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Abstract

The small disturbance Navier-Stokes method
FLM-SD.NS developed at Technische Univer-
sität München was shown to be both an ef-
ficient and yet accurate means of rendering
the unsteady aerodynamic loading required by
transonic aeroelastic analysis. Complementing
past investigations, FLM-SD.NS computations of
a fighter-type delta-wing undergoing harmonic
pitching-oscillations are presented. The consid-
ered cases respectively feature a shockless flow-
topology, leading-edge vortex formation, and a
medium-strength shock. Overall, the unsteady
aerodynamic loading is again obtained in good
agreement with dynamically fully nonlinear pre-
dictions provided by the comparative Reynolds-
averaged Navier-Stokes method FLM-NS. Re-
ductions in computation time, up to half an or-
der of magnitude, in relation to FLM-NS are
observed. The known limitations of the small
disturbance approach become apparent for the
leading-edge-vortex case, in which higher-order
harmonics are far less negligible in the flow’s re-
sponse to the excitation. Despite featuring sub-
stantially differing flow-topologies, the degree of
dynamic stability exhibited by the fighter-type
delta-wing in the leading-edge-vortex case is as-
certained to be nearly equal to the instance in the
shockless case. Contrarily, the degree of dynamic
stability exhibited in the medium-strength-shock
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case emerges greatly reduced with respect to the
shockless case. A comparison to both small-
disturbance and dynamically-fully-nonlinear Eu-
ler results, respectively, rendered by FLM-SDEu
and FLM-Eu, is also made. It primarily shows
that for the more intricate flow-topologies the vis-
cous consideration substantially improves on the
inviscid prediction of the global load coefficients’
zeroth-harmonic, yet to a lesser extent on their
first-harmonic. For each case, however, the de-
gree of dynamic stability determined with FLM-
SDEu / FLM-Eu is quite similar to the FLM-
SD.NS / FLM-NS-assessed counterpart.

Nomenclature

A = semi-span planform area,
R s

0 cdy
AR = semi-span aspect ratio, s2/A
c = local chord length, c(y/s)
cav = average chord length, A/s
cL = lift coefficient, dimensional lift

normalized with ρ̌∞|v̌∞|2Ǎ/2
cM = moment coefficient, dimensional

moment respective to the pitch axis
normalized with ρ̌∞|v̌∞|2Ǎčµ/2
(greater than 0: tail-heavy
moment/pitch up)

cp = pressure coefficient
cp,crit = critical pressure coefficient,

cp(Ma∞) at Ma = 1.0
cr = root chord length, c(0)
ct = tip chord length, c(1)
cµ = reference chord length,

R s
0 c2 dy/A
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d+ = sublayer-scaled distance of the
first offbody grid plane

f = oscillation frequency
Im = imaginary part
kred = reduced oscillation frequency,

2π f̌ Ľ
√

ρ̌∞/(Ma∞
√

γp̌∞)

L = reference length of the geometric
nondimensionalization

Ma = local Mach number
Ma∞ = freestream Mach number,

|v̌∞|
√

ρ̌∞/
√

γp̌∞
p∞ = freestream static pressure
Pr = Prandtl number
Prt = turbulent Prandtl number
Re = real part
Re∞ = freestream Reynolds number,

ρ̌∞|v̌∞|čav/µ̌∞
s = semispan length
T∞ = freestream static temperature
t = time
tmethod
CPU = Institute of Fluid Mechanics

method computation time
|v∞| = magnitude of the freestream

velocity vector
x = span-station-local chordwise

coordinate, x(y/s) (0: leading
edge, c: trailing edge)

x,y,z = global Cartesian coordinates
xd = x of a wing section’s

maximum thickness
xp,zp = global pitch axis coordinates
y = semi-span coordinate

(0: root, s: tip)
α = incidence angle
γ = ratio of specific heats
∆ = difference between lower- and

upper-surface value, ∆(x/c);
for example,
∆cp = cp,lower− cp,upper

ζCPU = ratio of computation
times, ťNS

CPU/ ťSD.NS
CPU

λ = taper ratio, ct/cr
µ = molecular viscosity,

governed by Sutherland’s law
µ∞ = freestream molecular

viscosity, µ(T∞)

ρ∞ = freestream density
τs = characteristic time,

ť Ma∞
√

γp̌∞/(Ľ
√

ρ̌∞)

χ generalized load coefficient,
χ ∈ {cp,cL,cM}

Superscripts

0 = zeroth harmonic
1 = first harmonic
2,3 = higher harmonics (second, third)
¯ = time-invariant mean
˜ = periodic perturbation
ˆ = perturbation amplitude
ˇ = dimensional

1 Introduction

In the transonic speed range, production analy-
sis of an aircraft’s dynamic aeroelastic behavior
requires a computational fluid dynamics (CFD)
method that can efficiently supply the unsteady
aerodynamic structural loading, while accurately
accounting for both compressibility and viscos-
ity effects [13]. Research conducted at the for-
mer Institute for Fluid Mechanics (FLM)† of
the Technische Universität München has shown
that a CFD method based on the small distur-
bance Navier-Stokes equations can satisfy these
needs [9]: Under the premise of a predominantly
dynamically-linear flowfield-response to a first-
harmonic excitation, the amplitude of the orga-
nized unsteadiness, and thus the amplitude of the
unsteady aerodynamic loading, can be extracted
and computed directly in the frequency domain.
As a result, the computational cost becomes
merely a fraction of the one associated with
the otherwise commonly employed time-domain
Reynolds-averaged Navier-Stokes (RANS) ap-
proach, while retaining its fidelity to a high de-
gree.

The small disturbance Navier-Stokes solution
develops subject to a specified kred and ampli-

†The FLM was reconstituted as the Institute of Aerody-
namics in December 2004 under Prof. Dr.-Ing. Nikolaus
Adams, and subsequently renamed the Institute of Aerody-
namics and Fluid Mechanics in December 2010.
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tude surface deflection/deformation of the con-
sidered body’s harmonic motion on basis of a ref-
erence (time-invariant mean) flowfield. The lat-
ter is a priori supplied by a steady-state RANS
solution realized in a computational grid embed-
ding the considered body at its zero-crossing (ref-
erence) position for the Ma∞, Re∞, and ˇ̄α of
interest. In addition to this reference grid, a
second grid embedding the considered body at
its upper-dead-center (extremum) position must
be provided. It allows the required amplitude
surface-deflection/deformation to be numerically
extracted.

The application readiness of the realized in-
carnation, designated FLM-SD.NS, had been
demonstrated through investigations on harmonic
oscillations of both low- and high-aspect-ratio
wings, as well as a rectangular-wing/nacelle con-
figuration [11, 10, 3]. The accuracy and the
achieved efficiency-gain had been assessed by
comparing the FLM-SD.NS results and required
computational time to those of the in-house
RANS method FLM-NS. A reduction of compu-
tational time up to an order of magnitude was
principally ascertained. An additional compar-
ison with both the in-house small disturbance
Euler method FLM-SDEu [5, 16, 14] and its
dynamically-fully-nonlinear time-domain coun-
terpart FLM-Eu highlighted the advantages of the
viscous approach over the inviscid one. Within
the FLM-SD.NS framework the perturbation am-
plitude of the eddy viscosity is fully accounted
for by default.

Per se, the application of small disturbance
Navier-Stokes methods to aircraft aeroelasticity
is still in its infancy. As of 2012 only a few
other endeavors have been made to appropriate
established RANS methods as basis for com-
plementary small disturbance Navier-Stokes in-
carnations. Notably, small disturbance Navier-
Stokes methods based on Dassault Aviation’s
AETHER [6, 12], the French Aerospace Labo-
ratory’s elsA [7, 2], and the German Aerospace
Center’s TAU [17] have come into existence.

Next to the well established standard test
cases employed in the FLM-CFD methods’ val-
idation, application-oriented cases of a fighter-

type delta wing (FTDW) performing harmonic
motions under high-Reynolds-number transonic
flow conditions had been a research focus for
many years at the FLM. Embodying the wing
of a highly maneuverable aircraft, the flow
around the FTDW remains shockless up to nearly
sonic freestream Mach-numbers for moderate
incidence-angles. High incidence-angles in com-
bination with high subsonic freestream Mach-
numbers, on the other hand, initiate a vortex close
to the upper-surface leading-edge (LE). Desig-
nated the leading-edge vortex (LEV), it intro-
duces considerable cross-flow velocities to the
nearfield, augmenting the degree of suction the
upper-surface is exposed to in return. Conse-
quently, the resultant lift still increases over its
moderate-incidence-angle counterparts at equal
freestream Mach-number instead of collapsing,
as typically observed for other wing geometries
at high incidence-angles due to flow separation.

Primarily, inviscid investigations had been
conducted for the FTDW, with FLM-SDEu
/ FLM-Eu employed to render the unsteady
aerodynamic-loading induced by rigid-body
pitching- and flap-oscillations, as well as elastic-
eigenmode oscillations [16, 14]. To date, viscous
investigations realized with FLM-SD.NS / FLM-
NS were limited to the particular FTDW flap-
oscillation cases [4]. Complementing these re-
sults, a series of pitching-oscillation cases based
on those presented in [16] were novelly com-
puted with FLM-SD.NS. The small disturbance
accordant formulation of the Spalart-Allmaras
(S/A) one-equation turbulence model [15] was
employed. In the following, select cases are pre-
sented and discussed.

2 Numerical Method

FLM-SD.NS is a cell-centered structured fi-
nite volume method (multiblock capable) featur-
ing a multigrid-accelerated implicit pseudotime-
integration of the discretized small disturbance
Navier-Stokes equations. Second-order spatial
accuracy is given for smoothly stretched grids
and regions of continuous flow, with the total
variation diminishing condition yet satisfied at lo-
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cations of discontinuity. Details on the numerical
properties have been provided in [9, 3, 11, 10].

Investigating the harmonic pitching oscilla-
tions of the FTDW, all FLM-CFD methods con-
sider the motion to be governed by

α̌(kred τs) = ˇ̄α + ˇ̃α(kred τs) with

ˇ̃α(kred τs) := ˇ̂α sin(kred τs)
(1)

about the given pitch axis, with ˇ̄α, ˇ̂α, and kred set
through the individual test case.

For FLM-SD.NS the local unsteady load dis-
tribution normal to the wing’s surface, embodied
by c̄p, ĉp, as well as the resultant global loading,
expressed by c̄L, ĉL and c̄M , ĉM , are investigated.
The latter are directly gained from the integra-
tion of the c̄p, ĉp and c̄ f , ĉ f distributions over
the wing’s reference position surface. If desired,
time-dependent cp, cL, and cM evolutions can be
gained by recomposite, that is,

χ(kred τs)|SD.NS := χ̄+ χ̃(kred τs) with

χ̃(kred τs) = Re χ̂ sin(kred τs)

+ Im χ̂ cos(kred τs) .

(2)

An Im χ̂ > 0 indicates a χ̃ that leads the excita-
tion, while complementarily a Im χ̂< 0 indicates
a χ̃ that lags the excitation [11]. In this context,
the evaluation of the systemic energy transfer by
c̃M over the course of a single period shows that
for α̂> 0 the corresponding free pitching oscilla-
tion can be classified as unstable if ImĉM > 0 or
stable if ImĉM < 0. This conforms, respectively,
to a c̃M that either has an amplifying or a damping
effect.

Typically, the FLM-SD.NS time-invariant
mean and complex amplitude result – the load
coefficients’ zeroth and first harmonic – are com-
pared to the particular instances yielding from the
Fourier-analyzed FLM-NS time series of a peri-
odic cycle. This not only allows FLM-SD.NS
prediction-accuracy to be ascertained, but also
the degree of dynamic nonlinearity inherent to
the time-accurate flow response. The discrete
evolution of cL and cM itself arises from the inte-

gration of the cp and c f distributions over the de-
flected wing’s surface after each converged phys-
ical time step. For this purpose, the nomenclature
of the FLM-SD.NS-computed load coefficients is
brought into conformity with that common to the
Fourier-analysis:

χ0
∣∣
SD.NS := χ̄ , χ1

∣∣
SD.NS := χ̂ . (3)

Both FLM-NS and FLM-Eu render the un-
steady aerodynamic loading with second-order
accuracy in time. The globally used Cartesian co-
ordinate system is set to originate from the wing’s
root LE at reference position. The x (chord-
wise) direction runs positively toward the trail-
ing edge (TE) and the y (spanwise) direction runs
positively toward the starboard tip, rendering the
designated reference plane for α̌. The imposed
motion is strictly longitudinal, that is, occurring
about an axis parallel to the spanwise direction.
Consequently, a semispan numerical treatment of
the FTDW suffices, the starboard half being con-
sidered here.

3 Fighter Type Delta Wing

The clipped FTDW features a 53 deg swept LE,
a 3 deg negatively-swept TE, and a supercriti-
cal section (round LE, sharp TE) which varies in
both geometry and twist across the span (Fig. 1):
Relative thickness reduces from 4.7% for the root
section (xd/cr = 0.49) to 4.0% for the tip section
(xd/ct = 0.35). The tip section exhibits an ac-
crued twist of −5 deg respective the root section.
In its semi-span instance (Ľ := š = 5.258 m) the
planform is trapezoidal, with s := š/Ľ = 1.0 and
cr := čr/Ľ = 1.615 supplementing the sweep an-
gles in the definition. Evidently, the planform of
the FTDW is quite similar to the planform of the
NASA Clipped Delta Wing (NCDW) [1], which
had been employed in the three-dimensional vali-
dation of FLM-SD.NS [4, 11]. The FTDW’s sec-
ondary geometric properties result to λ = 0.146,
A := Ǎ/Ľ2 = 0.926, AR = 1.080, cav := čav/Ľ =
0.926, and cµ := čµ/Ľ = 1.097. The pitch axis re-
sides at xp/cr = 0.50 and zp = 0.00. Surface pres-
sure distributions are evaluated at merely one in-
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ner and one outer span station, ys1 := y/s = 0.35
and ys2 = 0.75, respectively.
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Fig. 1 Composited spatial and planform view
(surface grid with superimposed pitch axis and
investigated span stations) of the rendered FTDW

Retaining the discretization established for
the NCDW, 72 cells are hyperbolically dis-
tributed in chordwise and 32 cells Poisson-
distributed in spanwise direction for a total of
2304 cells on each surface. Pertinent initial spac-
ings at the LE and root section, as well as final
spacings at the TE end tip section are adjusted
from their NCDW-setting to accommodate the
geometric differences, in particular the round LE.
It is embedded (at reference position) in an ellip-
tically smoothed two-block C-H-topology struc-
tured volume grid by way of a boundary-fitted
curvilinear coordinate system. The far-field dis-
tances are set to 11× s in positive chordwise di-
rection from the root LE, to 11× s in both pos-
itive and negative vertical (z) direction from the
root TE, as well as to 5× s in spanwise direction
respective the wing’s lateral (xz) plane of sym-
metry. Evidently, the employed topology and far-
field distances are chosen to be identical to those

utilized by the NCDW volume grid. In contrast
to it, each block now discretizes approximately
one half of the numerically treated physical do-
main, as the embedded wing has no vertical plane
of symmetry: The NCDW volume grid had been
conveniently divided into physically-equal spa-
tial parts by the xy plane. The individual block
is still associated with strictly one of the wing’s
surfaces, either the upper or lower. It discretizes
the delimited volume with 96 cells in positive
chordwise, 48 cells in spanwise, and 40 cells in
wing surface normal direction, translating into
184320 cells per block or 368640 cells for the en-
tire grid. Cells in wing surface normal direction
are hyperbolically distributed, the distance of the
first offbody grid plane being set to 1×10−5× s.
For the considered high-Reynolds-number tran-
sonic flow this renders d+ < 5 as required by the
S/A turbulence model. The employed cell dis-
tributions and offbody distances are again cho-
sen to be equal to those utilized by the NCDW
volume grid. Regeneration of the volume grid
for the amplitude-deflected surface grid and sub-
sequent smoothing ultimately yields the desired
extremum grid. Hence, its global properties are
equivalent to those of the reference grid. Fur-
ther details on grid construction and smoothing
are given in [8].

From the multitude of computed dynamic test
cases, results for a shockless case (P800510), an
LEV case (P801010), and a medium-strength-
shock case (P950510) are presented. Table 1
provides the computation parameters. For all
cases, the values of the dimensional thermody-
namic reference quantities complementing Ľ are
p̌∞ = 101.3 kPa, ρ̌∞ = 1.255 kg/m3, and Ť∞ =
288.15 K, while also having Re∞ = 10.0× 106,
γ = 1.4, Pr = 0.72 (air), and Prt = 0.90 in com-
mon. The S/A one-equation turbulence model
[15] is selected to provide eddy-viscosity closure.
Test case P800510 will serve as baseline.

FLM-SD.NS computations of P800510 and
P950510 employ a three-level V-symmetric
multigrid cycle for acceleration. Per multigrid
cycle dual pseudotime steps on the finest and
coarsest grid level in combination with a single
pseudotime step on the intermediary level (2/1/2)
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Case Ma∞ ˇ̄α, deg ˇ̂α, deg kred f̌ , Hz
P800510 0.80 5.0 1.0 1.0 8.2
P801010 0.80 10.0 1.0 1.0 8.2
P950510 0.95 5.0 0.5 1.0 9.8

Table 1 Computation parameters of the FTDW cases

are conducted. The NCDW computations [11]
had established this setting to be well suited for
efficiently converging solutions. It has become
the quasi default setting, as permitted by the em-
ployed grid’s actual multigrid-capability. A con-
verged solution of the governing equations is as-
sumed if the L2-norm amplitude density residual,
as normalized with its value after the first multi-
grid cycle, has dropped below 5.0×10−4, termi-
nating the computation.

For P801010, where an extensive region of
LEV-induced near-surface cross-flow occurs in
the supplied time-invariant mean flowfield, sta-
bility of the solution process could merely be
achieved under the singlegrid setting and the so-
called frozen eddy-viscosity approach: The am-
plitude S/A working variable is artificially kept
at nil value throughout the entire domain, effec-
tively eliminating the amplitude eddy-viscosity’s
contribution to the developing solution. Stabil-
ity realized in this manner, however, comes at the
expense of a turbulent closure diminished in its
dynamic trait. Nevertheless, the localized limita-
tion of the amplitude S/A working variable, first
established in [11], is not explored in this context
as an alternative remedy for solution instability.
The precedingly specified abort criterion remains
valid, however, revised in terms of the singlegrid
cycle.

For the comparative FLM-NS computations
three oscillation cycles suffice to achieve load
coefficient periodicity, each discretized with 100
physical time intervals. This is equal to the
treatment of the NCDW cases. Incremental
grid deformation is again carried out through
time-law-accordant inter- and extrapolation be-
tween the extremum and reference grid. Solu-
tion scheme settings are, respectively, identical to

those of the corresponding FLM-SD.NS compu-
tation. All FLM-SD.NS / FLM-NS production-
computations were conducted on a single 1.3
GHz Intel Itanium 2 processor of the Leibniz
Rechenzentrum Linux cluster. The employed
FLM-CFD method’s machine code was gener-
ated from its serial implementation with the Intel
Fortran Compiler for Linux.

Generally, the supplemental FLM-SDEu /
FLM-Eu computations employ the same refer-
ence and extremum grid as the FLM-SD.NS /
FLM-NS ones in order to retain spatial compa-
rability. For P801010, however, the high resolu-
tion of the wing’s near-field destabilized the in-
viscid solution process, as previously witnessed
for the NCDW case 90D29 [11]. This neces-
sitates the consideration of more Euler-typical
grids, which are internally generated from the
Navier-Stokes grids through elimination of ev-
ery other cell edge. Ultimately, coarser grids of
merely 46080 cells are rendered, with 576 cells
constituting each surface. This poses a substan-
tial reduction, respectively, by 88% and 75%.
Nevertheless, the wing surface and near-field re-
main sufficiently resolved, with the distance of
the first offbody grid plane only increasing to
3× 10−5× s. Experimental data in regard to the
considered test cases was not available. In the
following, the load coefficients’ real and imagi-
nary parts are normalized with α̂ := ˇ̂απ/180 deg.

4 Results and Discussion

4.1 Shockless Case

For Ma∞ = 0.80, Re∞ = 10.0×106, and ˇ̄α = 5.0
deg the FLM-NS supplied time-invariant mean
flowfield exhibits a highly localized supersonic
region in proximity to the upper wing-surface,
originating close to the LE. It extends from y/s =
0.29 to the tip, terminating without a shock.
FLM-SD.NS-computed surface pressure distri-
butions for P800510 are composited with their
FLM-NS and FLM-SDEu / FLM-Eu counterparts
in Fig. 2. Subsequently, the FLM-SD.NS result
is briefly described.

For both the inner- and outer-span station, a
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lower-surface maximum c0
p-peak presents itself

close to the LE, designating the local stagnation
point. The strong acceleration around the LE to-
ward the upper-surface then renders an equally
distinct minimum c0

p-peak, that is, the c0
p suction-

peak, which apparently increases in absolute
value from root to tip. Despite upper-surface
c0

p falling below cp,crit significantly, the recom-
pression toward the TE occurs continuously, as
characteristic for a supercritical airfoil. Lower-
surface flow remains entirely subsonic, with the
rendered c0

p-progression indicating an expansion
that is sustained over the greater part of the lo-
cal chord length, before again continuously re-
compressing toward equalization with the upper-
surface c0

p-progression at the TE. Integrating ∆c0
p

over the entire wing, a positive c0
L and marginally

negative c0
M can be ascertained.

The Rec1
p progressions exhibit an upper-

surface minimum-peak and a substantially di-
minished lower-surface maximum-peak, respec-
tively, corresponding to the particular location
of the c0

p suction-peak and the local stagnation
point. For either span station the upper- and
lower-surface Rec1

p progression are observed to
intersect in close proximity to the TE, eventu-
ally equalizing there. Integrating ∆Rec1

p over the
entire wing, a positive Rec1

L and negative Rec1
M

(pitch down) can be ascertained.
Inverse to the Rec1

p progressions, the Imc1
p

progressions feature an upper-surface maximum-
peak and a lower-surface minimum-peak, respec-
tively, at the particular location of the c0

p suction-
peak and the local stagnation point. For the
inner-span station, the upper- and lower-surface
Imc1

p-progressions intersect slightly forward of
the pertinent pitch-axis location, while intersect-
ing farther upstream relative to the chord-length
for the outer-span station. For either span station,
upper-surface and lower-surface Imc1

p progress
downstream, respectively, toward a minimum
and maximum value, subsequently trending to-
ward equalization at the TE. Integrating ∆ Imc1

p
over the entire wing, a positive Imc1

L and nega-
tive Imc1

M (pitch down) can be ascertained.
For both span stations, FLM-SD.NS-

computed c0
p, Rec1

p, and Imc1
p agree excellently

with their FLM-NS counterparts. As expected,
the small disturbance premise holds up very well
for shockless transonic flow. Mild discrepancies
are merely observed in the upper-surface Rec1

p-
and Imc1

p-progressions, hinting at some higher-
harmonic influence. The conformity between
FLM-SD.NS and FLM-NS can be seen equal to
that between FLM-SDEu and FLM-Eu. Overall,
the viscous and inviscid progressions differ only
marginally.

Considering the computed global load co-
efficients (Table 2), both c0

L and Rec1
L gained

from FLM-SD.NS conform to their respective
FLM-NS counterpart. In contrast, FLM-SD.NS-
computed Imc1

L is rendered 4% lower than the
FLM-NS-obtained instance. Rec1

L and Imc1
L are

Method c0
L Rec1

L Imc1
L

FLM-SD.NS 0.214 3.481 1.987
FLM-NS 0.214 3.479 2.070
FLM-SDEu 0.219 3.609 2.073
FLM-Eu 0.220 3.613 2.182

Method c0
M Rec1

M Imc1
M

FLM-SD.NS -0.005 -0.246 -1.001
FLM-NS -0.005 -0.211 -1.039
FLM-SDEu -0.006 -0.295 -1.065
FLM-Eu -0.007 -0.256 -1.118

Table 2 Comparison of the global load coeffi-
cients for FTDW case P800510 (Ma∞ = 0.80,
Re∞ = 10.0× 106, ˇ̄α = 5.0 deg, ˇ̂α = 1.0 deg,
kred = 1.0, xp/cr = 0.50)

in the same order of magnitude. Both compu-
tations congruently predict a time-dependent cL
that substantially leads the excitation.

FLM-SDEu-rendered c0
L is merely 2% higher

than its FLM-SD.NS counterpart, while both
Rec1

L and Imc1
L are 4% higher. In either case,

the difference is accrued through the marginally
wider lower- and upper-surface sectional local-
load-coefficient progression (c0

p, Rec1
p, Imc1

p) –
thus respectively yielding a larger sectional con-
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Fig. 2 Comparison of the zeroth- and first-harmonic pressure-coefficient distributions (c0
p and c1

p) for the
FTDW case P800510 (Ma∞ = 0.80, Re∞ = 10.0× 106, ˇ̄α = 5.0 deg, ˇ̂α = 1.0 deg, kred = 1.0, xp/cr =
0.50)

8



SMALL DISTURBANCE NAVIER-STOKES INVESTIGATIONS OF FIGHTER-TYPE-DELTA-WING
PITCHING OSCILLATIONS

tribution to the global load-coefficient (c0
L, Rec1

L,
Imc1

L) – across the semispan (Fig. 2). For both
c0

L and Rec1
L the deviation of the inviscid meth-

ods is just as negligible as that of the viscous
methods before. FLM-SDEu-computed Imc1

L, on
the other hand, is 5% lower than its FLM-Eu
counterpart, though similar to the behavior wit-
nessed between the FLM-SD.NS- and FLM-NS-
obtained Imc1

L. This implies that the particular
deviation is fundamentally inherent to the differ-
ence in approach and not to the difference in phe-
nomenological consideration – viscous over in-
viscid flow.

FLM-SD.NS-rendered c0
M equals its FLM-

NS counterpart. Its marginally negative value
(pitch down) indicates that the considered ˇ̄α is
in close proximity to the incidence angle of zero
steady pitching-moment. In contrast to c0

M , FLM-
SD.NS-computed Rec1

M and Imc1
M are, respec-

tively, 17% higher and 4% lower in absolute
value than the particular FLM-NS-obtained in-
stance. Whereas conformity had been ascer-
tained between the FLM-SD.NS- and FLM-NS-
rendered Rec1

L, the existing yet negligible devi-
ation has become substantially amplified toward
Rec1

M. The deviation exhibited in Imc1
L, on the

other hand, has followed through to Imc1
M un-

changed. Since Rec1
M is gained half an order

of magnitude smaller than Imc1
M, the deviation

in Rec1
M itself becomes tolerable. For either

method Rec1
M and Imc1

M conform in their neg-
ative sign (pitch down), congruently predicting
a time-dependent cM that lags the excitation by
slightly more than a quarter cycle: In the case of a
free pitching oscillation, cM would consequently
have a damping effect.

Both FLM-SDEu-rendered c0
M and Rec1

M are
20% higher in absolute value than their viscous
counterparts. Imc1

M, on the other hand, is ren-
dered merely 6% higher in absolute value. Dis-
regarded viscosity has substantial impact on both
c0

M and Rec1
M , despite having had only marginal

impact on c0
L and Rec1

L. The relative change of
Imc1

M, however, remains in-line with the one ex-
hibited by Imc1

L. Whereas the disparity in impact
witnessed between c0

M and c0
L originates from the

sensitivity of the c0
M-evaluation for a near zero

pitching-moment per se, the one between Rec1
M

and Rec1
L stems from Rec1

M being half an order
of magnitude smaller than Imc1

M. FLM-SDEu-
computed c0

M is 14% lower in absolute value than
its FLM-Eu counterpart, as opposed to the ob-
served equality of the viscous instances. Surpris-
ingly, a nearly negligible deviation between the
FLM-SDEu- and FLM-Eu-obtained c0

L amplifies
toward a substantial one between the correspond-
ing c0

M instances. FLM-SDEu-computed Rec1
M

and Imc1
M are, respectively, 15% higher and 5%

lower in absolute value than their FLM-Eu coun-
terparts. These particular deviations are similar
to the ones shown by the corresponding viscous
methods, again illustrating that they are funda-
mentally inherent to the difference in approach.
Conforming with the viscous methods, the in-
viscidly obtained Rec1

M and Imc1
M agree in their

negative sign (pitch down). This correspondingly
indicates a time-dependent cM that lags the exci-
tation by slightly more than a quarter cycle. In
the case of a free pitching oscillation, cM would
again have a damping effect. The inviscid Imc1

M,
however, now indicates slightly greater dynamic
stability.

Overall, FLM-SD.NS renders the unsteady
loading of the shockless case in very good agree-
ment to FLM-NS. For either method the vis-
cous consideration yields both a c1

L- and c1
M-

prediction that improves on the respective invis-
cid approach, yet more distinctly in case of the
latter.

4.2 Leading-Edge-Vortex Case

For Ma∞ = 0.80, Re∞ = 10.0×106, and ˇ̄α = 10.0
deg the FLM-NS supplied time-invariant mean
flowfield exhibits an expanded yet still very lo-
calized supersonic region in proximity to the up-
per wing-surface, originating close to the LE. It
extends from y/s = 0.05 to y/s = 0.88, again
terminating without a shock. At y/s = 0.27 a
vortex additionally initiates close to the upper-
surface LE, subsequently convecting toward the
tip (Fig. 3). The LEV introduces an exten-
sive region of crossflow to the nearfield. It has
developed far greater than the one seen for the
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Fig. 3 Near-surface streamlines and surface
isobars of the time-invariant mean flowfield
employed by FLM-SD.NS in the FTDW case
P801010 (Ma∞ = 0.80, Re∞ = 10.0× 106, ˇ̄α =
10.0 deg, ˇ̂α = 1.0 deg, kred = 1.0, xp/cr = 0.50)

medium-strength-shock/LEV case of the NCDW
(90D29) [11]. The LE itself again approximately
renders the line of separation, while the line of
reattachment is observed at a sweep angle of 66
deg. Over the course of the progression, the LEV
initially augments the LE suction-peak, however,
to diminishing degree toward y/s = 0.48, as it
additionally induces a localized suction plateau
further downstream. As the LEV’s chordwise
region of influence expands, the extent of the
suction plateau likewise increases, while its in-
tensity decreases in return. In proximity to the
tip, the LEV’s influence on the surface pressure
considerably wanes. With respect to P800510,
the additionally rendered rotational component
makes for quite the intricate flow topology. FLM-
SD.NS-computed surface pressure distributions
for P801010 are composited with their FLM-NS
and FLM-SDEu / FLM-Eu counterparts in Fig.
4. The characteristic features of the FLM-SD.NS
instances are briefly highlighted in the following.

The upper-surface c0
p-progressions exhibit

both the precedingly described augmented LE
suction-peak and the separately induced suction-
plateau, respectively, for the investigated inner-

and outer-span station. For the inner-span sta-
tion, the lower-surface c0

p progression deviates
only slightly from the P800510 instance, despite
the substantially higher incidence angle. Con-
trarily, the outer-span station c0

p progression indi-
cates strictly expansive flow from the local stag-
nation point to the TE, where recompression in
proximity to the TE had occurred for P800510.
Integrating ∆c0

p over the entire wing, a positive c0
L

and negative c0
M (pitch down) can be ascertained.

Naturally, the existence of the LEV and its
implied motion alters the upper-surface Rec1

p-
and Imc1

p-progressions as well, however, seen
to be less substantial for the inner- than for the
outer-span station: The inner-span station in-
stances retain the characteristic features of their
P800510 counterparts. Both the Rec1

p minimum-
peak and the Imc1

p maximum-peak, which cor-
respond to the location of the c0

p suction-peak,
have diminished in absolute value, yet have in-
creased in chordwise extent. Downstream, how-
ever, the progressions again conform to their
P800510 counterparts. The lower-surface Rec1

p
and Imc1

p-progressions mostly conform to their
P800510 counterparts as well, with merely the re-
spective peak associated with the location of the
stagnation point having faded. For both Rec1

p and
Imc1

p the location of the upper- and lower-surface
progressions’ intersection remains unaltered. Re-
garding the outer-span station, Rec1

p now exhibits
a strictly negative-valued progression. From
near the LE toward the half-chord position it
can be similarly classified as a plateau. Subse-
quently, the Rec1

p progression increases toward
the TE, equalizing there with the lower-surface
instance. The upper-surface Imc1

p progression is
similarly negative-valued, yet only up to the half-
chord position. From a forward located bulge it
monotonically increases to positive values, sub-
sequently intersecting the lower-surface counter-
part, and ultimately rendering a local maximum
at the three-quarter-chord position. Downstream
from there, the Imc1

p progression again increases,
equalizing with the lower-surface instance at the
TE. With exception of the LE region, the lower-
surface Rec1

p- and Imc1
p-progressions again con-
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Fig. 4 Comparison of the zeroth- and first-harmonic pressure-coefficient distributions (c0
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p) for
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form to their P800510 counterparts. Integrating
∆Rec1

p, as well as ∆Imc1
p over the entire wing,

respectively, a positive Rec1
L and negative Rec1

M
(pitch down), as well as a positive Imc1

L and neg-
ative Imc1

M (pitch down), can be ascertained.
FLM-SD.NS-computed upper-surface c0

p
agrees excellently with its FLM-NS-obtained
counterpart for the inner-span station, while
exhibiting minute discrepancies for the outer-
span station with respect to the predicted
suction-plateau. For both span stations, greater
discrepancies are observed between the FLM-
SD.NS-computed upper-surface Rec1

p and its
FLM-NS-obtained counterpart, as well as be-
tween the corresponding Imc1

p instances. These
discrepancies amplify from the inner- toward the
outer-span station, in accordance with the LEV’s
expanding region of influence. Apparently, the
small disturbance premise does not hold up well
under this circumstance. Agreement between the
FLM-SD.NS-computed lower-surface c0

p and its
FLM-NS-obtained counterpart is again excellent,
with the corresponding Rec1

p and Imc1
p instances

conforming very well likewise.
Equal to the investigation conducted for the

NCDW case 90D29, the FLM-SD.NS-computed
planform upper-surface c0

p, c1
p distributions are

compared to the planform upper-surface c0
p, c1

p,
as well as the planform upper-surface second and
third harmonic pressure coefficient distributions
(c2

p, c3
p) gained from FLM-NS (Fig. 5 and Fig.

6). Even for a small amplitude of ˇ̂α = 1.0 deg
the imposed motion on the LEV is sufficient to
induce higher-order harmonics within the time-
dependent evolution of the upper-surface cp. Be-
tween the root and the boundary of the LEV’s
region of influence additional higher-order har-
monics emerge about the pitch axis per se, alter-
nating longitudinally in sign. Naturally, both dis-
tinct occurrences interact with each other at the
boundary of the LEV’s region of influence. It
can be observed that c2

p locally exceeds the spec-
ified 10% c1

p range – in parts significantly. In
comparison, c3

p appears fairly subdued with re-
spect to c1

p as well as to c2
p . For regions where

c0
p � c1

p � c2
p � c3

p no longer holds true, how-

ever, the small disturbance method cannot render
an accurate c1

p prediction: As higher-order har-
monics become dominant in the flowfield they
exert influence on those of lower order (nonlin-
ear interaction). Consequently, the time-invariant
mean flowfield employed by the dynamically lin-
ear approach will depart from the actual zeroth-
harmonic one. The complex amplitude flowfield
computed by FLM-SD.NS can then only deviate
from the actual first-harmonic one as well.

Revisiting Fig. 4, the conformity between
FLM-SD.NS and FLM-NS can be seen equal
to that between FLM-SDEu and FLM-Eu for
the upper-surface c0

p-progressions of both span
stations. For the inner-span station, the dis-
crepancies between the FLM-SD.NS- and FLM-
NS-obtained upper-surface Rec1

p progressions,
as well as the Imc1

p instances, are greater than
the ones between their inviscid counterparts.
For the outer-span station, on the other hand,
the FLM-SD.NS- and FLM-NS-obtained upper-
surface Rec1

p progressions, as well as the Imc1
p

instances, can be ascertained to agree better than
their inviscid counterparts. For all lower-surface
progressions, conformity between FLM-SD.NS
and FLM-NS can again be seen equal to that be-
tween FLM-SDEu and FLM-Eu.

Disregarding viscosity has significant impact
on the upper-surface progressions, yet almost
none on the lower-surface instances. Most no-
tably an upper-surface c0

p suction-bulge emerges
for the outer-span station, where an extended
suction-plateau had developed for the viscous
treatment. Correspondingly, the inviscid Rec1

p
and Imc1

p progressions strongly differ from their
viscous counterparts as well. For the inner-
span station, however, the inviscidly rendered c0

p-
, Rec1

p-, and Imc1
p-peak at the LE can be observed

to be of slightly lesser chordwise extent than their
viscous counterparts yet nearly equal in value,
despite vortex-initiation being driven by numer-
ical viscosity instead of a physical one.

Regarding the computed global load coeffi-
cients (Table 3), c0

L obtained from FLM-SD.NS
can be considered identical to its FLM-NS coun-
terpart. Both c0

L are nearly two-and-a-half times
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Fig. 5 FLM-SD.NS- and FLM-NS-computed planform upper-surface c0
p, c1

p distributions for the FTDW
case P801010 (Ma∞ = 0.80, Re∞ = 10.0×106, ˇ̄α = 10.0 deg, ˇ̂α = 1.0 deg, kred = 1.0, xp/cr = 0.50)
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Fig. 6 FLM-NS-computed planform upper-surface c0
p, c2

p, c3
p distributions for the FTDW case P801010

(Ma∞ = 0.80, Re∞ = 10.0×106, ˇ̄α = 10.0 deg, ˇ̂α = 1.0 deg, kred = 1.0, xp/cr = 0.50)
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Method c0
L Rec1

L Imc1
L

FLM-SD.NS 0.489 4.034 1.624
FLM-NS 0.486 4.174 1.923
FLM-SDEu 0.523 3.924 1.623
FLM-Eu 0.522 3.956 1.854

Method c0
M Rec1

M Imc1
M

FLM-SD.NS -0.019 -0.420 -0.972
FLM-NS -0.019 -0.464 -1.112
FLM-SDEu -0.034 -0.464 -0.996
FLM-Eu -0.034 -0.491 -1.078

Table 3 Comparison of the global load coeffi-
cients for FTDW case P801010 (Ma∞ = 0.80,
Re∞ = 10.0× 106, ˇ̄α = 10.0 deg, ˇ̂α = 1.0 deg,
kred = 1.0, xp/cr = 0.50)

the value exhibited by the viscous instances of
case P800510, that is, at equal Ma∞ yet ˇ̄α = 5.0
deg. Whereas FLM-SD.NS renders Rec1

L merely
3% lower than the FLM-NS-prediction, Imc1

L is
gained 16% lower. Since Rec1

L and Imc1
L are

gained in the same order of magnitude, the sub-
stantial deviation in Imc1

L cannot be discounted.
FLM-SDEu-rendered c0

L is 7% higher than
its FLM-SD.NS counterpart, attributable to the
LEV-induced, and thus highly localized, c0

p
suction-bulge on the upper surface, as exempli-
fied by the outer-span-station progressions (Fig.
4). Integrating over the entire wing, the greater
instances of positive ∆c0

p eventually yield a
greater overall c0

L. In contrast, Rec1
L is gained

merely 3% lower than its viscous counterpart, de-
spite the observed disparities between the invis-
cid and viscous upper-surface Rec1

p-progressions
in the LEV’s region of influence. Obviously, the
integration of ∆Rec1

p over the entire wing toward
Rec1

L has had a compensating effect. This behav-
ior is even more evident for Imc1

L, having been
obtained nearly identical to its viscous counter-
part, notwithstanding the illustrated disparity in
the Imc1

p progressions. The deviation between
the FLM-SDEu- and FLM-Eu-obtained c0

L is neg-
ligible, unlike the one witnessed between the vis-

cous instances. Furthermore, Rec1
L gained from

FLM-SDEu is merely 1% lower than its FLM-Eu
counterpart, with Imc1

L, on the other hand, being
12% lower, notably. Once again, these relative
deviations are in line with their respective viscous
counterpart, exposing the difference in approach
– dynamically fully nonlinear opposite small dis-
turbance – as the cause per se.

FLM-SD.NS-rendered c0
M equals its FLM-

NS counterpart. Its negative value (pitch down)
has quadrupled with respect to P800510, placing
the considered ˇ̄α well beyond the incidence an-
gle of zero steady pitching-moment. In contrast
to c0

M, FLM-SD.NS-computed Rec1
M and Imc1

M
are, respectively, 10% and 13% lower in abso-
lute value than the particular FLM-NS-obtained
instance. Apparently, the small deviation be-
tween the FLM-SD.NS- and FLM-NS-rendered
Rec1

L has become amplified toward Rec1
M, while

the substantial deviation exhibited in Imc1
L re-

mains mostly inherent to Imc1
M as well. For ei-

ther method Rec1
M and Imc1

M conform in their
negative sign (pitch down), congruently predict-
ing a time-dependent cM that lags the excitation
by slightly more than a quarter cycle: In the case
of a free pitching oscillation, cM would conse-
quently have a damping effect. For P801010, the
degree of dynamic stability is equal to the one
seen for P800510, as the mean Imc1

M remains
nearly unchanged.

Disregarded viscosity has substantial impact
on c0

M , the FLM-SDEu-rendered instance be-
ing nearly double its FLM-SD.NS counterpart
in negative value (pitch down). Again, this im-
pact can be made attributable to the inviscidly-
predicted c0

p suction-bulge on the upper surface,
yet now having to factor in its locality with re-
spect to the pitch axis. Accounting for ∆c0

p lever-
age in this manner, the good agreement between
the inner-span-station c0

p progressions illustrate
that the overall sectional contribution to c0

M is
nearly identical for both the FLM-SD.NS and
FLM-SDEu instances (Fig. 4). In particular, ei-
ther method similarly renders an LEV-induced
suction-peak in proximity to the LE: Appearing
forward of the pitch axis’s local intersection, the
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sectional contribution of the associated ∆c0
p to c0

M
is positive (pitch up), and of nearly equal mea-
sure. As the wing is further traversed toward the
tip, however, the individual sections no longer in-
tersect the pitch axis beyond y/s = 0.61. Being
situated aft of the pitch axis, the positive sectional
∆c0

p rendered by the pertinent c0
p progressions

of either method thus unambiguously contributes
negatively (pitch down) to c0

M. In the inviscid
treatment, however, the LEV’s initial augmenta-
tion of the LE’s c0

p suction-peak evolves into the
induction of the separate yet distinct c0

p suction-
bulge. It has greater intensity than the viscously
rendered plateau over the course of its existence,
as exemplified by Fig. 4. The resultant greater
instances of positive ∆c0

p produce greater nega-
tive sectional contributions (pitch down) to c0

M ,
eventually amplifying the overall inviscid c0

M in
the integration over the entire wing.

FLM-SDEu-predicted Rec1
M and Imc1

M are,
respectively, 10% and 3% higher in absolute
value than their FLM-SD.NS-obtained counter-
parts, with corresponding instances each agree-
ing in their negative sign (pitch down). Disre-
garded viscosity impacts Rec1

M more distinctly
than Imc1

M: Having to factor in leverage with
respect to the pitch axis, the apparent dispar-
ity between the FLM-SD.NS- and FLM-SDEu-
rendered ∆Rec1

p are compensated less in the in-
tegration over the entire wing than the disparity
between the corresponding ∆Imc1

p instances. For
either Rec1

M and Imc1
M, however, the impact of

disregard viscosity amplifies from the behavior
observed, respectively, for Rec1

L and Imc1
L. FLM-

SDEu-obtained c0
M is equal to its FLM-Eu coun-

terpart, while the Rec1
M and Imc1

M instances are,
respectively, gained 5% and 8% lower in abso-
lute value. Similar to before, deviations between
the FLM-SDEu- and FLM-Eu-rendered ∆Rec1

p,
which become quite substantial for the LEV’s re-
gion of influence (Fig. 4, outer-span station), are
compensated slightly less in the integration to-
ward Rec1

M than Rec1
L. The deviation between

the FLM-SDEu- and FLM-Eu-rendered Imc1
M,

on the other hand, improves on its Imc1
L coun-

terpart. All in all, the prediction spread can be

considered in-line with the one observed between
the inviscid c0

L, Rec1
L, and Imc1

L, as well as within
the one exhibited between the viscous c0

M, Rec1
M ,

and Imc1
M. Again, the later comparison highlights

that the deviation witnessed between the viscous
methods is fundamentally inherent to the differ-
ence in approach. Again, a time-dependent cM
that lags the excitation by slightly more than a
quarter cycle is predicted. For a free pitching os-
cillation, cM would likewise have a damping ef-
fect. As the FLM-SDEu and FLM-Eu rendered
Imc1

M both reside within the range established
by FLM-SD.NS and FLM-NS, the degree of dy-
namic stability can be considered to be equal.

Overall, FLM-SD.NS renders the unsteady
loading of the LEV case in satisfactory agree-
ment to FLM-NS. For either method, the viscous
consideration yields both a c0

L- and c0
M-prediction

that substantially improves on the respective in-
viscid approach. Surprisingly, the viscous con-
sideration improves only marginally on the c1

L-
and c1

M-prediction. Relative to P800510 the de-
gree of dynamic stability remains unchanged.

4.3 Medium-Strength-Shock Case

For Ma∞ = 0.95, Re∞ = 10.0×106, and ˇ̄α = 5.0
deg the FLM-NS supplied time-invariant mean
flowfield exhibits a sizeable supersonic region
in proximity to the upper wing surface. It ex-
tends from the root to considerably beyond the tip
(y/s≈ 1.60), initiating closely to the LE and ter-
minating with a medium-strength shock slightly
upstream of the TE, across the entire semispan
(Fig. 7). Complementarily, a localized super-
sonic region manifests in proximity to the lower
wing surface. It equally extends from the root to
considerably beyond the tip, eventually merging
with its upper-surface counterpart. At the root,
the lower-surface supersonic-region initiates well
aft of the half-chord position. As the wing is
traversed toward the tip, however, the initiation
gradually shifts upstream with respect to the lo-
cal chord, surpassing the half-chord position be-
yond y/s ≈ 0.52, before reaching the LE at the
tip itself. The lower supersonic-region is termi-
nated by a weak shock significantly upstream of
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Fig. 7 Sonic isosurface (aft view) of the time-
invariant mean flowfield employed by FLM-
SD.NS in the FTDW case P950510 (Ma∞ = 0.95,
Re∞ = 10.0× 106, ˇ̄α = 5.0 deg, xp/cr = 0.50,
ˇ̂α = 0.5 deg, kred = 1.0)

the TE, across the entire semispan. In this re-
gard, the location of the shock base remains dis-
tinctly upstream of its upper-surface counterpart
as far as y/s ≈ 0.80. Beyond, though, the gap
between the two instances is quickly narrowed,
as the lower-surface shock-base abruptly shifts
aft, in order to satisfy upper-surface conformity
at the tip. For either shock, the discontinuous re-
compression is not substantial enough to induce
flow separation. FLM-SD.NS-computed surface
pressure distributions for P950510 are compos-
ited with their FLM-NS and FLM-SDEu / FLM-
Eu, counterparts in Fig. 8.

The FLM-SD.NS progressions of P800510
have become modified toward P950510 con-
sistent with a substantially increased region of
super-sonic flow on the upper-surface, as well as
a newly developed region of super-sonic flow on
the lower-surface, and their respective discontin-
uous termination. Changes in the c0

p progressions
are more prominent for the upper- than the lower-
surface. They are of equal distinction, however,

in the Rec1
p- and Imc1

p-progressions. Integrating
∆c0

p, ∆Rec1
p, as well as ∆Imc1

p over the entire
wing, respectively, a positive c0

L and negative c0
M ,

a positive Rec1
L and negative Rec1

M (pitch down),
as well as a positive Imc1

L and negative Imc1
M

(pitch down), can be ascertained.
For both span stations, FLM-SD.NS-

computed c0
p, Rec1

p, and Imc1
p agree excellently

with those obtained from FLM-NS. The small
disturbance premise holds up very well in these
near-sonic flow conditions, in part due to the
reduced ˇ̂α = 0.5 deg. Mild discrepancies are
merely observed for the lower-surface Rec1

p- and
Imc1

p- progression, respectively, at the location
of the weak-shock base and in close proximity
to it. The conformity between FLM-SD.NS
and FLM-NS can be seen equal to that between
FLM-SDEu and FLM-Eu. For disregarded
viscosity, merely the location of the medium-
strength shock is observed to move somewhat
downstream, as rendered by the c0

p progressions.
Correspondingly, a peak uniquely emerges in the
inviscid Rec1

p-progression where an intersection
of the upper- and lower-surface viscous instance
is exhibited. The absence of the boundary
layer also has an effect on the prediction of
the lower-surface Rec1

p-peak associated with
the weak-shock base. The viscous and inviscid
Imc1

p progressions are witnessed to differ even
more marginally for these occurrences. In terms
of the time domain, either treatment renders a
nearly stationary medium-strength-shock over
the course of the individual cycle, with the weak
shock exhibiting a distinct longitudinal motion.

Focusing on the computed global load coef-
ficients (Table 4), c0

L obtained from FLM-SD.NS
is identical to its FLM-NS counterpart. Both c0

L
are 22% higher than the value exhibited by the
viscous instances of case P800510, that is, at
equal ˇ̄α yet Ma∞ = 0.8. Similar to P800510, the
deviation between the FLM-SD.NS- and FLM-
NS-obtained Rec1

L is negligible, while the FLM-
SD.NS prediction of Imc1

L is 7% higher than its
FLM-NS counterpart. Once again, Rec1

L and
Imc1

L are gained in the same order of magnitude.
Both computations indicate a time-dependent cL
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Fig. 8 Comparison of the zeroth- and first-harmonic pressure-coefficient distributions (c0
p and c1

p) for the
FTDW case P950510 (Ma∞ = 0.95, Re∞ = 10.0× 106, ˇ̄α = 5.0 deg, ˇ̂α = 0.5 deg, kred = 1.0, xp/cr =
0.50)
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Method c0
L Rec1

L Imc1
L

FLM-SD.NS 0.260 3.565 1.192
FLM-NS 0.260 3.579 1.114
FLM-SDEu 0.281 3.780 1.167
FLM-Eu 0.281 3.775 1.114

Method c0
M Rec1

M Imc1
M

FLM-SD.NS -0.027 -0.571 -0.779
FLM-NS -0.027 -0.580 -0.743
FLM-SDEu -0.038 -0.696 -0.771
FLM-Eu -0.038 -0.690 -0.751

Table 4 Comparison of the global load coeffi-
cients for FTDW case P950510 (Ma∞ = 0.95,
Re∞ = 10.0× 106, ˇ̄α = 5.0 deg, ˇ̂α = 0.5 deg,
kred = 1.0, xp/cr = 0.50)

that distinctly leads the excitation. With the wing
predominantly enveloped by supersonic flow, a
time-dependent cL of notably lesser amplitude
and significantly lesser lead to the excitation is
rendered than in case of prevalent subsonic flow.

FLM-SDEu-rendered c0
L is 8% higher than its

FLM-SD.NS counterpart: As illustrated by both
the inner- and outer-span-station c0

p-progressions
(Fig. 8), across the semispan the medium-
strength shock is situated farther aft in absence
of the boundary layer. The location of the weak
lower-surface shock, on the other hand, remains
all but unchanged. Together, greater instances of
positive ∆c0

p are gained, which eventually yield a
greater overall c0

L in the integration over the entire
wing. Disregarded viscosity effects Rec1

L in simi-
lar fashion: Associated with the medium-strength
shock, the otherwise nonexistent upper-surface
Rec1

p-peak is primarily responsible for produc-
ing greater instances of positive ∆Rec1

p across
the semispan. The limited disparity emerging be-
tween the inviscid and viscous prediction of the
lower-surface Rec1

p-peak, as associated with the
weak-shock base, increases the positive ∆Rec1

p
only marginally. Overall, Rec1

L is rendered 6%
higher in return. Disregarded viscosity effects

Imc1
L even less, with the FLM-SDEu-rendered

instance being merely 2% lower than its FLM-
SD.NS counterpart: Contributing deviations in
the particular Imc1

p-progressions are primarily
seen to occur on the lower-surface, that is, for
the local minimum associated with the weak-
shock base, as well as for the subsequent peak
of the post-shock region. FLM-SDEu- and FLM-
Eu-obtained c0

L are identical, while the deviation
between the two Rec1

L instances can be consid-
ered negligible, just as ascertained for the viscous
counterparts precedingly. FLM-SDEu-computed
Imc1

L, on the other hand, is 5% higher than its
FLM-Eu counterpart, though again within the
spread established by FLM-SD.NS and FLM-NS
before. With similar behavior already ascertained
for both P800510 and P801010, it can be consid-
ered substantiated that the particular viscous de-
viation mainly originates from the difference in
approach, and not the greater complexity of the
utilized flow model.

FLM-SD.NS-rendered c0
M equals its FLM-

NS counterpart. With respect to P800510, the
near-sonic Ma∞ has amplified c0

M in its neg-
ative value fivefold, again placing the consid-
ered ˇ̄α well beyond the incidence angle of zero
steady pitching-moment. In contrast to c0

M , FLM-
SD.NS-computed Rec1

M and Imc1
M are, respec-

tively, 2% lower and 5% higher in absolute value
than the particular FLM-NS-obtained instance.
Whereas near-identity had been ascertained be-
tween the FLM-SD.NS- and FLM-NS-rendered
Rec1

L, the existing yet negligible deviation has
become distinctly amplified toward Rec1

M . The
deviation exhibited in Imc1

L, on the other hand,
has become slightly mitigated toward Imc1

M. For
either method Rec1

M and Imc1
M conform in their

negative sign (pitch down), congruently predict-
ing a time-dependent cM that lags the excitation
by nearly three-eights of a cycle. In the case
of a free pitching oscillation, cM would conse-
quently have a damping effect. In accordance
with the α̂-normalized instance of Eq. (4) in [11],∣∣Imc1

Mα̂
∣∣
P950510 <

∣∣Imc1
Mα̂
∣∣
P800510 can be estab-

lished for the mean Imc1
M. Thus, for P950510 c̃M

extracts 60% less systemic energy with respect
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to α̃ than for P800510, signifying a substantially
lesser degree of dynamic stability.

FLM-SDEu-rendered c0
M and Rec1

M are, re-
spectively, 41% and 22% higher in absolute
value than the particular FLM-SD.NS-obtained
instance. Imc1

M, on the other hand, is rendered
merely 1% lower in absolute value, allowing it
to be considered equal to its viscous counterpart.
FLM-SDEu-rendered c0

M , Rec1
M, and Imc1

M each
agree in their negative sign (pitch down) with the
particular FLM-SD.NS-obtained instance. Rec1

M
and Imc1

M are not only again in the same order of
magnitude, but are separated by merely 10% in
actual value. Disregarded viscosity has a substan-
tial impact on both c0

M and Rec1
M, despite having

had only minor impact on c0
L and Rec1

L. The rel-
ative change of Imc1

M, however, remains in-line
with the one exhibited by Imc1

L. The disparity in
impact witnessed between c0

M and c0
L, as well as

between Rec1
M and Rec1

L, again results from ac-
counting ∆c0

p- and ∆Rec1
p-leverage, respectively,

with regard to the pitch axis: As illustrated in
Fig. 8 for the inner- and outer-span station, the
FLM-SD.NS and FLM-SDEu instances of the
c0

p progression, as well as the Rec1
p progression,

mostly conform to each other, with the inviscidly
predicted location of the medium-strength shock
and the upper- and lower-surface shock-peaks be-
ing the exception. The locality of the additional
positive ∆c0

p and positive ∆Rec1
p generated by

these occurrences is unambiguously situated far
aft of the pitch axis. Hence, the extra sectional-
contribution to c0

M and Rec1
M is always substan-

tially negative (pitch down), eventually amplify-
ing the overall instances in the integration over
the entire wing. FLM-SDEu-obtained c0

M is equal
to its FLM-Eu counterpart, while the deviation
between the Rec1

M instances is marginal. Fur-
thermore, FLM-SDEu renders Imc1

M merely 3%
higher in absolute value than FLM-Eu. Con-
sequently, the prediction spread lies within the
one observed between the inviscid c0

L, Rec1
L, and

Imc1
L instances, as well as within the one exhib-

ited between the viscous c0
M , Rec1

M , and Imc1
M

instances. Once more, the latter comparison sub-
stantiates that the deviation witnessed between
the viscous methods is fundamentally inherent

to the difference in approach. Again, a time-
dependent cM that lags the excitation by nearly
three-eights of a cycle is predicted. In the case
of a free pitching oscillation, cM would likewise
have a damping effect. Nevertheless, as the FLM-
SDEu and FLM-Eu rendered Imc1

M both reside
within the range established by FLM-SD.NS and
FLM-NS, the degree of dynamic stability can be
considered to be equal.

Overall, FLM-SD.NS renders the unsteady
loading of the shockless case in very good agree-
ment to FLM-NS. For either method the viscous
consideration yields both a c0

L- and c0
M-prediction

that substantially improves on the respective in-
viscid approach. The viscous consideration im-
proves on both the c1

L- and c1
M-prediction as well,

however, to a significantly lesser extent. Rela-
tive to P800510 the degree of dynamic stability
is greatly reduced.

5 Computational Efficiency

FLM-SD.NS and FLM-NS computation times,
as well as the inverse ratio between the two are
summarized for the production cases in Tab. 5.
Evidently, FLM-SD.NS realizes reductions up to
half an order of magnitude. At its least, that
is, for case P950510, however, ť SD.NS

CPU is gained
merely 37% lower than ť NS

CPU : Despite having em-
ployed a computational grid-pair which is equal
in cell number to the baseline grid-pair of the
NCDW investigations, as well as the same pro-
cessor, ť SD.NS

CPU is gained greater than the estab-
lished 24 h reference time frame [11]. Inversely,
ť NS
CPU is gained substantially lower than for the

NCDW shock cases, attributable to the excep-
tional convergence behavior of the dual-time-
stepping scheme exhibited for P950510.

6 Conclusions

In an effort to complement past investigations on
the unsteady aerodynamic loading of a FTDW
undergoing harmonic motions, results for rigid-
body pitching-oscillations computed with FLM-
SD.NS were presented and compared to those of
FLM-NS, as well as FLM-SDEu / FLM-Eu.
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Case ť SD.NS
CPU , h ť NS

CPU , h ζCPU

P800510 20.7 71.4 3.4
P801010 40.1 94.3 2.4
P950510 32.5 51.8 1.6

Table 5 Comparison of computational effort be-
tween FLM-SD.NS and FLM-NS for the FTDW
cases as realized on the Intel Itanium 2 (1.3 GHz)

A shockless case, serving as baseline, and a
medium-strength-shock case again demonstrated
the small disturbance Navier-Stokes approach’s
accuracy in predicting the unsteady local and
global loading. Similarly, the LEV case dis-
closed the known limitations of the small distur-
bance approach. However, deviations caused by
flow-inherent higher-harmonics are observed to
be far less severe than exhibited for the medium-
strength-shock/LEV case of the NCDW. Sur-
prisingly, the degree of dynamic stability as-
certained for the FTDW’s LEV case can be
considered equal to its baseline-case instance,
despite featuring substantially differing upper-
surface-proximate flowfields – a mixed transla-
tional/rotational one versus a strictly translational
one. In contrast, the degree of dynamic stabil-
ity ascertained for the FTDW’s medium-strength-
shock case emerges greatly reduced with respect
to its baseline counterpart – a wing predomi-
nantly enveloped by supersonic flow versus sub-
sonic flow apparently being the more profound
topological shift.

For all cases, the comparison between the vis-
cous and inviscid surface-pressure distributions
shows that the impact of the boundary-layer is
severely limited for regions of strictly longitudi-
nal flow, as subject to expansion and continuous
recompression. For both the LEV and medium-
strength-shock case, however, disregarding vis-
cosity distinctly alters the upper-surface pressure
distributions outside of these regions, naturally
following through to the global loading as well.
Especially, the case particular inviscid c0

L- and
c0

M-prediction are observed to substantially dif-
fer from their viscous counterparts, while the c1

L-

and c1
M-prediction, surprisingly, are impacted to

a lesser extent. Consequently, the viscous con-
sideration improves on the merely inviscid one
per se. For each case, however, the degree of
dynamic stability determined with FLM-SDEu
/ FLM-Eu is quite similar to the FLM-SD.NS /
FLM-NS-assessed counterpart. The comparison
between the viscous and inviscid global load co-
efficients further revealed that the relative devi-
ation exhibited by the FLM-SD.NS- and FLM-
NS-obtained instances is in part already inherent
to the FLM-SDEu- and FLM-Eu-predictions.

With exception of the FTDW’s medium-
strength-shock case, FLM-SD.NS efficiency gain
over FLM-NS is substantial, however, signifi-
cantly less than exhibited for the NCDW cases.
This circumstance is attributable to the much
shorter computational time required by FLM-NS
to render the FTDW cases.

All in all, FLM-SD.NS remains the CFD
method of choice for predicting unsteady aero-
dynamic structural loading efficiently as well as
accurately in the transonic flow regime. To this
effect, the investigated FTDW cases have illus-
trated that both the reduction of computational
cost and the need to actually consider viscosity
is greatly case-dependent, and typically not a pri-
ori known.
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