
28TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES 
 

 

ELLIPTICALLY CONICAL TWIST AND CAMBER OF 
DELTA WINGS 

 
S.A. Takovitskii* 

*Central Aerohydrodynamic Institute (TsAGI) 
c.a.t@tsagi.ru  

 
Keywords: supersonic wing, lift-dependent drag, optimization 

 
Abstract  

Minimization of drag due to lift in supersonic 
flow is considered. Optimal profiling of delta 
wing median surface is developed on the base of 
simplified optimization method coupled with 
theoretical analysis. It is founded that the 
median surface providing reduced aerodynamic 
drag consists of elliptical cones and flat 
elements passing through the wing apex. The 
results of theoretical analysis and direct 
numerical optimization are compared for 
different flight conditions. Flow modeling and 
aerodynamic forces calculation are conducted 
within the framework of Euler’s equations. 

1   General Introduction 

Increasing the lift-to-drag ratio under a lift 
capability constraint is a traditional problem in 
the high speed aerodynamics. At supersonic 
flight conditions the lift dependent drag contains 
not only a vortex component, but also a wave 
component. In the case of a delta wing, the drag 
depends weakly on the sweep angle in regimes 
that correspond to supersonic leading edges, and 
it increases abruptly as the sweep increases in 
regimes with subsonic leading edges. The 
smaller the aspect ratio of the wing is, the 
relatively smaller the wave part of drag due to 
lift is and the more significant the benefit 
regarding the drag at a specified lift that can be 
achieved by means of the median surface 
warping is [1]. Well known design result is the 
wings with no leading edge loading. Wing 
deformation removes the subsonic leading edge 
pressure singularity and replaces the localized 
suction by the distributed suction on a forward 
facing wing surface. The main effect is 

increasing effective aspect ratio of the wing due 
to decreasing overflow from the lower surface 
to the upper surface. The simplest and reliable 
means of optimization is a conical twist and 
camber. The transition to spatial deformation of 
the wing mean surface does not provide any 
appreciable improvement in the aerodynamic 
characteristics [2, 3]. 

The optimization research is aimed on 
studying characteristic features of optimal 
configurations and foundation of analytical 
solutions for the problem. For flying vehicles 
design it is very important to determine the 
simplest shape deformations that ensure 
aerodynamic performance improvement. A 
reliable tool for analytical solving optimization 
problems at supersonic flight conditions by 
means of small variations of the shapes of 
bodies with a given distribution of aerodynamic 
loading is developed in [4, 5]. This method 
combines Newton-based optimization algorithm 
and quadratic approximation of the objective 
function on the base of local aerodynamic 
loading analysis. 

The method turned out to be effective for 
studying various design problems. Near to 
optimal configurations of two-dimensional 
airfoils, axisymmetrical forebodies realizing 
minimum of wave drag and axisymmetrical 
nozzles with maximum thrust were founded. 
Wedges, rhombus and cones were used as the 
initial geometric shapes for which surface 
pressure distributions are stated theoretically. 
Assuming a linear relationship between a 
change in the orientation of small elements of 
the surface and the corresponding increment of 
the pressure, the aerodynamic functions were 
approximated by quadratic forms. The 
conditions for the minimum of the objective 
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function led to a system of linear equations for 
determining the optimum geometric parameters. 
In the case of lifting wings, the solution can be 
constructed as an improving shape variation to 
the flat delta wing. 

2    Problem Statement 

Consider a delta wing at supersonic flow 
(figure 1). It is required to minimize the 
aerodynamic drag and to determine the 
corresponding wing warping for given lift. The 
free stream is characterized by Mach number 
M∞. The wing is assumed to be infinitely thin. 
The wing surface is deformed in the way that 
the wing projection onto the base plane remains 
constant. Distributions of twist and camber are 
such that the surface slope in the stream wise 
direction is constant along rays through the 
apex. So flow field near the wing is conical. The 
leading edge sweep angle is χ. The angle of 
attack α is defined as angle between free stream 
velocity V∞ and centre chord of the wing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aerodynamic lift and drag coefficients of 
the wings are calculated by the pressure 
integration along the wing span 
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Here, γ – ratio of specific heats, p∞ – free stream 
pressure, pd и pu – windward and leeward 
surface pressure, αfl – angle of attack of the flat 
wing providing desired lift coefficient, δ – local 
angle of attack increment due to surface 
deformation, coordinate z is normalized by half 
wing span. In that statement, lift dependent drag 
is only considered. Surface friction drag and 
leading edge suction are ignored. 

The problem is simplified by assumptions 
that the pressure distribution on the flat wing is 
known and the deformation of the wing is small, 
i.e. the plane tangent to the wing at an arbitrary 
point is located at small angle to the base plane 
of the wing. Pressure distribution on the flat 
wing is supposed to be a linear function of the 
angle of attack. Increment of pressure due to 
wing deformation is evaluated on the base of 
Ackeret’s formula for linearized supersonic 
flow in assumption that there is no aerodynamic 
interference between surface elements 
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Here, R(z) describes pressure distribution on the 
flat wing. 

Fig. 1 Delta wing 
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3   Elliptically Conical Twist and Camber 

The task is to find δ(z) that provides cD=min at 
given cL. The primary function of the variation 
problem is  V?  V∞
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where λ – Lagrange multiplier. 

In this case the Euler equation is simply  
 

0' =δF  
 
It gives the extreme of the angle of attack 
increment 
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Value of the Lagrange multiplier is in 
keeping with condition on lift coefficient. It 
leads to the final expression for δ(z) that may 
therefore be written as 
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Optimal deformation of the wing depends 

on aerodynamic loading on the flat wing. The 
local angle of attack increases on absolute value 
as a linear function of difference between the 
average loading Rav on the flat wing and the 
loading R(z) at the corresponding wing section. 
The more aerodynamic loading on the surface 
element differs from the mean value, the 
stronger deformation. Thus optimal shape 
deformation leads to pressure alignment in the 
wing span direction.  

Wing geometry analysis connects the 
increment to local angle of attack with the 
expression of the guide line y(z) representing the 
trailing edge of the wing (coordinates y and z 
are normalized by half wing span) 
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So the guide line of the optimal wing is 
represented by differential equation 
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The equation differentiation gives 

information about the guide line curvature 
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The optimum wing is leeward convex ( 0'' ≤y ) 
because of aerodynamic loading on the flat wing 
increases in direction towards the leading edges 
(R’>0). 

To ascertain essential features of wings 
with low lift dependent drag well known results 

of the linear theory are used. Pressure 
distributions on flat wings have a different 
representation depending on whether the leading 
edges are ahead of or behind the Mach cone 
from wing vertex. If µ∞ is Mach angle then flow 
field conditions are determined by the relative 
sweepback n 
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For wings with supersonic leading edges 

the relative sweepback is less than unity, and in 
the case of sonic or subsonic leading edges – 
n ≥ 1. Of course, the flow field is essentially 
conical, that is, the pressure is constant on rays 
through the vertex of the wing. 

On the wing with supersonic leading edges 
two types of surface elements must be 
distinguished. The first element is located inside 
the Mach cone from vertex (0 ≤ z ≤ n). The 
second element is lying between the leading 
edge and the Mach cone (n ≤ z ≤ 1). In the last 
case pressure is constant and corresponds to two 
dimensional flow conditions. Pressure 
distribution along wing span is expressed in the 
following way 
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On the wing with subsonic leading edges 

aerodynamic loading is increased infinitely on 
the leading edges 
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Here E expresses the complete elliptic integral 
of the second kind. If n = 1 then E(0) = π/2. 
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On the base of these regularities the guide 
lines of the optimal wings are constructed. It is 
drawn a conclusion that wings of low drag due 
to lift consist of elliptical cones and planes 
elements. These elements have triangular forms 
on plan view with apexes coinciding with the 
wing apex. The flat elements are bordered on 
the wing leading edges. 

It should be noted that the theoretically 
stated optimal wings with subsonic leading 
edges are represented by elements of elliptical 
cones surfaces. This leads to result which is 
inconsistent with linear theory since it predicts 
infinite surface slope at leading edges. Due to 
pressure distribution singularity the approximate 
solution is locally in serious error, while the 
general behavior of the guide line is predicted 
correctly. 

The optimal wing can be described by two 
geometrical parameters A and m which specify 
concavity and relative sizes of the wing 
elements. The elliptical and rectilinear portions 
of the guide line are expressed as 
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4   Numerical Studying 

The numerical studying is carried out within the 
framework of Euler’s equations. The inviscid 
flow near the wing is computed by a marching 
method with respect to the longitudinal 
coordinate. The equations of motion are written 
in conservative form, which made it possible to 
treat shocks and other flow discontinuities 
correctly without any special procedures for 
tracking their spatial locations. The explicit 
finite-difference scheme is implemented on 
multizone grids. The flow region under 
investigation consists of two zones located 
under and above the wing. The zones are 
bounded by the wing surface, the plane of 
symmetry and the bow shock wave. In each 
cross section the computational grid consists of 
about 10 000 points. 

The free stream conditions are 
characterized by Mach number M∞=1.5÷6. 
Delta wings with supersonic and subsonic 
leading edges are considered. The lift 
coefficient is cL=0.1. The flat wing base area is 
adopted as reference value. The leading edge 
sweep angle corresponds to the relative 
sweepback which varies in the range 
n=0.58÷2.2. 

The optimal wings are found by the direct 
variation of two geometric parameters A and m. 
The flat wing is taken as a starting one. The 
coordinate wise descent method is used. The 
method has been fairly effective in the case 
under consideration. Satisfactory convergence 
to the optimum has been achieved in not more 
than three cycles of coordinate wise descent. 
The problem is complicated due to need of 
definition of the angle of attack corresponding 
to the given lift coefficient. 

The wings with sonic leading edges (n=1) 
are studied at Mach numbers M∞=1.5÷6. Cross 
sections (x=const) of the optimal at cL=0.1 
wings are compared in figure 2. The wings 
designed at greater Mach numbers have bigger 
values of the geometrical parameter A than the 
wings at lower Mach numbers. In addition the 
flat elements near the leading edges have bigger 
relative dimensions (defined by the parameter 
m). The joint points of the elliptical and rectilinear 
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 Fig. 2 Optimal wings (n=1) 
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elements of the guide line are marked by circles 
(z=m). 

The twist angle φ(z) of the optimal wings is 
defined on the base of the guide line y(z) 
expression 
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So the flat elements bordered on the wing 
leading edges are characterized by the constant 

twist angle ( const
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z>m). 
In accordance with supersonic theory the 

angle of attack appropriate to cL=0.1 increases 
with increase of Mach number. In considered 
Mach number range the angle of attack changes 
by a factor of five. This is why the optimum 
wings differ markedly from the flat wings at 
high supersonic speeds. 

It is more convenient to compare the 
optimal wings by means of the span wise 
distribution of the increment δ(z) to the local 
angle of attack. Figure 3 represents comparison 
of the increment δ(z) with respect to the angle of 
attack α for the optimal at Mach numbers M∞=2, 
4 and 6 wings, and for the wing which optimal 
within the framework of the linear theory. The 
linear theory proposes the wing with the 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

aerodynamic load vanishing at the leading edges 
– the local angle of attack equals zero at z=1. 

The results of numerical studying are in a 
good concordance with the theoretical data at 
the central section of the wing up to z=0.4÷0.5. 
In the immediate vicinity of the leading edges 
the numerically constructed wings have smaller 
angles of surface deformation. It should be 
noted that the increment δ to the local angle of 
attack is equal to the twist angle φ at the side 
vertex of the delta wing. The bigger Mach 
number is, the lower the relative value of the 
twist angle with respect to the angle of attack is. 

Aerodynamic shape optimization results in 
redistribution of pressure both on the wing 
surface and in the shock layer. Cross section 
flow fields (x=const) at M∞=4 and n=1 are 
shown in figure 4. The left half of the figure 
represents the flat wing and the right half – the 
optimal wing. The pressure level lines 
p/p∞=const are plotted with step 0.1. 

The shock wave is detached from the 
leading edge of the flat wing. In the 
neighborhood of the leading edge it is observed 
a fan of rarefaction waves. The flow over the 
leeward side of the wing is accelerated in the 
cross direction up to a supersonic speed. The 
supersonic region extends to the plane of 
symmetry and is bounded by the hanging shock 
wave. The spatial locations of the inner shock 
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Fig. 3 The increment to the local 
angle of attack (n=1) 

Fig. 4 Cross section flow fields
 p/p∞=const (M∞=4, n=1)
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waves were not determined exactly, they spread 
out over several adjacent mesh points. 

Note that the optimal wing is flowed under 
bigger angle of attack than the flat wing. So the 
shock layer has smaller proportions. There is a 
pressure increase near the plane of symmetry. 
On the whole, the pressure on the optimal wing 
is distributed more uniformly over the wing 
span. On the flat wing the leading edges are 
under heavier aerodynamic loading. 

The theoretical and numerical results on 
integral aerodynamic characteristics (lift cL and 
drag cD coefficients) of the wings are in general 
agreement. Within the framework of the linear 
theory it was stated the optimal conical wing 
with the sonic leading edges has the lift 
dependent drag smaller on 8.3% in comparison 
with the flat wing at design lift and Mach 
number. Numerical optimization reveals a 
dependence of aerodynamic drag reduction on 
Mach number. When Mach number increases 
from M∞=1.5 to M∞=6 the relative diminution of 
the drag due to lift increases from 7.5% to 10%. 
The main reason is an increment of the angle of 
attack corresponding to the design lift and 
enhancing nonlinear effects. 

At Mach number M∞=2 the wings with 
sweep angles χ=45º÷75º are investigated. The 
study covers the wings with subsonic (n>1) and 
supersonic (n<1) leading edges. 

The linear theory revealed the nonplanar 
wings with leading edge attachment that do not 
yield to the flat wings with the leading edge 
thrust. At the supersonic edges there are not 
suction. As the relative sweepback n of the wing 
with subsonic leading edges increases the 
suction force changes from zero up to 50% of 
the lift dependent drag. 

The theoretical and numerical investigation 
results are compared in figure 5. The minimal 
value of the lift dependent drag cD with respect 
to the drag cD FL of the flat wing without the 
leading edge suction is shown as a function of 
inverse of n. The smaller the aspect ratio of the 
wing is, the more significant the benefit 
regarding the drag achieved by means of the 
median surface warping is. At n≤1 the 
elliptically conical wings provide the drag due 
to lift diminution prescribed by the linearized 
theory. For the wing with sweep angle χ=45º 
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Fig. 5 Lift dependent drag (M∞=2)  

 
the drag decrease is not more than 2%. For 
wings with subsonic leading edges (n>1) the 
theory predicts an appreciable reduction of the 
lift dependent drag. Numerical investigation of 
the wings formed by elliptical cones and planes 
elements leads to more modest result. 

The proposed aerodynamic shape in the 
form of elliptical cones and planes elements is 
used to construct the median surface of a 
complex plane form wing. The considered wing 
is a version of the wing of the aircraft Tupolev 
144. The wing is treated as a delta wing with a 
low sweep extension. The central section of the 
wing is represented by the elliptical cone and 
the wing end is flat. The wing elements are 
joined along lines passing trough the wing apex. 
The optimal shape of the wing is defined by 
way of the direct variation of two geometric 
parameters A and m. 

The objective function is the lift dependent 
aerodynamic drag. Optimization studying is 
carried out at Mach number M=2.1 and lift 
coefficient cL=0.1. The flat wing area is adopted 
as the reference value. The leading edge sweep 
angles are 75º (before the leading edge break) and 
61º (after the break). Thus at flying conditions 
under consideration the wing has subsonic-
supersonic leading edges. 

Optimum deformation of the wing leads to 
more uniform distribution of the aerodynamic 
loading on the wing along span direction. Lower 
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and upper surface pressure difference in a 
vicinity of the leading edges decreases (figure 
6). The pressure level lines p/p∞=const are 
plotted with step 0.05. A reduction of the 
vortex-type flow regions on the upper surface of 
the wing is observed. Shock waves pressures on 
the outboard wing lower surface are 
significantly diminished. At the central section 
of the wing there is a pressure growth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The flat and optimum wings have similar 
lift and moment characteristics. The 
aerodynamic centre is located on a distance of 
about 70% of the wing length from the wing 
apex. As a result of the wing deformation the 
derivative of the lift coefficient on the angle of 
attack increases and the aerodynamic centre 
moves slightly forward. Comparison of the 

aerodynamic drag polar shows the superiority of 
the wing with a nonplanar median surface. A 
relative reduction of the lift dependent drag 
achieves 11%. It confirms importance of 
researches on definition of the simple 
deformations in problems of aerodynamic 
shapes optimization. 
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