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Fig. 1. Planform and Structure of the Wind 
Tunnel Model [2]. 

 
Abstract  
In order to understand the unusual flutter 
phenomenon observed in experimental 
transonic flow for a high-aspect-ratio forward-
swept wing, numerical simulations have been 
conducted using a 3D Navier-Stokes code. The 
simulations have confirmed that the flutter is a 
single-degree-of-freedom flutter of the first 
bending mode in which shock-induced flow 
separation plays a dominant role. The 
simulations have also clarified the detailed 
effects of Mach number and dynamic pressure 
(particularly the mass ratio) on this type of 
flutter. 

1 Introduction 
Divergence is a destructive aeroelastic 
phenomenon that typically occurs in forward-
swept wings. This has long ruled out the 
practical use of forward-swept wings despite 
several aerodynamic advantages over 
conventional aft-swept wings. However, 
aeroelastic tailoring technology that utilizes the 
directional stiffness properties of fibrous 
composites has been changing this situation [1].  

Isogai [2] conducted an experimental study 
on the transonic flutter/divergence 
characteristics of aeroelastically tailored and 
non-tailored high-aspect-ratio forward-swept 
wings. Figure 1 shows the planform and 
structure of the 1/45-scale aeroelastic wind 
tunnel model [2] for the wing of a hypothetical 
150-seat transport. In this experiment, it was 
shown that the divergence phenomenon can be 
successfully suppressed by aeroelastic tailoring. 
In addition, it was also found that the non-

tailored model experienced flutter instead of the 
divergence predicted by the potential 
aerodynamic theory (Doublet Lattice Method 
[3]). 

As shown in Fig. 2, the flutter phenomenon 
experienced by the non-tailored model has the 
following three unusual characteristics as 
compared with conventional bending-torsion 
flutter (classical flutter): 1) the flutter 
frequencies (64-75 Hz depending on Mach 
number) are slightly less than the first natural 
frequency (80.7 Hz) of this model; 2) the flutter 
dynamic pressure (40 kPa at M∞ = 0.715) at the 
root angle of attack = 2 deg is far below that 
of the theoretical divergence dynamic pressure 
(66 kPa); 3) the flutter boundary depends 
strongly on the root angle of attack (i.e., the 
flutter dynamic pressure decreases about 30-
40% by changing the root angle of attack from 0 
deg to 2 deg). These characteristics seem to 
suggest that this flutter might be a single-
degree-of-freedom flutter in which shock-
induced flow separation plays a dominant role. 
In order to confirm this conjecture qualitatively, 

NUMERICAL SIMULATION OF SHOCK-STALL 
FLUTTER OF A HIGH-ASPECT-RATIO 

 FORWARD-SWEPT WING  
 

Koji Isogai 
Japan Aerospace Exploration Agency 

koji.isogai@nifty.com 
 

Keywords: forward-swept wing, transonic flutter, shock stall, CFD 



ISOGAI K 

2 

 
Fig. 2. Transonic Flutter Characteristics of a 

Non-Tailored Forward-Swept Wing 
[2].     Table 1. Natural Vibration Characteristics of 

the Wind Tunnel Model. 
                   f1          f2             f3             f4 
                 (1B)        (2B)        (1T)        (3B) 
                (f1/f1)     (f2/f1)     (f3/f1)     (f4/f1) 
G.V.T.     80.7        304.0       549.0       657.0 
                  (1)         (3.76)     (6.80)      (8.14) 
B. T.        80.7        277.7      578.4       640.7 
                  (1)         (3.44)     (7.17)      (7.94) 
 

 
Fig. 3. Comparison of Node Lines Between 

Ground Vibration Test and Beam 
Theory [2]. 

Yamasaki et al. [4] conducted an experimental 
study on the transonic flutter of a two-
dimensional airfoil that simulates the wash-in 
mode of a typical section of a non-tailored 
forward-swept wing. This 2D model is a single-
degree-of-freedom system whose axis of pitch is 
located one chord length downstream from the 
mid-chord point. Thus, it generates the wash-in 
mode. In this experiment, they obtained flutter 
at M∞ = 0.65, 0.68, and 0.72. The high-speed 
Schlieren video taken during the flutter clearly 
showed the existence of shock-induced flow 
separation, confirming qualitatively that the 
flutter observed for the non-tailored high-
aspect-ratio forward-swept wing is a single-
degree-of-freedom flutter in which shock-
induced flow separation plays a dominant role; 
we call this shock-stall flutter. Since shock-stall 
flutter is an extremely complex phenomenon of 
fluid-structure interaction induced by the 
unsteady shockwave and boundary layer 
interactions, it is a challenge to predict 
theoretically. The purpose of the present study 
is to examine the capability of a 3D Navier-

Stokes code to predict the shock-stall flutter 
observed in the non-tailored forward-swept 
wing reported in Ref. [2] and to clarify the 
detailed characteristics of this unusual flutter 
phenomenon. 

2 The Wind Tunnel Model and Its Natural 
Vibration Characteristics 

The planform and structure of the wind tunnel 
model used for the flutter test in Ref. [2] is 
shown in Fig. 1. It is a straight tapered wing 
with an aspect ratio of 9.5, a taper ratio of 0.324, 
a forward sweep angle of the quarter-chord line 
of 15 deg, a semi-span length of 0.348 m, and a 
root chord length of 0.111 m. The wing is 
composed of a core composite beam and 
urethane foam to provide the aerodynamic 
contours. The airfoil sections are natural-
laminar-flow-type supercritical airfoil sections 
of an approximately 12% thickness ratio. The 
core composite beam is located between the 
20% and 60% chord lines (see Ref. [2] for 



 

3  

NUMERICAL SIMULATION OF SHOCK-STALL FLUTTER OF A HIGH-ASPECT- 
RATIO FORWARD-SWEPT WING 

      
      Fig. 5. Mach Numbers and Dynamic 

Pressures of the Numerical 
Simulations. 

 

further details of the model). The natural 
vibration frequencies and the node lines of the 
non-tailored model, as measured by the ground 
vibration test, are shown in Table 1 and Fig. 3, 
respectively. The theoretical values of the 
natural frequencies and node lines, as calculated 
by beam theory, are also shown in the same 
table and figure for comparison. As seen in the 
table and figure, the theoretical and 
experimental distributions of the natural 
frequencies (fn/f1) and the node lines are in good 
agreement. In Fig. 4, the first three natural 
vibration mode shapes computed using beam 
theory are shown. 
 
 
 
 
 
 
 
 
 

3 Numerical Method 
As described in Section 1, shock-induced flow 
separation plays a dominant role in shock-stall 
flutter. Therefore, it is essential to use a 3D 
Navier-Stokes code for the prediction of this 
phenomenon. The 3D Navier-Stokes code used 
in the present study is a Reynolds Averaged 
Navier-Stokes (RANS) code originally 
developed by Isogai [5, 6]. A body-fitted C-H 
type grid is used, which includes 240 grid points 
(200 points on the wing and 20 points on the 
upper and lower surfaces of the wake region) in 
the chord-wise direction, 29 points in the span-
wise direction (19 points on the wing and 10 
points on the off-wing region), and 51 points 
normal to the wing surface. The code uses a 
total variation diminishing (TVD) scheme [7] 
and the Baldwin-Lomax algebraic turbulence 
model [8].  

In order to compute the aeroelastic 
response of the wing, we use the modal 
approach with the nine natural mode shapes 
computed from beam theory. The displacement 
of the wing normal to the wing surface is 
expressed as 
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where t is time, i is the natural vibration mode 
of the wing, and qi is the generalized coordinate. 
Using Lagrange’s equations of motion, we 
obtain the ordinary differential equation of 
motion for qi as follows: 
 

S
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for i = 1,…,9       (2) 
where Mi is the generalized mass, i is the 
natural circular frequency, and p is the 
pressure difference computed using the 3D 
Navier-Stokes code. Eq. (2) and the 3D Navier-
Stokes equations are solved at each time step to 
obtain the aeroelastic response of the wing. 
Note that the natural frequencies i used for 
solving Eq. (2) are corrected up to the 4th mode 
using the values obtained during the ground 
vibration test (see Table 1).  

4 Results and Discussion 

The present numerical simulations have been 
conducted around the experimental flutter 
boundary obtained for the root angle of attack of 
2 deg, as shown in Fig. 5. The details for the 
Mach number M∞, velocity V, dynamic pressure 

 
 f1 = 80.7 Hz 
1st bending 

 

 
   f2 = 277.7 Hz 

2nd bending 
 

f3 = 578.4 Hz 
1st torsion 

 
Fig. 4. Natural Vibration Modes. 
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Table 2. Flutter Simulations Cases. 
 
Case M∞ V 

 (m/s) 
∞ 

(kg/m3) 
q 
 (kPa) 

   1 0.65 211  1.70 38.0  101 
   2    1.97   44.0   88 
   3    2.24   50.0   77 
   4 0.715    232  1.30   35.0  133 
   5    1.52   41.0  114 
   6    1.74   47.0   99 
   7 0.765    249  1.29   40.0  133 
   8    1.62   50.0  107 
   9    1.78   55.0    97 
 

      
   Fig. 6. Responses of the Generalized 

Coordinates for Case 5 (M∞ = 0.715, q 
= 41 kPa). 

q, and mass ratio  of each case are also given 
in Table 2. The mass ratio  is defined by 
 

)3/)1((/ 22
0 lbm          (3) 

 
where m is the wing mass, b0 is the semi-chord 
length of the wing root, l is the semi-span length, 

 is the taper ratio, and ∞ is the free-stream air 
density. Note that the experimental Reynolds 
number based on the root chord was 2.3 106, 
while the present numerical simulations were 
conducted at Re = 2.3 105. All of the aeroelastic 
response calculations reported here were 
obtained by time-accurate computations that 
were started impulsively. In the following 
subsections, the detailed results of the response 
computations obtained at each Mach number are 
presented. 

4.1 Results Obtained for M∞ = 0.715 (Cases 4-
6) 

Figure 6 shows the responses of iq  (i = 1, 2, 3) 
with respect to the non-dimensional time t* (t* 
= t (V/bo)) obtained for Case 5 (q = 41 kPa), 
which is at the experimental flutter boundary. 
The term iq  is the non-dimensional form of the 

generalized coordinate qi defined by 0/bqq ii . 

As seen in the figure, the response of 1q  reaches 
limit cycle oscillation (LCO) after t* = 480, 
while the responses of 2q  and 3q  are very 

small compared with that of 1q . The frequency 
of 1q  is 74 Hz, which agrees well with the 
experimental result shown in Fig. 2. The 
characteristics of the responses of iq  clearly 

show that the flutter observed in Fig. 6 is a 
single-degree-of-freedom flutter of the first 
bending mode. Figure 7 shows the wing 
deformation and the flow patterns (iso-density 

contours around several span-wise sections and 
the enlarged flow pattern around the 81% semi-
span section) during t* = 472-498 (in the 9th 
cycle of oscillation). In the figures, we can 
confirm the appearance, the movement, the 
disappearance of the shock wave, and the 
occurrence of shock-induced flow separation 
during the oscillation cycle. In order to see the 
correlation between those flow patterns, the 
aerodynamic force and the displacement of the 
wing, the responses of the generalized 
coordinates and the CL during the 9th cycle of 
oscillation (t* = 459-521) are plotted in Fig. 8. 
The numbers ①  to ⑥  shown in Fig. 8 
correspond to each flow pattern shown in Fig. 7. 
As seen in Fig. 8, the lift continues to increase 
until t* = 488 (④). Then, it decreases suddenly 
due to the shock-stall phenomenon at about t* = 
490. This sudden decrease in lift seems to occur 
due to flow separation at the leading edge, 
which is observed at the 30-70% semi-span, as 
seen in the flow patterns at t* = 493 (⑤). It is 
clear that the flow separation from the leading 
edge is induced by the upstream movement of 
the shock wave accompanied by shock-induced 
flow separation. It also should be noted that the 
sudden decrease in lift occurs before the upward 
deformation of the wing reaches its maximum 
displacement, as seen in Fig. 8. This enables the 

t* 

iq  1q  

2q , 3q  
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work done by the aerodynamic force to the wing 
displacement to be positive, and single-degree-
of-freedom flutter occurs (a clear explanation of 
the mechanism of shock-stall flutter can be 
found in Ref. [4]). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Flow Patterns (Iso-Density Contours) during t* = 472-498 in the 9th Oscillation 
Cycle (Case 5: M∞ = 0.715, = 2 deg, q = 41 kPa). 
 

 

 

① (t* = 472) 

 

② (t* = 477) 
 

 

③ (t* = 482) 

 

Flow around 81% semi-span 
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Fig. 7 (continued). Flow Patterns (Iso-Density Contours) during t* = 472-498 in the 9th 
Oscillation Cycle (Case 5: M∞ = 0.715, = 2 deg, q = 41 kPa). 
 

 

 

 

④ (t* = 488) 
 

 

⑤ (t* = 493) 
 

 

⑥ (t* = 498) 
 

 

Flow around 81% semi-span 
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Fig. 9. Responses of the Generalized Coordinates 

for Case 6 (M∞ = 0.715, q = 47 kPa). 
 

 
Fig. 10. Responses of the Generalized 

Coordinates for Case 4 (M∞ = 0.715, 
q = 35 kPa). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the responses of the generalized 
coordinates, we can easily compute the heaving 
and pitching displacements with Eq. (1). The 
time-mean displacements and the amplitudes of 
the heaving and pitching oscillations of the LCO 
at the 81% semi-span are Hmean = 0.025 m, Ho = 
0.025 m and mean = 2.5 deg, o = 4.6 deg, 
respectively.  

Figure 9 shows the responses of the 
generalized coordinates iq  (i = 1, 2, 3) obtained 
for Case 6 (q = 47 kPa). As seen in the figure, 
we have obtained a slow damping oscillation of 

1q , though the dynamic pressure is larger than 
in Case 5 (q = 41 kPa). However, it seems to be 
a reasonable phenomenon when we recall that 
the mechanism of the single-degree-of-freedom 
flutter is predominant in shock-stall flutter, in 
which the flutter velocity increases with a 
decrease in the mass ratio. Note that the mass 
ratio  of Case 6 is 99, which is smaller than 
that of Case 5 ( = 114).  

This reverse tendency of the aeroelastic 
response of single-degree-of-freedom flutter 
compared with that of conventional coupled 
bending-torsion flutter can be confirmed in the 
response computation for Case 4 (q = 35 kPa), 
where the mass ratio ( = 133) is larger than in 
Case 5.  
 

 Figure 10 shows the responses of the 
generalized coordinates iq  (i = 1, 2, 3) for Case 

4. As seen in Fig. 10, the response of 1q  reaches 
LCO after t* = 480. The time-mean 
displacements and amplitudes of the heaving 
and pitching oscillations of the LCO at the 81% 
semi-span are Hmean = 0.021 m, Ho = 0.021 m 
and mean = 2.2 deg, o = 3.5 deg, respectively. 
Note that the amplitude of the LCO in Case 4 is 
smaller than in Case 5 because the dynamic 

pressure in Case 4 is smaller than in Case 5. 
 
4.2 Results Obtained for M∞ = 0.65 (Cases 1-

3) 
Figure 11 shows the responses of iq  (i = 1, 2, 3) 
with respect to t* obtained for Case 2 (q = 44 

 
Fig. 8. Variations in Lift and the Generalized 

Coordinate at the 9th Cycle of 
Oscillation for Case 5 (M∞ = 0.715, 

= 2 deg, q = 41 kPa). 
 

t* 

1q  

2q , 3q  

iq  

t* 

1q  

2q , 3q  

iq  
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kPa), which is at the experimental flutter 
boundary. As seen in the figure, the response of 

1q  reaches LCO, though it has a very low 
frequency of 9.1 Hz. The predominant 
frequency of 1q  is 71.7 Hz, which agrees well 
with the experimental value shown in Fig. 2. 
Since the responses of 2q  and 3q are very small 

compared with that of 1q , the flutter for this 
case is a single-degree-of-freedom flutter as 
well. Figure 12 shows the 3D flow patterns just 
after the shock-stall phenomenon (t* = 928). 
The time-mean displacements and the 
amplitudes of the heaving and pitching 
oscillations of the LCO at the 81% semi-span 
are Hmean = 0.028 m, Ho,max = 0.027 m, Ho,min = 
0.021 m and mean = 2.9 deg, o,max = 4.4 deg, 

o,min = 3.0 deg, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 shows the responses of iq  (i = 1, 
2, 3) with respect to t* obtained for Case 1 (q = 
38 kPa). We also obtained a beat-type LCO of 

1q , while the responses of 2q  and 3q  are very 

small compared with that of 1q . This clearly 
shows the characteristics of the single-degree-
of-freedom flutter; that is, the increase in the 
mass ratio does not suppress the flutter. Flow 
patterns similar to those shown in Fig. 12 are 
also confirmed for this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 shows the responses of iq  (i = 1, 
2, 3) with respect to t* obtained for Case 3 (q = 
50 kPa). As seen in this figure, 1q  shows 
strongly damped oscillations, though the 
dynamic pressure is larger than that of the 
experimental flutter boundary. However, this 
phenomenon seems to be reasonable if we recall 
that this flutter is a single-degree-of-freedom 
flutter that is suppressed by a decrease in the 
mass ratio, as already discussed in Section 4.1. 
Although 1q  shows a strongly damped 
oscillation, 2q  and 3q  show a high frequency (f 
= 488 Hz) LCO, as seen in Fig. 15, where their 
responses are shown to become enlarged. Since 
the frequency of the LCO is close to the natural 
frequency of the 1st torsion mode (f3 = 548 Hz), 
it seems to be a single-degree-of-freedom flutter 
of the first torsion mode. The time-mean 
displacements and the amplitudes of the heaving 
and pitching oscillations of the LCO at the 81% 

     
Fig. 11. Responses of the Generalized 

Coordinates for Case 2 (M∞ = 0.65, 
q = 44 kPa). 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Flow Pattern for Case 2 Just After the 

Shock-Stall Phenomenon. 
 

  
Fig. 13. Responses of the Generalized 

Coordinates for Case 1 (M∞ = 
0.65, q = 38 kPa). 

 

t* = 928 

iq  

iq  

1q  

1q  

2q , 3q  

2q , 3q  
 

t* 

t* 
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semi-span are Hmean = 0.05 m, Ho = 0 m 
and mean = 4.5 deg, o = 4.9 deg, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Results Obtained for M∞ = 0.765 (Cases 7-

9) 
Figure 16 shows the responses of iq  (i = 1, 2, 3) 
with respect to t* obtained for Case 8 (q = 50 
kPa). As seen in the figure, 1q  shows a strongly 
damped oscillation, while 2q  and 3q  show a 
high-frequency (f = 532 Hz) LCO, as seen in 
Fig. 17, where their responses are shown to 
become enlarged. Since the frequency of the 
LCO is close to the natural frequency of the 1st 
torsion mode (f3 = 548 Hz), it seems to be a 
single-degree-of-freedom flutter of the first 
torsion mode. Figure 18 shows the typical flow 
pattern observed at t* = 372. We can confirm 
the existence of a strong shock wave and shock-
induced flow separation. Therefore, it is 
assumed that the mechanism of the shock-stall 

flutter, which is explained in Section 4.1, might 
be playing a dominant role for this type of high-
frequency LCO as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The time-mean displacements and the 
amplitudes of the heaving and pitching 
oscillations of the LCO at the 81% semi-span 

      
Fig. 14. Responses of the Generalized 

Coordinates for Case 3 (M∞ = 0.65, q 
= 50 kPa). 

 

      
Fig. 15. Responses of  2q  and 3q  for Case 3  

(M∞ = 0.65, q = 50 kPa). 

       
Fig. 16. Responses of the Generalized 

Coordinates for Case 8 (M∞ = 0.765, 
q = 50 kPa). 

 

        
Fig. 17. Responses of  2q  and 3q  for  

Case 8 (M∞ = 0.765, q = 50 kPa). 
 

     
    Fig. 18. Typical Flow Pattern for Case 8  

(M∞ = 0.765, q = 50 kPa). 

t* = 372 

iq  
iq  

iq  

iq  

1q  
1q  

2q , 3q  
 2q , 3q  

 

2q , 3q  
2q , 3q  

 

t* t* 

t* t* 
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are Hmean = 0.032 m, Ho = 0 m and mean = 3.9 
deg, o = 4.6 deg, respectively. Similar 
responses of the generalized coordinates are 
also obtained for Case 7 (q = 40 kPa); that is, 
we have obtained a strongly damped oscillation 
of 1q  and a high-frequency LCO of 2q  and 3q . 
The time-mean displacements and the 
amplitudes of the heaving and pitching 
oscillations of the LCO at the 81% semi-span 
are Hmean = 0.025 m, Ho = 0 m and mean = 3.2 
deg, o = 3.2 deg, respectively. As for Case 9 (q 
= 55 kPa), we have obtained a strongly damped 
oscillation of 1q , and no high-frequency LCO 
of 2q  or 3q  such as those observed in Cases 7 
and 8 has been obtained. 

The results of the response computations 
are summarized in Fig. 19. As seen in Fig. 19, 
the correlation between the present numerical 
simulations and the experimental flutter 
boundary seems to be good, though the high-
frequency LCOs of the first torsion mode, 
which are predicted by numerical simulation for 
Cases 3, 7, and 8, were not captured by the 
experiment since the amplitudes of the heaving 
oscillation are almost zero for these cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5 Concluding Remarks 
In order to clarify the unusual flutter 
phenomenon observed in transonic flow for a 
non-tailored high-aspect-ratio forward-swept 
wing, numerical simulations have been 
conducted using a 3D Navier-Stokes code, and 
the following results are obtained: 1) The flutter 
observed in the experiment is a single-degree-

of-freedom flutter, in which the first bending 
mode is exited by the shock-stall phenomenon. 
2) The flutters observed in the experiment are 
LCOs and show the characteristics of a single-
degree-of-freedom flutter; that is, the increase in 
mass ratio does not suppress the flutter. 3) The 
numerical simulations have predicted the 
existence of high-frequency LCOs for the first 
torsion mode in the region where the response 
of the first bending mode shows strongly 
damped oscillations. 
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 Fig. 19. Results of Numerical 

Simulations. 
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