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Abstract

This paper presents a survey of previously pre-
sented vision-based aircraft detection flight test,
and then presents new flight test results examin-
ing the impact of camera field-of-view choice on
the detection range and false alarm rate charac-
teristics of a vision-based aircraft detection tech-
nique. Using data collected from approaching
aircraft, we examine the impact of camera field-
of-view choice and confirm that, when aiming
for similar levels of detection confidence, an im-
provement in detection range can be obtained
by choosing a smaller effective field-of-view (in
terms of degrees per pixel).

1 Introduction

Over the last 5 years, our organization has in-
vestigated a number of key technology issues re-
lated to the integration of unmanned airborne sys-
tems (UAS) into the national airspace, for exam-
ple see [1–13]. Amongst these issues, one of
the more important is the automation and repli-
cation of the human pilot see-and-avoid capa-
bility [14, 15]. The lack of certified sense-and-
avoid technology (the automated version of see-
and-avoid) has been previously identified as a key
barrier to further utilization of Unmanned Aerial
System (UAS) [16, 17]. A sense-and-avoid so-
lution based on machine vision has been sug-
gested as one of the most promising approaches

1Rodney Walker died October 2011.

for gaining regulatory approval [18]. This oppor-
tunity motivates us to examine some important
performance characteristics of vision-based air-
craft detection technology.

The authors of this paper has been devel-
oping vision-based collision avoidance technol-
ogy since 2005, see [1–13]. During our inves-
tigations we have evolved technological capa-
bility from simulation and ground based testing
[1–3], through hardware implementations con-
siderations [5, 6], via UAS-on-UAS flight tests
[7] and aircraft-on-aircraft flight testing [9], to
closed-loop automated collision avoidance flight
testing (between two aircraft) [11, 12]. During
this period of investigation, we conducted trade-
studies of various algorithm choices, see details
[1–4, 7, 10], leading to the conclusions that mor-
phology hidden Markov model algorithms are the
current state of the art for this application, see a
detailed description of such algorithms in [7,13].
We have also conducted integrated airspace flight
tests (involving a mixed airspace of rotorcraft
UAV, fixed-wing UAV and manned aircraft) [8].

The first contribution of this paper is to
present a suvery of the reported ground and
airborne captured data tests related to the per-
formance of vision-based aircraft detection ap-
proaches. This survey suggests that the initial
feasibility of vision-based target detection has
been successfully demonstrated (confirming the
observations from our own testing program, as
reported in [1,7,9,11,12]), but has also identified
a number of important practical issues (such as
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false targets arising from cloud backgrounds and
compensation for platform vibrations and aero-
dynamic disturbances [7]).

The second contribution of this paper is to
consider the critical system design trade-offs of:
field-of-view, detection range, and false alarm
performance (on the basis of a practical real-
time target detection approach that exploits hid-
den Markov model and image morphology filter-
ing concepts). In our empirical study a ground
based camera with multiple lens configurations
was used to collect head-on-approaching target
images for evaluation of detection ranges. Unlike
previous studies, we also captured a large corpus
of non-target background images to assess false
alarm performance down to a resolution of ap-
proximately 1 per hour (continuing work aiming
for low-false alarm rates is outlined in [9]). Our
results are presented in terms of receiver operat-
ing characteristic (ROC) curves and qualified by
a detection confidence measure related to signal-
to-noise ratio (SNR) quantities.

2 Survey of a Decade of Vision Based Air-
craft Detection Experiments

An examination of the literature related to image-
based aircraft detection technology identified 15
papers during the period 1999 to 2011 that re-
ported flight or ground-based data collection ex-
periments (we found no published studies be-
fore 1999). Of these 15 papers, 11 studies re-
ported sufficient information to determine at least
one of the following measures of detection per-
formance: detection distance (reported distances
ranged from 18.5 km to 0.89 km), detection rate
(ranging from 35.7% to 100%), and false alarm
rate (ranging from 2.62 to 0.0004 false alarms
per frame). The performance of the detection ap-
proaches from these 11 studies are summarised in
Tables 1 and 2 (this includes 3 studies involving
data collected from a ground-based vision sen-
sor and 8 studies involving data collected from
an airborne platform). For comparison purposes,
we will also include 2 studies that have reported
detection distance results for human observers.

The 11 identified vision-based aircraft detec-

tion experiments reported using a variety of: im-
age resolutions (ranging from 646 x 468 [27] to
2048 x 1024 [24]), camera fields-of-view (rang-
ing from 13◦ x 9.75◦ [27] to 62.3◦ x 39.5◦ [7]),
and data collection platforms (ranging from Boe-
ing 737 aircraft [27] to UAS [7], and also some
stationary ground configurations). The vision de-
tection algorithms investigated in these 11 stud-
ies can be characterised as involving three types
of processing stages: 1) egomotion compensa-
tion; 2) image processing pre-filtering; and 3)
temporal filtering. Not every reported detection
algorithm involved all 3 processing stages (but at
least one of the stages was reported in each paper
examined in this survey). The reported egomo-
tion compensation techniques included: inertial-
based compensation [23, 27] and image-based
compensation [7]. The reported image process-
ing pre-filtering stages included use of: morpho-
logical filtering [1], optical flow [24–27], low-
stop filtering [23], object detection [28] and non-
maximal suppression [23, 28]. The reported tem-
poral filtering stages included use of: Kalman fil-
ters [23, 25], dynamic programming [1, 7], and
hidden Markov model filters [7].

We have summarised the performance claims
of the 11 candidate detection approaches in Ta-
bles 1 and 2. These tables list the reported max-
imum detection range (with track consistency
percentage, if provided), and false alarm (FA)
rate expressed in FA per frame (with measure-
ment precision, as determined from the number
of frames used in FA calculations, where ade-
quate information was provided). We have also
provided information about the angular resolu-
tion of the vision sensor and the wing span of the
target aircraft. To facilitate comparisons with ex-
periments involving a human observer, we have
assumed the human eye to possess an equiva-
lent angular resolution value of 60◦/pixel (hu-
man visual acuity is reported in [29] as 60◦/cycle,
where a cycle can roughly be interpreted as the
human vision equivalent of a pixel). However,
we acknowledge that this nominal human eye an-
gular resolution value neither accounts for the
many subtleties of the human vision system nor
describes variations between particular individu-
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als. Finally, to allow comparison between sys-
tems with different fields-of-view, we have in-
troduced a detection effectiveness measure, in-
spired by [30], which is defined as the ratio of
detection range to pixels per degree, divided by
the target aircraft wingspan. The purpose of this
effectiveness metric is to measure how effectively
the angular resolution is used (higher numbers
correspond to better use).

2.1 Current Gaps and Future Requirements
as Identified in the Survey

Collectively, the surveyed experiments clearly il-
lustrate the possibility of using vision-based air-
craft detection techniques to detect potential air-
borne collisions at sufficient ranges to allow safe
avoidance action. However, amongst the sur-
veyed experiments, there was significant incon-
sistency and an overall lack of detail provided
about false alarm performance. Less than half
of the currently reported studies provided an
adequate characterisation of false alarm perfor-
mance. Standard detection versus false alarm
performance characterisation tools, such as Re-
ceiver Operating Characteristic (ROC) curves (or
similar), were only provided in five studies [19,
23,27,28]. Due to this general lack of false alarm
performance characterisation (corresponding to
false alarm rates low enough for practical use),
there is scope for further research in this domain
before vision-based detection technology can be
considered well understood (and we are investi-
gating this false alarm issue in ongoing research,
as preliminarily reported in [9]).

In the remainder of this paper, we will inves-
tigate the tradeoffs between field-of-view, detec-
tion range, and false alarm susceptibility.

3 Methodology for Evaluating Field-of-View
issues

In the following, we will use an empirical ap-
proach to evaluate the impact of changing the
field-of-view of the sensor in a vision-based tar-
get detection system. Within that empirical ap-
proach, we will use a morphological-HMM tar-

Table 3 Data collection lens types

Lens Model Computar Computar Fujinon
H0514-MP M1614-MP HF50HA-1B

Focal Length 5mm 16mm 50mm
Field-of-View 51.4◦×39.5◦ 16.9◦×12.7◦ 5.5◦×4.1◦(H×V, degrees)
Degrees/pixel

5.08×10−2 1.65×10−2 5.4×10−3(1024×768
pixel image)

get detection algorithm, see [7, 13], as our base-
line system (this will remain constant through all
the tests reported here). Before presenting our
result, this section describes the data collection
approach, the processing algorithm, and perfor-
mance measures used for characterisation.

3.1 Data Collection

We used a ground based Basler Scout series
camera (scA1300-32fc) in combination with the
lenses shown in Table 3 to capture image data
at 25Hz with a resolution of 1024-by-768 pixels.
With each lens we captured images of a Cessna
172 aircraft against a clear sky background ap-
proaching the camera from a head-on geometry
(roughly replicating what would be observed in
an airborne head-on collision situation). State
data logged on the target aircraft enabled calcula-
tion of detection ranges post-flight. Furthermore,
with the M1614-MP lens we also collected 1.1
hours (approximately 1× 105 image frames) of
non-target clear sky background data to facilitate
characterisation of false alarm performance.

3.2 Detection Algorithm

Detection was on the basis of the morphological-
HMM dim-target detection algorithm described
in [7, 13]. As an example of the difficulty of the
problem, Figure 1 illustrates the benefits of the
image morphology operation for dim target en-
hancement. The top image is a cropped raw im-
age frame centered on a dim target aircraft, and
the corresponding output after morphological fil-
tering is shown below. The HMM temporal filter-
ing is used after this morphological filtering stage
to reinforce features that persist in the image (as
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Table 1 Vision based aircraft detection performance in ground tests (sorted by detection effectiveness).

Author (year) Target Wingspan Resolution Range FA/frame Effectiveness
in pixel/◦ (% reliability)

Carnie (2006) [1] Cessna 1722 11.00 m 60, see [29] 4.9 km (n/a) n/a 0.0074
(human) (human) (human)

Dey (2009) [19] Piper Archer II 10.82 m 43 8.05 km (98%) 0.02 ±? 0.0173
Lai (this paper) Cessna 172 11.00 m 60 2.625 km (n/a) 0.005 ±0.00001 0.00398
Carnie (2006) [1] Cessna 172 11.00 m 60 6 km (n/a) 2.62 ±0.005 n/a

Table 2 Vision based aircraft detection performance in airborne tests (sorted by detection effectiveness).

Author (year) On-board Target Wingspan Resolution Range FA/frame Effectiveness
processing in pixel/◦ (% reliability)

Kephart (2010) [30] n/a Piper Warrior 10.67 m 60 3.759 (n/a) n/a 0.0059
(human) (human) (human)

McCalmont (2007) [24] Yes King Air ≈14-16 m 35 18.520 km (n/a) n/a 0.0331
Lai (2011) [7] Yes Boomerang 60 2.1 m 20 0.893 km (n/a) n/a 0.0213
Utt (2004) [25] Yes Beech Bonanza 10.21 m 35 7.408 km (≈100%) 0.0005 ±? 0.0207
McCalmont (2005) [26] Yes Beech Bonanza 10.21 m 35 5.556 km (n/a) n/a 0.0155
Gandhi (2003) [23] No Beech King Air 16.61 m 105 10.0 km (35.7%) 0.0 ±0.0024 0.00573
McCandless (1999) [27] No Beech King Air 16.61 m 50 2.222 km (82%) 0.0 ±0.0037 0.00268
Petridis (2008) [28] No Beech King Air 16.61 m 50 n/a (89.67%) 3.88 ±0.0004 n/a
Petridis (2008) [28] No Beech King Air 16.61 m 50 n/a (98.27%) 0.0487 ±0.0016 n/a

Fig. 1 Dim target image enhancement via mor-
phological filtering. The top image is centered
on a dim target aircraft (the target is very difficult
to detect), and the image below shows the out-
put after morphological filtering (the target cor-
responds to the brightest spot).

expected of features corresponding to the true tar-
get).

3.3 Performance Metrics

In this study we will use ROC curves and a de-
tection confidence measure based on SNR quan-
tities to characterise detection performance. Our
ROC curves will illustrate detection range versus
false alarm rate trade-offs, while detection confi-
dence will be indicated by the ∆DSNR quantity
that has been previously used in [7] (and is con-
ceptually similar to the DTMB statistic in [22]).
The ∆DSNR quantity is given by:

∆DSNR = 20 log10

(
PT

PF

)
dB, (1)

where PT is the maximum target pixel inten-
sity at the filtering output and PF is the highest
non-target pixel response at the filtering output.
Strong filter responses away from the true target
location will tend to lower the ∆DSNR value.

4 Results

4.1 Field-of-View Comparison

Figure 2 shows two curves illustrating the trade-
off between camera field-of-view (FOV) and de-

2Target information obtained from personal correspon-
dence, July 2011.
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Fig. 2 Detection distance versus camera field-of-
view at 50dB average detection confidence level
(solid line) and 100dB average detection confi-
dence level (dashed line). The triangle, cross, and
circle markers correspond to lenses HF50HA-1B,
M1614-MP, and H0514-MP, respectively.

tection distance at 50dB and 100dB average de-
tection confidence levels (solid and dashed lines,
respectively). A smaller degrees/pixel FOV is re-
quired to detect targets at greater distances with
the same level of confidence (moving right to left
along curve). Alternatively, for a fixed FOV, the
cost to detect with a higher level of confidence is
a reduction in detection range (moving vertically
from top to bottom curve).

Figure 3 consists of zoomed in 160-by-80
pixel images illustrating the appearance of the
target Cessna aircraft at the distances correspond-
ing to the 50dB average detection confidence
level (left column) and 100dB average detec-
tion confidence level (right column) for lenses
H0514-MP (top row), M1614-MP (middle row),
and HF50HA-1B (bottom row). We observe that
in general, a more distinct target is required to
achieve a higher level of detection confidence.
We observe that as the lens degrees/pixel FOV
is reduced (i.e. looking at images from top to
bottom), more detail can be perceived despite in-
creased distances to the target aircraft , hence al-
lowing say the HF50HA-1B lens to detect with
the same confidence level but at greater ranges
than the other two lenses.

Fig. 3 Contrast enhanced images of target
Cessna aircraft at 50dB average detection con-
fidence level (left column) and 100dB average
detection confidence level (right column). The
top, middle, and bottom rows correspond to im-
ages taken with the H0514-MP, M1614-MP, and
HF50HA-1B lenses, respectively.

4.2 Detection Distance verses False Alarm
Tradeoffs

Figure 4 illustrates the growth in the ∆DSNR
statistic (higher values correspond to higher de-
tection confidence) related to the detection output
from the M1614-MP lens (other lens types exhib-
ited similar trends). Here, the average ∆DSNR
value is based on ∆DSNR values averaged over
10 consecutive frames. The crosses mark the
two M1614-MP lens data points used in Figure 2.
One common accepted way to describe the trade-
off between two competing performance quanti-
ties is through the used of a receiver or system
operating characteristic curves.

Figure 5 shows a receiver operating charac-
teristic (ROC) curve that illustrates the trade-off
between detection distance and false alarm per-
formance for the M1614-MP lens. We highlight
that with higher detection thresholds (i.e. mov-
ing right to left along the curve) the incidence
of false alarms is reduced but so is the detection
range. The maximum detection distance at which
no false alarms were triggered is approximately
2400m.
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Fig. 4 Evolution of average ∆DSNR (detection
confidence) for 1.65× 10−2 degrees/pixel field-
of-view lens (M1614-MP). The crosses indicate
the two data points in Figure 2 corresponding to
lens M1614-MP.
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Fig. 5 Detection distance versus false alarm per-
formance for M1614-MP lens.

Intuitively, the growth of average ∆DSNR
value with decreasing range describes the fun-
damental nature of the trade-off between detec-
tion distance and false alarm susceptibility. For
example, if wait until the average ∆DSNR gets
to 110-120dB, we can expect to detect the tar-
get at around 2500m (based on Figure 4) and in-
cur a false alarm rate of about 9/hour (based on
Figure 5) if using the M1614-MP lens. Alterna-
tively, we could attempt to ensure earlier detec-
tion of the target, at longer ranges, on the basis
of a lower ∆DSNR value, but with the disadvan-
tage of higher false alarm susceptibility. Earlier
(or longer range) detection is desirable because
it corresponds to greater opportunity to execute
corrective action and avoid collision. Yet, we
want to minimize unnecessarily executing avoid-
ance actions, and hence minimize false-alarm

susceptibility.

5 Conclusion

In this paper, we presented survey of vision-
based aircraft detection approaches. We also per-
formed an analysis of the critical system design
trade-offs of: field-of-view, detection range, and
false alarm performance. We identified a num-
ber of practical issues such as false targets aris-
ing from cloud backgrounds and compensation
for platform vibrations and aero-dynamic distur-
bances.

The analysis presented showed that reducing
sensor field-of-view (whilst maintaining image
resolution) leads to larger detection ranges (for
similar false-alarm rates). Although this obser-
vation might seem straightforward, the relation-
ship between detection confidence level, field-of-
view choice, detection range and false alarm rate
is not.
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