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slipstream flows, the influenced wing forces and 
the interfered slipstream vorticity distributions 
are presented and analyzed. 

2    Computation Strategy  

2.1   Time-accurate Method  

Three-dimensional time-accurate compressible 
RANS equations[7] are solved using finite 
volume method based on body fitted multiblock 
structured grids. For simulations presented here, 
spatial discretizations of the convective fluxes 
are done with second-order upwind Roe’s finite-
difference splitting scheme, whereas the viscous 
fluxes are discretized with second-order central 
difference scheme. Dual time stepping method 
is employed to advance the solution in time, 
while multigrid and local time stepping are 
introduced in the sub iterations to accelerate the 
convergence. Fully turbulent flow is assumed, 
and the one-equation turbulent model of 
Spalart-Allmaras[8] is employed. 

To deal with the relative motion between 
the propeller and the nacelle/wing, dynamic 
patched grid technique is implemented[9,10]. 
Patched-grid interpolation coefficients across 
the cell interfaces are recreated after each 
physical time step since the relative positions of 
cells on the two sides of patched faces are 
renewed.  

A six-bladed propeller is adopted here and 
it is installed on an untwisted wing with 
symmetric airfoil to simulate the interference. 
The topology of the dynamic patched grid for 
isolated propeller, shown in Fig. 1, is comprised 
of two parts, a cylinder grid surrounding the 
propeller and the outer grid up to far field 
boundaries. As the propeller rotates, the inner 
cylinder grid rotates with the propeller, while 
the outer part grid keeps stationary with the 
nacelle. Similar grid topology is employed for 
the installed configuration, shown in Fig. 2. 
Although the nacelle in simulations of isolated 
propeller slipstream flows, shown in Fig. 1, is 
cylinder to neglect the nacelle geometry effect 
on slipstream flows, the simulations to identify 
the install effect are conducted on the same 
nacelle configuration as that in Fig. 2.  

Particular attention should be paid on the 
grids around the patched surfaces, like shown in 
Fig. 2. Patching works best when the spacing of 
the adjacent grid in the normal direction to the 
patch face is the same as that in the other grid. 
Too large differences of spacing in the 
tangential direction will compromise the 
accuracy of interpolation. To ensure an adequate 
solution of the blade tip vortices and the wake, 
very small cells are generated around the blade 
tip and downstream of the propeller.  

For these viscous computations, the total 
cells amount to nearly 9 million for isolated 
propeller and 11 million for propeller installed 
on the wing. And one time-accurate simulation 
of the installed configuration lasts 5 days on 12 
CPU for 5 rotational revolutions to get a fully 
developed slipstream flows.  

 
Fig. 1 Grid Topology of Isolated Propeller 
 

 
Fig. 2 Grid Topology of Propeller Installed with Wing 

2.2    Actuator Disk Approach 
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 TIME-ACCURATE VERSUS ACTUATOR DISK SIMULATIONS OF 
PROPELLER SLIPSTREAM FLOWS

According to the momentum theory, the 
propeller is approximated to be an ideal disk 
with no thickness, loaded by the momentum 
variation of flow across the propeller. The load 
distribution on the actuator disk is the cardinal 
part for its capability of propeller slipstream 
flows. To enhance the accuracy, we establish 
the actuator disk load model from the pressure 
distributions on the isolated propeller blades[11]. 

During one rotational cycle of propeller, 
the axial thrust force  and tangential force T ′
Fθ
′  on one blade element  only act during the 

blade rotates past the angle of 
dr

dθ , and the time 
is /dt dθ ω= . While for the actuator disk 
approach, the pressure jump   and variation 
of rotational velocity 

pΔ
vθΔ
dr
 keep on acting on the 

disk element dS rdθ=  during the whole 
rotation period of T 2 /π ω= . Since the 
variation of flow momentum across the area 
element dS rd drθ=  needs to be kept the same, 
the relationships between these variables are 
given in Eq. (1) and (2), 

2( ) dp rd dr T dr Nπ θθ
ω ω

′Δ ⋅ ⋅ = ⋅                    (1) 

2( ) ( ) dv u rd dr F drθ θ Nπ θρ θ
ω ω

′Δ ⋅ ⋅ ⋅ = ⋅       (2) 

Where,  is the radius, r ω  is the rational speed 
of propeller,  is the number of blades and N uρ  
is product of density and velocity at actuator 
disk. Axial thrust force T ′  and tangential force 
Fθ
′ , which are functions of radius r  and 

azimuth angle θ , are getting from the pressure 
distributions of isolated rotating propeller blades 
using time-accurate method.  
 Quasi-steady RANS simulations are 
conducted, with the load distributions of 
pressure jump  and variation of rotational 
velocity 

pΔ
vθΔ  as special boundary condition at 

the actuator disk[12]. The flux discretization 
scheme and turbulence model are chosen as 
same as those adopted in time-accurate 
simulations, and the solver is advanced in time 
using implicit approximate factorization. 
 Since no relative motion here, the grid 
topology adopted is point-to-point structured 
multiblock. Besides, the grid generation is much 
easier than the dynamic patched grid due to the 

simply geometry of ideal disk. The grid, 
corresponding to the installed propeller 
configuration, used for actuator disk method is 
about 4.2 million. Although it is seemingly too 
fine for this simple geometric configuration, the 
quasi-steady simulation does not cost too much. 
One simulation only lasts 6 hours on 4 CPU, 
which shortens too much CPU time getting a 
reasonable solution relative to the time-accurate 
method. The surface grid of installed 
configuration is shown in Fig. 3, and the grid on 
actuator disk is also displayed. 

 
Fig. 3 Grid of Actuator Disk Approach 

3   Results and Analysis 

Numerical simulations of this six-bladed 
propeller are performed with fixed rotational 
speed ω=1075rad/min. With advance ratio λ=0.7, 
the freestream Mach number Ma=0.1475 and 
Reynolds number Re=3.43E06, while at λ=1.1 
Ma=0.2319 and Re=5.4E06 respectively.  

3.1   Isolated Propeller Slipstream Flows 

The slipstream flow development behind the 
isolated propeller, at advance ratio λ=1.1 with 
angle of attack of α=0° is analyzed here. 

As the propeller rotates, it induces swirls in 
the slipstream, and the blade tip vortices in 
slipstream pass by periodically. Fig. 4(a) (b) 
show the time-accurate normalized axial and 
tangential velocity radial distribution in the 
slipstream just behind the propeller at x/R =0.2 
respectively, in which R is the radius of the 
propeller and x=0 is at propeller location. In Fig. 

3  
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4, the fluctuations of the time accurate velocity 
profiles at different rotating blade positions of 
Ψ=30°, Ψ=60° and Ψ=90° respectively reflect 
the periodical passage of blade tip vortices, 
which is significant unsteady performance of 
the propeller slipstream flow. Since the 
propeller is six-bladed, the blade tip vortices 
pass every rotational angle of 60°, which is 
shown by the superposition of velocity 
distributions at blade positions of Ψ=30° and 
Ψ=90°. Furthermore, the amplitudes of 
fluctuations will decrease downstream in the 
slipstream. 

 
(a) Axial Velocity Profiles 

 
(b) Tangential Velocity Profiles 
Fig. 4 Time-accurate radial velocity profiles at x/R=0.2 
 
 Since the actuator disk theory 
approaches the quasi-steady flow, the velocity 
distributions in slipstream flow will compared 
with the time-averaged results of unsteady 

simulations. The comparison of radial velocity 
profiles downstream the actuator disk at x/R 
=1.73 is shown in Fig. 5, in which the 
introduction of rotational velocity increase is 
also analyzed. In Fig. 5(a), the axial velocity 
distribution of actuator disk model with both 
pressure jump and rotational velocity increase 
couples better with the time-averaged profile of 
rotating propeller slipstream flow, and Fig 5(b) 
shows that without introducing rotational 
velocity increase at actuator disk will not swirl 
the slipstream flow. 

 
(a) Axial Velocity Profiles   

 
  (b) Tangential Velocity Profiles 
Fig. 5 Velocity Profiles down Actuator Disk at x/R =1.73 
 
 Although we can’t get the periodical 
developments of slipstream flow using actuator 
disk theory, the well coupled time-averaged 
velocity distributions and shortened cost are 
appreciated. 

4 
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 TIME-ACCURATE VERSUS ACTUATOR DISK SIMULATIONS OF 
PROPELLER SLIPSTREAM FLOWS

 
(a) Time-Accurate Method 

 
(b) Actuator Disk Approach 
Fig. 10   Vorticity Distributions in Slipstream of Installed 
Configuration at x=3.0 at Angle of Attack of α=0° 
 

When the angle of attack is high, α=10° 
for example, the upsweeping swirls in 
slipstream make the local angle of attack for the 
airfoil even higher. As we all know, separation 
may happen around the airfoil at high angle of 
attack. To find out this, the vortices across the 
streamwise location of x=3.0 of two methods 
are displayed in Fig. 11(a)(b). The slipstream 
separates around the sweeping upward side of 
wing, while no separation happens on the other 
half part. That is because the swirls upsweeping  
enlarge the local angle of attack, while they 
decrease the local angle of attack on the other 
side. More intricate vortices come forth in Fig. 
11 than that at angle of attack of α=0° shown in 
Fig. 10. The extraordinary complex vortices are 

due to the interference between the swirls in 
slipstream and the separated flow. That may 
cause the deflection of actuator disk method 
with the time-averaged wing force coefficients 
of unsteady simulations at angle of attack of 10°.  

 
(a) Time-Accurate Vorticity Distributions  

 
(b) Actuator Disk Approach 
Fig. 11 Vorticity Distributions in Slipstream of Installed 
Configuration at x=3.0 at Angle of Attack of α=10° 

4 Conclusions 

Time-accurate simulations based on 
dynamic-patched grids and quasi-steady states 
approached by actuator disk theory are 
conducted and compared of isolated propeller 
and installed propeller on the wing respectively.  

For time-accurate simulations, grid 
generations of the propeller are more complex 
and much time consuming than that of the 
simple ideal disk for actuator disk theory. 

7  
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Moreover, the several revolutions requested in 
time-accurate simulations cost many times CPU 
time than the quasi-steady simulations of 
actuator disk theory.  
 For isolated propeller, the instantaneous 
axial and tangential velocity distributions in 
slipstream flows show the periodical passing by 
of blade vortices, while those of the actuator 
disk model introducing the rotational velocity 
increase couple very well with the time-
averaged profiles.  
 When the propeller installed on the wing, 
the pressure distributions and forces of wing are 
influenced by the swirls in slipstream flows. 
The lift and pitching moment magnitudes of 
wing are increased while wing drags are 
decreased at low angles of attack but increased 
at high angle of attack. Otherwise, the vortices 
structured in slipstream flows are also interfered 
by the wing. The streamwise and spanwise 
locations of blade vortices are staggered on the 
upper and lower surfaces of wing and interacted 
vortices are induced near nacelle. Besides, the 
slipstream flow separates at high angle of attack 
of 10° around sweeping upward side. The 
results from actuator disk method agree well 
with the time-averaged results of unsteady 
simulations at low and moderate angles of 
attack however discrepancy appears where 
separation happens. 
 The actuator disk approach is 
particularly attractive in design and prediction 
period, since it gives a reasonable solution with 
removing the relative motion which costs too 
much CPU memory and time in unsteady 
simulations. However, the time-accurate method 
is still indispensable when unsteady details are 
requested as propeller works.  
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