ arrival flow uδ
i+1 = ui+1 +δ in the interval i+1

(Figure 2). This shift is possible and has sense if

and only if

ui −δ ≥ p1
1 = MinArr (17)

ui+1 +δ ≤ pn
1 = MaxArr. (18)

5
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Let us assume that there are l ≥ 0 intervals

with positive departure queue qd
i+2+p > 0 for p ∈

{1, ..., l}, i+2+ l ≤ N +1 and qd
i+3+l = 0. Then

the change of the total weighted queue with the

shifted flow in intervals i and i+1

uδ
i = ui −δ (19)

vδ
i = vi +δ tanγ (20)

uδ
i+1 = ui+1 +δ (21)

vδ
i+1 = vi+1 −δ tan γ̃. (22)

is equal to

Sδ = αδ+(1−α)(qd
i+1 −δ tanγ)+

(1−α)(qd
i+1 −δ tanγ− x)−

l(1−α)δ tanγ, (23)

where departure queue at the end of interval i+1

qdq

i+2 = qd
i+1 −δ tanγ− x (24)

is nonnegative, decrease of departure queue

δ tanγ is not greater than the minimum

minp∈{1,...,l} qd
i+2+p and δ > 0 is small enough to

have flow points (ui,vi) and (uδ
i ,v

δ
i ), (ui+1,vi+1)

and (uδ
i+1,v

δ
i+1) on the segments of the Pareto

curve with the slopes γ and γ̃, respectively.

The difference of the total queues of the flow

F and of the flow F changed in intervals i and

i+1 is equal to

S−Sδ = δ((1−α)((2+ l) tanγ− tan γ̃)−α).(25)

Therefore, S is not greater than Sδ if and only if

(2+ l) tanγ− tan γ̃ ≤ α
1−α

. (26)

Let us assume that between two considered

intervals are k ≥ 0 other intervals with in a some

manner calculated flow so that departure queue

qd
i+p ≥ δ tanγ, (27)

where p ∈ {1, ...,k+2+ l}, l ≥ 0, i+k+2+ l ≤
N + 1 and qd

i+k+3+l = 0. Then Strategy ArrPri-

ority in intervals with demand points Ai(ai,di)
and Ai+k+1(ai+k+1,di+k+1) produces smaller to-

tal weighted queue compared to any other type of

flow construction when

(2+ l + k) tanγ− tan γ̃ ≤ (k+1)α
1−α

. (28)

Use of Strategy ArrPriority in both consid-

ered intervals is justified for tanγ ≤ α
1−α and

tan γ̃≤ α
1−α accordingly to properties of weighted

6
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Fig. 4 Pareto curve PCG and corresponding to α regions

rectilinear distance function. The satisfaction

of (28) depends on values of tanγ and tan γ̃.

However, it is always satisfied when tanγ ≤
(k+1)α

(2+l+k)(1−α) .

4.2 Strategy DepPriority: minimization of
departure queue

Strategy DepPriority in interval i ∈ {1, ...,N}
with Pareto curve PCG (see Figure 1), demand

point A(ai,di) and queue (qa
i ,q

d
i ) at the beginning

of the time interval leads to the following flow

vi = min{di +qd
i ,MaxDep} (29)

ui = min{ai +qa
i ,cotγ j(b j − vi),MaxArr} (30)

j ∈ {1, ...,n−1}.

In the similar way one can show (see Fig-

ure 3) that the sum of weighted queues produced

by Strategy DepPriority is not greater than the

sum appearing by any other strategy when

(2+ l + k)cotγ− cot γ̃ ≤ (k+1)(1−α)
α

. (31)

Taking into account properties of weighted rec-

tilinear distance function Strategy DepPriority is

explained for α
1−α < tanγ and α

1−α < tan γ̃. Then

the satisfaction of (31) depends on values of cotγ
and cot γ̃. However, (31) is satisfied when cotγ ≤
(k+1)(1−α)
(2+l+k)α .

5 Algorithm

Results of Sections 3 and 4 lead to the partition-

ing of the first quadrant into 4 regions illustrated

in Figure 4. Here is shown the general case of re-

gion Rα
2 with "trade-off" area PjPj+1. However,

Rα
2 can be based on one knot of Pareto curve only

when there does not exist γ j, j ∈ {1, ...,n − 1}
such that γ j = arctan α

1−α .

It should be noted that the number of the de-

scribed partitions for Pareto curve PCG is con-

stant and equal to the sum of knots P1, ..., Pn
and segments between them, i.e. 2n−1 (see Fig-

ure 4).

In order to solve Problem 1 for the given

weight α an initial solution Fstart = {(ui,vi)},

i = {1, ...,N} is constructed. It is found in the

7
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following way: if the total demand point (ai +
qa

i ,di +qd
i ) in interval i = {1, ...,N} is

• in Pareto region then ui = ai+qa
i , vi = di+

qd
i

• in region Rα
1 then (ui,vi) is calculated by

Strategy ArrPriority ((13)-(14))

• in region Rα
2 then ui = min{ai +qa

i , p j+1
1 },

vi =− tanγ jui +b j

• in region Rα
3 then (ui,vi) is found by Strat-

egy DepPriority ((29)-(30))

and queue at the end of interval i is equal to

qa
i+1 = ai +qa

i −ui, qd
i+1 = di +qd

i − vi.

In general, flow Fstart is noninteger. Since

Problem 1 belong to the pre-tactical planning of

capacity, where demand is composed of abstract

units only, the problem can be solved in real num-

bers. However, if we look for an integer solu-

tion, it can be constructed easily using the loca-

tion structure of integer points under Pareto curve

which are nearest to it from arrival or depar-

ture directions. These points, being consequently

connected with lines so that their first coordinate

does not decrease and second coordinate does not

increase, are always on small line segments with

slopes 0◦, 45◦ or 90◦ (Figure 5). Taking into ac-

�

�−�

�+�

Fig. 5 Structure of integer points under Pareto curve

count properties of weighted rectilinear distance

and results of Section 4 we can state that

Lemma 1 Each flow point on each step of cal-
culation of the initial solution Fstart and fol-
lowing after it reallocation of capacity can be
rounded down. However,

1. if the flow point is on the segment PjPj+1,
i.e. tanγ j =

α
1−α , and there is at least one

integer point on PjPj+1 dominated by the
demand point in the interval, then the flow
point is changed by the nearest to it integer
point of PjPj+1 dominated by the demand
point;

2. if α = 0.5, condition (28) (or (31)) is
satisfied for two considered intervals and
flow point in the first interval is integer
through rounding down, then it is neces-
sary to check whether the flow with the de-
parture part rounded up and the arrival
part decreased on one unit (the arrival
part rounded up and the departure part de-
creased on one unit) is in Pareto region and
gives the better outcome.

The calculated initial flow Fstart can be di-

vided into independent parts through intervals

without queue. Each resulting part consists of

blocks of intervals where tangent of the slope

corresponding to the flow is not greater or not

smaller than α
1−α . To find an optimal solution of

Problem 1 we should reallocate the capacity in

the blocks of intervals of the flow Fstart so that

the corresponding condition (28) or (31) is not

violated or if violated there is no possibility to

reallocate.

Let us consider one block of intervals B =
{i1, ..., ib}, 2 ≤ b ≤ N where, for instance, the

condition (28) has to be checked. We assume that

(28) is satisfied for intervals i1 and i2

(2+ l) tanγi1 − tanγi2 ≤
α

1−α
, (32)

and for intervals i2 and i3

(2+ l −1) tanγi2 − tanγi3 ≤
α

1−α
. (33)

Add together (32) and (33) we get

(2+ l) tanγi1 + l tanγi2 − tanγi3 ≤
2α

1−α
. (34)

8
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Since l tanγi2 > 0,

(2+1+(l −1)) tanγi1 − tanγi3 ≤
2α

1−α
, (35)

i.e. the condition (28) is satisfied for intervals i1
and i3. Analogously, from satisfaction of condi-

tion (28) for i1, i3 and i3, i4 it follows that (28)

is fulfilled for i1, i4. Therefore, in order to state

nonviolation of condition (28) for all pairs of in-

tervals in the block it is enough to have its nonvi-

olation for pairs (i1, i2), (i2, i3), ..., (ib−1, ib).
Let us assume that the condition (28) is sat-

isfied in block B for the pairs of intervals (i1, i2),
..., (ic−1, ic) and violated for (ic, ic+1) where 2 ≤
c < b− 3. Necessary check in this case is sum-

marised in Algorithm 1:

Algorithm 1 Check for intervals ic and ic+1

1: if (28) is violated then
2: if uic >MinArr and uic+1

<MaxArr then
3: reallocate capacity;

4: if no queue at ic+2 then {i1, ..., ic+1}
5: is checked, go to {ic+2, ..., ib};

6: else
7: if (28) is satisfied then
8: go to ic, ic+2 and eliminate

9: ic+1 from checking procedure;

10: else
11: go to ic−1, ic+1 and eliminate

12: ic from checking procedure;

13: end if
14: end if
15: else
16: go to ic+1, ic+2;

17: end if
18: end if

Similar arguments are valid for blocks of in-

tervals where tangent of the slope corresponding

to the flow is not smaller than α
1−α . Described

solution procedure is illustrated on numerical ex-

amples in Section 6.

5.1 Minimal finite solution set

Having possible decompositions of the first quad-

rant into regions by the weighted rectilinear dis-

tance dα(M(MaxArr,MaxDep),P1Pn) (see Sec-

tion 3) which has its minimum at the point⎧⎪⎪⎨
⎪⎪⎩

P1, if α ∈ [0,α1],
P2, if α ∈ [α1,α2],
..., ...,
Pn, if α ∈ [αn−1,1],

(36)

where 0 ≤ α1 ≤ ... ≤ αn−1 ≤ 1, we can always

construct the minimal finite solution set which

contains a solution for any weight α ∈ [0,1].
For this purpose we start the construction

of the minimal finite solution set in the inter-

val [0,α1]. First, the initial flow at one end-

point of the interval, for instance α = 0, is cal-

culated. Then reallocation of capacity in the ini-

tial flow is performed to get an optimal flow at

other endpoint α = α1 of the interval. How-

ever, sequence of reallocations differs from the

solution procedure for the fixed value α where

blocks are considered consequently starting from

the interval i = 1. Now the first two intervals

which violate the corresponding condition (28)

or (31) and have possibility for reallocation are

found in all blocks. Reallocation is performed

in a block where the ratio of increase of depar-

ture queue to decrease of arrival queue is mini-

mal. Then next two intervals for reallocation in

the considered block are found and reallocation

is performed in a block with the minimal ratio

and so on until an optimal solution for α = α1

is constructed. As a result we get the minimal

number of flows with the total queues which are

knots of concave piecewise linear curve. This

curve forms the lower bound of solutions for

α ∈ [0,α1]. The minimal weighted total queue

sum for the fixed α ∈ [0,α1] is the minimal rec-

tilinear weighted distance from the origin to the

points of this concave curve. Therefore, the knots

of the curve generate the minimal finite solution

set for α ∈ [0,α1].
Alternatively, the initial solution for α = α1

can be used in order to achieve an optimal flow

for α = 0. But here reallocation is performed in a

block where the ratio of increase of arrival queue

to decrease of departure queue is minimal.

In order to proceed the interval [α1,α2] is

9
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considered. The initial flow at one endpoint is

calculated and steps described above are per-

formed. After n iterations the minimal finite solu-

tion set for α ∈ [0,1] is composed from obtained

flows where possible double solutions with the

equal total arrival and departure queue for α1, ...,

αn−1 are eliminated. This set consists of flows

with the total queues which are knots of concave

piecewise linear curve.

Construction of the minimal finite solution

set is demonstrated in the next section.

6 Examples

Let us illustrate the developed solution procedure

on numerical examples.

6.1 First example

Example 1 Time period T consist of N = 4

time intervals with Pareto curve shown in Fig-
ure 6, where MaxArr = 25, MaxDep = 30. Ar-
rival/departure demand Ai(ai,di), i = 1, ...,4 is
collected in Table 1.

Find a flow which solves Problem 1 for α =
0.7, α = 0.6 and α = 0.5.

Example 1 is taken from [1] where it is solved

for α = 0.7 and α = 0.5 using LP-methods. The

reader can compare solutions and evaluate sim-

plicity and effectiveness of our algorithm.

Table 1 Example 1: arrival/departure demand, un-

avoidable queue and cutted arrival/departure de-

mand

int. demand unav. queue cutted dem.

i ai di qau
i+1 qdu

i+1 āi d̄i
1 13 35 0 5 13 30

2 32 2 7 0 25 7

3 24 28 6 0 25 28

4 10 20 0 0 16 20

total 79 85 13 5 79 85

As it was described in Section 2, we start with

the calculation of unavoidable queue and cutted

demand using formulas (9) and (10) and collect

them in Table 1. Both initial Ai(ai,di) and cut-

ted demand Āi(āi, d̄i), i = 1, ...,4 is shown in Fig-

ure 6. Further cutted demand is used to calcu-

late a flow solving the problem with the initial

demand. To find the arising queue for the initial

demand we should increase the queue for the cut-

ted demand on the value of unavoidable queue.
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Fig. 6 Original demand Ai(ai,di) and cutted de-
mand Āi(āi, d̄i), i = {1, ...,4}

For defining of regions with respect to the

given weight α the points of the Pareto curve at

which the weighted rectilinear distance function

dα(M(25,30),P1P3) is minimal are found (see

Section 3)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P1 = (15,30), if α ∈ [0,0.6],
P1P2, if α = 0.6,

P2 = (21,21), if α ∈ [0.6, 9
13 ],

P2P3, if α = 9
13 ,

P3 = (25,12), if α ∈ [ 9
13 ,1].

(37)

Therefore, for α = 0.7, 0.6 and 0.5 the first quad-

rant is decomposed into regions shown in Figures

7, 8 and 9, respectively.

6.1.1 α = 0.7

Let us calculate the initial flow for α = 0.7 and

collect it in Table 2. For this value α tangent

10
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of the "trade-off" slope is equal to α
1−α = 2.(3).

Since demand point Ā1 is on Pareto curve af-

ter calculation and shifting of unavoidable queue,

flow point in the interval is equal to the de-

mand. There is no queue for the next interval.

Therefore, the tangent of the corresponding slope

is not saved. The same argumentation is also

valid for the second interval with the demand

Ā2 +(qa
2,q

d
2).

Table 2 Example 1: α = 0.7 – initial solution

demand flow queue

i āi d̄i ui vi tanγi qa
i+1 qd

i+1

1 13 30 13 30 0 0

2 25 7 25 7 0 0

3 25 28 25 12 2.25 0 16

4 16 20 16 28 1.5 0 8

79 85 79 77 0 24
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Fig. 7 Regions for α = 0.7

The demand point Ā3 belongs to R0.7
1 . There-

fore, the flow point in this interval is calculated

using strategy ArrPriority with formulas (13) and

(14). Since there is departure queue at the end of

the third interval, tangent tanγ = 2.25 of the seg-

ment slope which contains the flow point (25,12)
is saved. The demand point Ā4 + (qa

4,q
d
4) =

(16,36) ∈ R0.7
1 . Hence, the flow point in the in-

terval i = 4 will belong to the segment with tan-

gent of the slope tanγ = 1.5. Since the departure

part of the flow is not integer, the flow is rounded

down.

Table 3 Example 1: α = 0.7 - update

demand flow queue

i āi d̄i ui vi tanγi qa
i+1 qd

i+1

1 13 30 13 30 0 0

2 25 7 25 7 0 0

3 25 28 21 21 1.5 4 7

4 16 20 20 22 1.5 0 5

79 85 79 80 4 12

Now we chose the first block of intervals

where tangents are on the one side from the

"trade-off" value. The block includes intervals

3 and 4 with tangents that are less than or equal

to α
1−α = 2.(3). Therefore, the condition (28) is

checked on violation. Reallocation of capacity in

these intervals is possible because (17) and (18)

are satisfied: u3 > 15 and u4 < 25. With k = 0,

l = 0, tanγ = 2.25, tan γ̃ = 1.5 the condition (28)

is violated. δ > 0 should be chosen so that ei-

ther one or both flows will be shifted to the near-

est to it knot of Pareto curve so far as the min-

imum of departure queue, which is equal to 8,

is not used up. Hence, δ = 4 and after realloca-

tion tanγ will be equal to 1.5. It leads to satisfac-

tion of condition (28). Reallocation is performed

with formulas of Section 4.1 and shown in Ta-

ble 3. Accordingly to Algorithm 1 tangent tanγ4

for the interval i = 4 is deleted from the consid-

ered block and check is finished. Calculated flow

solves the problem with original demand (ai,di),
i ∈ {1, ..,4}, where queue have to be extended by

unavoidable queue from Table 1.

6.1.2 α = 0.6

"Trade - off" value for the given weight α= 0.6 is

equal to α
1−α = 1.5. The initial flow calculation in

the first two intervals coincide with the described

in Section 6.1.1.

11
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Fig. 8 Regions for α = 0.6

Table 4 Example 1: α = 0.6 - initial solution

demand flow queue

i āi d̄i ui vi tanγi qa
i+1 qd

i+1

1 13 30 13 30 0 0

2 25 7 25 7 0 0

3 25 28 21 21 1.5 4 7

4 16 20 19 24 1.5 1 3

79 85 78 82 5 10

The demand point Ā3 belongs to R0.6
2 . There-

fore, u3 = 21 and v3 = 21. Since there is queue at

the end of the third interval, tangent tanγ = 1.5 of

the segment slope which contains the flow point

(21,21) is saved (Table 4). The demand point

Ā4 +(qa
4,q

d
4) = (20,27) ∈ R0.6

2 . Hence, the flow

point for this interval is on the segment with tan-

gent of the slope tanγ = 1.5. Since the departure

part of the flow is not integer and conditions of

Lemma 1 (conclusion 1) are satisfied, the value

tanγ = 1.5 is saved and the flow point is changed

by the integer point (19,24)∈ P1P2 (see Table 4).

The first block of intervals in the initial flow

includes intervals 3 and 4 with tangents that are

less than or equal to α
1−α = 1.5. The condition

(28) is satisfied for the block. Therefore, the ini-

tial solution from Table 4 is optimal for α = 0.6.

6.1.3 α = 0.5

Tangent of the "trade - off" value for α = 0.5 is

equal to α
1−α = 1. The initial flow calculation in

the first two intervals is the same as described in

Section 6.1.1.
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Fig. 9 Regions for α = 0.5

Since Ā3 ∈ R0.5
3 , the initial flow point in this

interval is calculated using strategy DepPrior-

ity with formulas (29) and (30). Since there

is arrival queue at the end of the third interval,

tangent tanγ = 1.5 of the segment slope which

contains the flow point is saved and the flow

is rounded down (Table 5). The demand point

Table 5 Example 1: α = 0.5 - initial solution

demand flow queue

i āi d̄i ui vi tanγi qa
i+1 qd

i+1

1 13 30 13 30 0 0

2 25 7 25 7 0 0

3 25 28 16 28 1.5 9 0

4 16 20 21 20 2.25 4 0

79 85 75 85 13 0

Ā4 + (qa
4,q

d
4) = (25,20) ∈ R0.5

3 . Hence, the ini-

tial flow point for this interval will belong to the

segment with tangent of the slope tanγ = 2.25.

12



OPTIMIZATION OF RUNWAY CAPACITY UTILIZATION

Since the arrival part of the flow is not integer,

the value tanγ = 2.25 is saved and the flow is

rounded down (Table 5).

Condition (31) is satisfied and α = 0.5. Since

the flow in the third interval is integer through

rounding down, we have to check based on

Lemma 1 (conclusion 2) whether the flow u3 =
17, v3 = 27 in the third interval gives the better

outcome. As we see in Table 6, the total flow in

the forth interval grows. Therefore, the flow cal-

culated in Table 6 solves the problem optimally.

Table 6 Example 1: α = 0.5 - update

demand flow queue

i āi d̄i ui vi tanγi qa
i+1 qd

i+1

1 13 30 13 30 0 0

2 25 7 25 7 0 0

3 25 28 17 27 1.5 8 1

4 16 20 21 21 1.5 3 0

79 85 76 85 11 1

6.1.4 Minimal finite solution set for Example 1

Accordingly to Section 5.1 and (37) the minimal

finite solution set for any α ∈ [0,1] is constructed

in three steps.

At the first step interval [0,0.6] for the weight

α is considered. We take the initial solution

for α = 0 which coincides with the calculated

in Table 5 and check the condition (31) for the

unique block {3,4}. Since k = 0, l = 0, cotγ = 2
3 ,

cot γ̃ = 4
9 , 1−α

α = 2
3 , the condition (31) is violated.

After reallocation we get the flow from Table 6

which satisfies the condition (31). Therefore, the

flows from Tables 5 and 6 belong to the minimal

finite solution set of Example 1 illustrated in Fig-

ure 10 and collected in Table 7.

At the second step we change to α ∈ [0.6, 9
13 ]

and calculate the initial solution for α = 0.6
which coincides with the given in Table 4. The

condition (28) in intervals 3 and 4 is satisfied for

α = 9
13 . Hence, the flow from Table 4 can be in-

cluded in the minimal finite solution set.
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Fig. 10 Concave solution curve for Example 1

Finally, α ∈ [ 9
13 ,1] is considered. The flow

from Table 2 is the initial flow for α = 1. The

condition (28) in intervals 3 and 4 is violated for

α = 9
13 . After reallocation the flow from Table 3

is obtained. It satisfies the condition (28). There-

fore, the construction of the minimal finite solu-

tion set is finished.

Table 7 Minimal finite solution set for Example 1

Table 2 3 4 6 5

α [3
4 ,1] [2

3 ,
3
4 ] [3

5 ,
2
3 ] [1

3 ,
3
5 ] [0, 1

3 ]

The reader can check optimality of solutions

for the given weight α by the corresponding con-

dition (28) or (31).

6.2 Second example

Example 2 Time period T consist of N = 5

time intervals, MaxArri = 12, MaxDepi = 12,
MaxCapi = 20 for i = 1, ...,5. Arrival/departure
demand is collected in Table 8.

Find a flow which solves Problem 1 for α= 1
3 ,

α = 1
2 and α = 3

4 .

Example 2 is taken from [6] where it is solved

with the help of an reallocation method devel-

oped for the simple case of Pareto curve. The

reader can compare the solution from [6] with

13
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Table 8 Example 2: arrival/departure demand

time int. arr. dem. dep. dem.

1 a1 = 12 d1 = 12

2 a2 = 12 d2 = 12

3 a3 = 12 d3 = 12

4 a4 = 1 d4 = 10

5 a5 = 2 d5 = 10

total demand 39 56

the given below constructed by the reallocation

method for the general case of Pareto curve.

Since there is no unavoidable queue over the

time period T , the cutted demand coincides with

the initial demand from Table 8.

In order to identify regions with respect to the

fixed weight α the points of the Pareto curve giv-

ing minimum of the weighted rectilinear distance

function dα(M(12,12),P1P2) are found⎧⎨
⎩

P1 = (8,12), if α ∈ [0,0.5],
P1P2, if α = 0.5,

P2 = (12,8), if α ∈ [0.5,1].
(38)

6.2.1 α = 1
3
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Fig. 11 Regions for α < 0.5

For α = 1
3 region R

1
3
2 is based on the point

P1 = (8,12) (see Figure 11). The initial flow il-

lustrated in Table 9 is calculated using Strategy

DepPriority (29)-(30). Since all demand points

Table 9 Example 2: α = 1
3

– initial solution

demand flow queue

i ai di ui vi tanγi qa
i+1 qd

i+1

1 12 12 8 12 1 4 0

2 12 12 8 12 1 8 0

3 12 12 8 12 1 12 0

4 1 10 10 10 1 3 0

5 2 10 5 10 0 0 0

39 56 39 56 27 0

of the block {1,2,3,4} are in the regions R
1
3
2 and

R
1
3
3 , the condition (31) has to be checked:

• i = 1 and i = 2 ⇒ k = 0, l = 2 and (31) is

violated, but v2 = MaxDep and can not be

shifted up ⇒ go to i = 2 and i = 3

• i = 2 and i = 3 ⇒ k = 0, l = 1 and (31) is

satisfied ⇒ go to i = 3 and i = 4

• i = 3 and i = 4 ⇒ k = 0, l = 0 and

(31) is satisfied ⇒ the block {1,2,3,4} is

checked.

Therefore, the flow from Table 9 is an optimal

solution of the problem for α = 1
3 .

6.2.2 α = 1
2

For α = 1
2 region R

1
2
2 is based on the segment

P1P2 = [(8,12),(12,8)] (see Figure 12). The ini-

tial flow is given in Table 10.

Table 10 Example 2: α = 1
2

– initial solution

demand flow queue

i ai di ui vi tanγi qa
i+1 qd

i+1

1 12 12 12 8 1 0 4

2 12 12 12 8 1 0 8

3 12 12 12 8 1 0 12

4 1 10 1 12 0 0 10

5 2 10 2 12 0 0 8

39 56 39 48 0 42

14
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Fig. 12 Regions for α = 0.5

Since all demand points appear in regions R
1
2
1

and R
1
2
2 , we have to check condition (28) for the

block {1,2,3,4,5}. It is performed by Algo-

rithm 1:

• i = 1 and i = 2 ⇒ k = 0, l = 3 and (28) is

violated, but u2 = MaxArr and can not be

shifted up ⇒ go to i = 2 and i = 3

• i = 2 and i = 3 ⇒ k = 0, l = 2 and (28) is

violated, but u3 = MaxArr and can not be

shifted up ⇒ go to i = 3 and i = 4

Table 11 Example 2: α = 1
2

– update 1

demand flow queue

i ai di ui vi tanγi qa
i+1 qd

i+1

1 12 12 12 8 1 0 4

2 12 12 12 8 1 0 8

3 12 12 8 12 1 4 8

4 1 10 5 12 0 0 6

5 2 10 2 12 0 0 4

39 56 39 52 4 30

• i = 3 and i = 4 ⇒ k = 0, l = 1, (28) is vi-

olated and u4 < MaxArr. Hence, realloca-

tion is performed and collected in Table 11,

interval i = 3 is eliminated from the future

consideration (marked grey in Table 11) ⇒
go to i = 2 and i = 4

• i= 2 and i= 4 ⇒ k= 1, l = 1 and (28) is vi-

olated and u4 < MaxArr. Hence, realloca-

tion is performed and collected in Table 12,

interval i = 4 is eliminated from the future

consideration ⇒ go to i = 2 and i = 5

Table 12 Example 2: α = 1
2

– update 2

demand flow queue

i ai di ui vi tanγi qa
i+1 qd

i+1

1 12 12 12 8 1 0 4

2 12 12 9 11 1 3 5

3 12 12 8 12 1 7 5

4 1 10 8 12 1 0 3

5 2 10 2 12 0 0 1

39 56 39 55 10 18

• i= 2 and i= 5 ⇒ k= 2, l = 0 and (28) is vi-

olated and u5 < MaxArr. Hence, realloca-

tion is performed and collected in Table 13.

There is no departure queue in the inter-

val i = 5. Hence, the block {1,2,3,4,5} is

checked and the flow in Table 13 is optimal

for α = 0.5.

Table 13 Example 2: α = 1
2

– update 3

demand flow queue

i ai di ui vi tanγi qa
i+1 qd

i+1

1 12 12 12 8 1 0 4

2 12 12 8 12 1 4 4

3 12 12 8 12 1 8 4

4 1 10 8 12 1 1 2

5 2 10 3 12 0 0 0

39 56 39 56 13 14

6.2.3 α = 3
4

For α ∈ [1
2 ,1] region Rα

2 is based on the point

P2 = (12,8) (see Figure 13). Therefore, the flow

illustrated in Table 10 is the initial flow for any

15
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Fig. 13 Regions for α > 0.5

α ∈ [1
2 ,1]. All demand points are in the regions

R
3
4
1 and R

3
4
2 . Hence, the condition (28) for the

block {1,2,3,4,5} has to be checked:

• i = 1 and i = 2 ⇒ k = 0, l = 3 and (28) is

violated, but u2 = MaxArr and can not be

shifted up ⇒ go to i = 2 and i = 3

• i = 2 and i = 3 ⇒ k = 0, l = 2 and (28) is

satisfied ⇒ go to i = 3 and i = 4

• i = 3 and i = 4 ⇒ k = 0, l = 1, (28) is sat-

isfied ⇒ go to i = 4 and i = 5

• i = 4 and i = 5 ⇒ k = 0, l = 0, (28) is sat-

isfied ⇒ {1,2,3,4,5} is checked.

Thus, the initial solution from Table 10 is an op-

timal solution for α = 3
4 .

6.2.4 Minimal finite solution set for Example 2

Based on Section 5.1 and (38) construction of the

minimal finite set is performed in two steps.

On the first hand, the initial solution for α= 0

is calculated and capacity in it is reallocated in

order to achieve an optimal flow for α = 1
2 . The

solution from Table 9 is the initial solution for

α = 0 and as it can be easily checked an optimal

solution for α = 1
2 . This flow solves Problem 1

for any α ∈ [0, 1
2 ]. Therefore, we put the solution

from Table 9 into the minimal finite solution set

illustrated in Figure 14 and collected in Table 14.

On the second hand, the initial solution for

α = 1 is taken to find an optimal flow for α = 1
2 .
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Fig. 14 Concave solution curve for Example 2

Since the initial solution for α = 1 coincides with

the illustrated in Table 10 and there is only one

block in it, Tables 10-13 from Section 6.2.2 final-

ize finding of the minimal finite solution set of

Example 2.

Table 14 Minimal finite solution set for Example 2

Table 10 11 12 13 9

α [3
4 ,1] [2

3 ,
3
4 ] [4

7 ,
2
3 ] [1

2 ,
4
7 ] [0, 1

2 ]

The reader can check optimality of solutions

for the given weight α by condition (28) for flows

from Tables 10-13 and by condition (31) for the

flow from Table 9.

7 Conclusions

Our investigation results in a straightforward and

effective O(N2) algorithm giving integer solu-

tion for the problem of total weighted queues

sum minimization over a planning horizon with

the corresponding set of general Pareto curves

for arbitrary number of considered time intervals.

That is also an advantage compared to the lin-

ear programming approach. Moreover, the min-

imal finite solution set, which contains an opti-

mal flow for each weight value in the above men-

tioned problem, can be calculated easily. Flows

from this set produce minimal weighted delay
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and maximal weighted throughput. Additionally,

an "almost optimal" solution can be obtained by

hand for an arbitrary number of considered inter-

vals.

With the constructed algorithm we get a

controlling tool for the outcome of the ar-

rival/departure queue. The algorithm can be ex-

tended, for instance, for design of a flow which

allows to achieve the maximal number of punc-

tual flights. In general, the presented algorithm

can be used for any problem of allocation of re-

sources when their interdependence is given by

convex piecewise linear curve.

References

[1] Eugene P. Gilbo, Airport Capacity: Represen-
tation, Estimation, Optimization, IEEE Transac-

tions on Control Systems Technology, 1993, Vol.

1, No. 3, pp. 144-154.

[2] Eugene P. Gilbo, Kenneth W. Howard, Collab-
orative Optimization of Airport Arrival and De-
parture Traffic Flow Management Strategies for
CDM, 3rd USA/Europe Air Traffic Management

R&D Seminar, Napoli, Italy, 2000, June 13-16.

[3] Eugene P. Gilbo, Optimizing airport capacity
utilization in air traffic flow management sub-
ject to constraints at arrival and departure fixes,

IEEE Transactions on Control Systems Technol-

ogy, Volume 5, Issue 5, 1997, 14p.

[4] Eugene P. Gilbo, Arrival/Departure Capacity
Tradeoff Optimization: a Case Study at the St.
Louis Lambert International Airport (STL), 5th

USA/Europe Air Traffic Management R&D Sem-

inar, Budapest, 2003, June 23-27.

[5] O. Gluchshenko, Dynamic Usage of Capacity for
Arrivals and Departures in Queue, Delay and
Punctuality Optimization, DLR Internal Techni-

cal Report IB-112-2010/48.

[6] O. Gluchshenko, Dynamic Usage of Capacity for
Arrivals and Departures in Queue Minimization,

Control Applications (CCA), 2011 IEEE Interna-

tional Conference on, 2011, pp. 139-146.

[7] S. Kellner, Airport Capacity Benchmarking by
Density Plots, GARS Seminar, November 2009.

[8] V. Ramanujam, H. Balakrishnan, Estimation of
arrival-departure capacity tradeoffs in multi-
airport systems, Decision and Control, 2009 held

jointly with the 2009 28th Chinese Control Con-

ference CDC/CCC 2009, Proceedings of the 48th

IEEE Conference on, 2009, pp. 2534 - 2540.

[9] Y. Ye, An O(n3L) potential reduction algorithm
for linear programming, Math. Programming

50(1991) pp. 239-258.

Copyright Statement

The authors confirm that they, and/or their company or

organization, hold copyright on all of the original ma-

terial included in this paper. The authors also confirm

that they have obtained permission, from the copy-

right holder of any third party material included in this

paper, to publish it as part of their paper. The authors

confirm that they give permission, or have obtained

permission from the copyright holder of this paper, for

the publication and distribution of this paper as part of

the ICAS2012 proceedings or as individual off-prints

from the proceedings.

17


