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Abstract

The drive towards utilizing small, cheap,
autonomous aerial vehicles for military
operations means that navigation systems that
are robust to GPS denial must be employed.
The simplest option available is to increase the
accuracy of the inertial measurement unit
(IMU), but this can substantially increase the
price per operational unit.  This paper presents
an overview of the All-Source Navigation
system developed by BAE Systems Australia
based on inexpensive MEMS IMUs and a
supporting image processing unit.  The
navigation system is capable of sustaining the
operational flight capability of the vehicle for
prolonged periods of time compared to the pure
inertial solution. At its core, All-Source
Navigation makes use of SLAM techniques. A
variety of additional aiding sources are fused
into the inertial navigation solution to give
improved navigational accuracy during flight.
The system is capable of performing both
conventional static, as well as in-flight
alignment. All-Source Navigation is
demonstrated on the Kingfisher 2 UAV platform
at the West Sale test facility.

1   Introduction

UNMANNED air vehicles (UAVs) have
gained prominence in recent years due to their
wide applicability in defense.  Deep and first
day strike roles such as SEAD (Suppression of
Enemy Air Defenses) or neutralizing enemy C3
(Command, Control and Communication)
systems are considered ideal roles for unmanned
vehicles.  In such roles, the vehicle must be able
to penetrate a remote region unobserved and be

capable of generating rapid targeting solutions
with sufficient accuracy to allow target
prosecution. This places the sensing platform in
a hostile environment where the enemy may be
capable of disrupting vehicle communications
systems and denying access to GPS (Global
Positioning System) signals, which is a key
element of most UAV navigation systems. In
order to remove the human from the loop, an
autonomous platform must therefore provide a
means for maintaining accurate navigation
solutions without the use of GPS and be able to
autonomously detect, recognize, identify and
locate targets in the offending area.

Most modern inertial navigation systems
for UAVs utilize strapdown inertial navigation
algorithms.  The key requirement of an accurate
navigation solution is a high accuracy inertial
measurement unit (IMU).  Unfortunately, most
commercially available high accuracy units are
either too expensive or are export-controlled,
making them infeasible or undesirable for use
on Australian assets.  This means that UAV
operations of significant length rely almost
exclusively on GPS technology for external
corrections.  Thus, in the presence of GPS
denial, many UAVs can become unusable.

This paper presents flight test results for a
navigation system based on SLAM
(Simultaneous Localization and Mapping), a
technique which couples targeting and
navigation. SLAM provides autonomous
systems with a real-time navigation, mapping
and precision target location capability. SLAM
does not require external information such as
that provided by GPS or by a priori map data,
though if available, can be used to generate
more accurate solutions.  This reduces the
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requirement for GPS and presents an
opportunity for using a lower fidelity sensing
suite to generate targeting solutions. The use of
SLAM allows UAVs to employ passive sensors,
which are inherently less accurate than active
sensors, to produce targeting solutions.  Passive
sensors preserve the requirement for low
observability and ultimately results in a more
survivable system.

An unaided integrated navigation solution
with an IMU as the primary sensor input can
become unacceptable within a few minutes so
that guidance and targeting are impossible. On
the other hand, in the absence of GPS, a SLAM-
based navigation solution can constrain the
flight vehicle position estimates to within an
accuracy that is suitable for autonomous
navigation.  Furthermore, SLAM also enables
the tracking of targets to an accuracy required to
support third party prosecution.

SLAM can be thought of as a hybrid of two
well-known problems: tracking and navigation
through localization. In tracking, the position
and attitude of the sensing platform is assumed
to be known to a degree of certainty and
feature/target locations in the environment are
to be determined. In navigation through
localization, the feature/target locations are
known to some degree and the objective is to
determine the sensing platform location and
attitude. If both the feature/target locations in
the environment and the sensing platform
location and attitude are unknown, then the two
problems are coupled. The process of solving
the coupled problem is known as SLAM and
was first postulated in the late 1980’s [1].

This paper presents a solution to the real-
time application of SLAM within the UAV
environment.  Our implementation is embedded
within a new navigation architecture called All-
Source Navigation (ASN), which is designed to
be a plug-and-play navigation system.  That is,
any number of sensors can be utilized to
enhance the accuracy of the onboard navigation
solution.  This paper will outline the
development of ASN and its implementation of
a SLAM solution.  The system is rigorously
tested in a realistic simulation and hardware-in-
loop environment.  Flight test results of the

system with ASN providing the navigation
solution to the Kingfisher 2 UAV are presented.
ASN is employed in the Intelligent Landing
System described in [2].

This paper is organized as follows: First, a
comprehensive review of SLAM techniques is
given; next, some of the key constraints on the
ASN system are highlighted; the sensor suite
used by the Kingfisher 2 UAV is summarized;
the design methodology for ASN is presented;
the simulation architecture is presented; an
overview of the real-time embedded
implementation is provided; finally, flight test
results are presented.

2    Simultaneous Localization and Mapping

In recent years, SLAM has attracted an
enormous amount of interest [3][4]. A number
of approaches for solving SLAM have been
proposed and demonstrated in a range of
environments including indoor [5], outdoor [6],
underwater [7], and air [8]. In many cases, even
in the absence of absolute position information,
it is still possible to build a relative map of
features or targets within the environment and to
use that map for navigation.  Results show that
navigation errors can remain small over
reasonably long periods of time [9][10].

The two most popular solutions to SLAM
have been the Extended Kalman Filter (EKF)
[5]-[17] and Rao-Blackwellized particle filter
solutions (FastSLAM [18]-[20]).  EKF SLAM
maintains a fully-correlated feature-based map
using a moments parameterization (mean and
covariance).  This implies that the vehicle and
map states are represented by Gaussian
distributions, although this assumption is often
violated in practice.  The EKF relies on the
propagation and update of the covariance matrix
using a first-order linearization of the process
and measurement models.  This can lead to
large errors in the posterior mean and
covariance for highly nonlinear systems.  The
EKF computational complexity grows as O(N2)
where N is the number of landmarks in the map.
This limits the number of fully-correlated
features that can be in the SLAM map at any
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time.  Hence, map management techniques need
to be implemented for large scale applications.
A number of map management techniques have
been developed ([21]-[23]) and Dissanayake
([14]) showed that features can be removed
from the map without making the SLAM
process statistically inconsistent.  More recently,
the unscented Kalman filter (UKF) [24] has
emerged as a popular and robust nonlinear
filtering method that preserves the
approximation of the covariance to higher order
than the EKF [11].  However, the UKF relies on
the propagation of a set of deterministically
sampled sigma points to construct its state
estimate, which generally requires significantly
more computation than the construction of
analytic Jacobians that are used by the EKF.
Hence, for SLAM, the EKF is generally more
efficient for larger maps.

FastSLAM uses a set of Rao-Blackwellized
particle filters to solve the SLAM problem.
Particle filtering is used to estimate the vehicle
pose, whereas EKFs are used to represent each
feature in the map.  FastSLAM exploits the fact
that the location of features can be estimated
independently if the vehicle state is known.  The
associated computational complexity of the
FastSLAM algorithm is O(logN).  One of the
key advantages of FastSLAM over EKF SLAM
is that FastSLAM is significantly more robust to
data association errors than EKF SLAM.
Recently, however, Bailey [25] showed that
FastSLAM can become inconsistent for long-
term SLAM implementations.

Application of SLAM to air vehicles
requires the implementation of a 6-DOF SLAM
solution for platform localization, and the
maintenance of a three-dimensional map.  This
differs from the majority of SLAM
implementations that build maps in a single
plane.  Davison [26]-[27] demonstrated SLAM
using a three-dimensional map using a hand-
held, wide angle camera.  SLAM incorporating
high speed 6-DOF vehicle motion has been
investigated and implemented in the air domain
using a fixed wing UAV [28].  Low speed 6-
DOF SLAM has also been implemented using a

blimp [29].  In [28], an EKF solution was
implemented on a UAV platform using a
passive vision sensor.  The range to the features
used by the SLAM algorithm was estimated by
placing features of known size on the ground
and then inferring range from the feature size in
the images.  An EKF SLAM solution was also
implemented in [29] on an autonomous blimp
using stereovision. Bryson and Sukkarieh [30]
investigated bearings-only SLAM in the air
domain within an EKF framework.  Their
approach initializes features using range-
parameterized extended Kalman filters.
However, their approach was not implemented
in real-time on target hardware.

The accuracy of SLAM can be increased in
a cooperative vehicle scenario, where multiple
vehicles work together to build a common map.
Fenwick [31] implemented an EKF-based multi-
vehicle system in an indoor environment.
Nettleton et al. [32] proposed an Extended
Information Filter (EIF) solution in a
decentralized network and in later work [33],
Nettleton showed that the low bandwidth
problem resulting from an inability to send full
covariance matrices can be solved by
communicating submaps of the SLAM map
rather than the whole map.  Nieto [34] proposed
a FastSLAM multi-vehicle solution where one
robot acts as a central filter and maintains the
map information and localization of all vehicles
within the map.  Walter et al. [35] proposed a
multi-vehicle underwater master-slave SLAM
architecture solution where one vehicle is used
to maintain map estimates and vehicle pose
information for all vehicles in the network.  In
this approach, slaves are equipped with a lower
fidelity sensor suite compared to the master
vehicle.  The slave’s only job is to send raw
sensor data to the master, which then produces a
map based on all received data.  Ong [36]
proposed a decentralized data fusion SLAM
solution using an EIF architecture for the air
domain.  Bryson investigated a centralized
multi-UAV SLAM solution [37] and in later
work extended this to a decentralized network
[38].
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Other approaches to SLAM include purely
vision based SLAM using SIFT descriptors for
data association [39][40].  Methods used to
reduce the computational complexity of SLAM
have mainly been based around partitioning of
the SLAM map into sub-maps.  One popular
method is the Constrained Local Submap Filter
(CLSF) proposed by Williams [17], where an
independent local submap of the features in the
immediate vicinity of the vehicle is maintained
and these local maps are then fused periodically
into the global map. GraphSLAM [41] has also
been developed to tackle large-scale SLAM
where the vehicle carries out the mission and
gathers sensor data first before the algorithm is
applied.  Although this approach can generate
exact solutions to the SLAM problem, it cannot
be applied for real-time operations.  Eustice [42]
showed that the SLAM information matrix is
exactly sparse in a delayed-state framework
meaning that a sparse EIF requires less storage
space and offers the same accuracy as the full
EKF solution.

Adrien [39] discussed vision based SLAM
for micro UAV’s in an EKF framework using
SIFT descriptors for feature extraction and data
association.  The approach details development
for 2D MAV navigation allowing construction
for a metric map of visual ground landmarks.
Other Airborne SLAM approaches are
principally based on the EKF.  The most widely
known examples of UAV SLAM is on the
Brumby Experimental UAV [30][8][28].
Decentralized networks consisting of a group of
UAVs implementing SLAM has been addressed
using information space [37][38][28][33].

Hygounenc [29] applied SLAM to an
autonomous blimp.  Low altitude stereo vision
was used in an EKF framework.  The SLAM
algorithm was tested on sensor data gathered
from the blimp and experimental results showed
centimeter accuracy positioning in 3D space.
Langelaan [43] examined airborne SLAM using
a monocular camera in a UKF framework to
provide a consistent estimate of the states.

The major focus in SLAM research in the
last few years has been in using vision only
sensors for extracting natural features for
SLAM.  Vision sensors are lightweight passive

sensors which provide greater detail of the
environment. Vision using SIFT descriptors for
feature extraction and data association has been
a key enabling technology for SLAM.

The majority of research on SLAM has
taken place within the indoor robotics
community. Outdoor land environment results
have been produced by using sensor data
gathered on an outdoor vehicle.  The dataset
gathered at Victoria Park has featured
prominently in SLAM papers.  SLAM has also
been implemented and tested in outdoor
vehicles using natural feature sensor data as a
secondary navigation solution.

SLAM in the air domain has been
implemented in real-time by ACFR, but the
solution was not fed back into the main
navigation filter. One of the challenges in
airborne SLAM is the devastating impact that a
divergent solution has on the vehicle motion.
Therefore, great care must be exercised in
SLAM algorithm design to prevent this from
occurring.

Research shows that there is a push
towards more stochastic based methods such as
particle filters as they provide more robust data
association and they can better handle non-
linearity.  Sigma-point Kalman filters have also
been used and some have even combined sigma-
point filters with particle filters.  The advantage
of the UKF is that it can prevent inconsistency
problems that arise from the linearization used
in the EKF.  Papers have shown that particle
filters are scalable to a large number of
landmarks but only produce consistent results
over a short period of time.  The robustness
offered by particle filters in terms of data
association and its ability to handle non-
linearities warrants further investigation.  In
particular, its application to 6-DOF must be
properly assessed.  Sigma point filters do not
offer any additional data association robustness.

3 All-Source Navigation Requirements

The ASN system is designed to supplement
an existing flight control computer (FCC)
developed by BAE Systems Australia. The
FCC was developed using DO-178B processes
and procedures.  It is a triplex flight control
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computer architecture, where each lane contains
its own inertial measurement unit (IMU) and
global positioning system (GPS) receiver.  The
FCC is shown in Fig. 1.  Each FCC computes an
independent navigation solution and flight
control commands.  The solutions and
commands are compared across all three
computers, and a single consolidated set of
commands is sent out to the control actuators to
fly the plane. The FCC is designed to meet
stringent timing requirements and will not
accept an ASN navigation solution with more
than a certain amount of latency.  In particular,
if SLAM is used and causes a lag due to
computational delay, this is deemed
unacceptable and therefore unusable by the
FCC. The FCC runs its control loops at 100 Hz,
and requires a navigation solution in hard real-
time at the same rate.  The allowable latency
between successive ASN packets is 20 ms.

FIG. 1. BAE SYSTEMS AUSTRALIA FLIGHT

CONTROL COMPUTER.

In addition to strict timing requirements,
the ASN navigation solution must be deemed to
be acceptably accurate by the FCC.  In its
deployed configuration, ASN is intended to be
the only navigation solution available to the
FCC.  However, for testing purposes, we do not
disable GPS to the FCC but only to ASN.  This
is because we operate the vehicle in civilian
airspace and must have situational awareness of
the vehicle and its intended actions. Based on
this, the FCC compares the ASN navigation

solution with its own internally computed one.
The ASN solution must satisfy the accuracy
requirements shown in Table 1 if it is to be in
control of the flight vehicle.

TABLE 1. REQUIRED ASN SOLUTION ACCURACY.

Error Component Accuracy
ECEF Position, X 30 m
ECEF Position, Y 30 m
ECEF Position, Z 30 m
ECEF Velocity, X 3 m/s
ECEF Velocity, Y 3 m/s
ECEF Velocity, Z 3 m/s
Euler Roll 2 deg
Euler Pitch 2 deg
Euler Yaw 5 deg

4   Sensor Characteristics

In commercial aviation, accuracy of the
navigation solution is required for flights that
last on the order of hours.  For marine vehicles,
however, where the amount of time between
significant landmarks can be large, much higher
accuracy is needed.  For inertial navigation
systems, the error budget is usually specified in
terms of the error incurred without an aiding
source.

A fundamental constraint of the ASN
system is that it must operate using low cost
sensing equipment. This is based on keeping
the unit price of the vehicle management system
as low as possible to maximize return on
investment.  If money were no object, the
navigation designer would always prefer higher
grade inertial sensors, as navigation
performance is directly coupled to the
performance of the inertial sensing package.

The primary sensor used in virtually all
navigation systems is an inertial measurement
unit (IMU). An IMU consists of three
orthogonally mounted accelerometers and three
orthogonally mounted gyroscopes.  In a
strapdown inertial navigation system, the
measured angular rates and accelerations are
integrated to form estimates of position and
orientation. Due to various errors, the
integrated solution drifts over time.  When high



PAUL WILLIAMS & MICHAEL CRUMP

6

grade IMUs are used, the drift rate will be
relatively small.  Table 2 shows a comparison of
different grade IMUs with their relative drift
and cost.  Clearly, if one wants a very high
accuracy inertial solution, then it comes at a
significant cost.

In most UAV business models, the drive is
to reduce the cost of the platform and avionics
subsystems while maintaining a reliable flight
platform.  The FCC utilizes an IMU that is
accurate to the tactical/industrial grade (it is
closer to tactical grade).  The consequence of
this is that without any aiding source, the errors
make the platform unusable in a matter of
minutes.

TABLE 2. COMPARISON OF IMU GRADES.

Sensor grade Cost Drift
performance

Marine
grade

> $1,000,000 < 1.8 km/day

Navigation
grade

> $100,000 < 1.5 km/hour

Tactical
grade

$5000 -
$30,000

~ minutes

Industrial
grade

$500 - $5000 ~ seconds

The most widely used aiding source in
modern-day navigation systems is GPS. GPS
provides position and velocity measurements at
the receiver.  The fusion of GPS data by means
of a Kalman filter enables the correction of
errors in position, velocity, and attitude.
Attitude is observable by maintaining cross-
correlations between errors.  GPS data is
typically fused at 1 Hz.  Hence, when the GPS
signal is lost, the frequent aiding it normally
provides disappears and the aircraft is likely to
be lost.

4.1   Inertial Measurement Unit

The inertial measurement unit that is used
onboard our unmanned systems is the SiIMU04
from Atlantic Inertial Systems.  The IMU
utilizes MEMS accelerometers and gyroscopes.
The error characteristics are shown in Table 3.

TABLE 3. SIIMU04 ERROR CHARACTERISTICS

[44].

Error Characteristic Value
Gyro Bias repeatability 650 deg/hr
Gyro Bias instability 8 deg/hr
Gyro random walk 0.4 deg/hr
Gyro noise 0.72 deg/sec
Accel Bias repeatability 100/20 mg
Accel Bias instability 3/1 mg (axis 1/axes 2,3)
Accel random walk 0.6/0.25 m/s/hr (axis 1/

axes 2,3)
Accel noise 22 mg

4.2   Air Data

All fixed-wing air vehicles utilize air data
sensors for measuring the pressure altitude and
true airspeed of the vehicle.  In unmanned
systems, such sensors are flight critical.  Hence,
failure of the air data system would most likely
result in the loss of the aircraft.  For that reason,
the air data is generally robust and therefore
reliable enough to use as an aiding source for
the navigation system. Fig. 2 shows the
location of the air data system on the Kingfisher
2 UAV.

The air data system measures dynamic
pressure and absolute (static) pressure.  The
static pressure is calibrated to provide altitude
relative to a reference, for example ISA sealevel
at +15 deg C, or the local QNH pressure
altitude.  The dynamic pressure is used to
calculate true airspeed.  Unfortunately, neither
of these aiding sources is absolute.  They both
provide information relative to a reference.
True airspeed, in particular, is the speed of the
aircraft relative to the air mass.  For navigation
purposes, the altitude required is the altitude
relative to the WGS84 ellipsoid.  For these
reasons, the inclusion of pressure altitude and
true airspeed measurements requires the
estimation of additional states (one for the
pressure altitude offset, and an additional 2 for
the wind speed estimates in the navigation
frame).

Air data probe
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FIG. 2. AIR DATA PROBE ON KINGFISHER 2
UAV.

4.3   Downward-Looking Camera

The Kingfisher 2 UAV is equipped with a
gimbaled camera that is used in our associated
work for Intelligent Landing [2]. For navigation
purposes, it is utilized in a downward-pointing
configuration.  Note that in general a dedicated
camera would be used for this purpose.
However, in our test system, the same camera is
used for multiple purposes.

The downward-looking camera provides
three sources of information:

1) Relative displacement information
(frame-to-frame tracking)

2) Saliant feature identification for map-
building

3) Landmark identification for
incorporation of known location
information

4.3.1   Frame-to-Frame Tracking

Our algorithm employs a modified form of
optical flow to help constrain errors.  In
“standard” optical flow, the motion of pixels
within an image are tracked to give a flow
vector.  In our approach, a region of interest in
the center of the image is used to calculate the
weighted flow of the center pixel.  The center
pixel is then tracked frame-to-frame to give the
displacement over time.

Pixel displacements inherently contain
both translational and rotational degrees of
freedom.  Therefore, the pixel displacement
alone is not enough to be able to constrain
errors.  However, we have developed a novel
methodology to maintain the cross-correlation
of errors in the system so as to optimally
constrain the propagation of errors. Fig. 3

shows a screen capture of the modified optical
flow, showing the frame to frame pixel
displacement of the region around the center
pixel.

FIG. 3. EXAMPLE OF OPTICAL FLOW VECTORS IN

REGION AROUND CENTER OF FRAME.

4.3.2   Salient Feature Tracking

Simultaneous Localisation and Mapping
(SLAM) is a technique for using external
features for navigation.  Each feature is added to
a database of features, and typically comes with
a unique identifier.  As the vehicle moves
around the map, each feature that is revisited
helps to constain the position and attitude error
of the vehicle.

In previous work (FURI CTD), we
demonstrated a basic SLAM algorithm using
white targets placed paddocks around the West
Sale aerodrome.  A very simple image
processing technique based on thresholding
color and size was used for identifying the
“features”. Fig. 4 shows two of the white
targets used for this purpose.

Unfortunately, using white targets is not at
all representative of an operational scenario.
Instead, we utilize an algorithm based on SURF
(Speeded-Up Robust Features) [45].  SURF is
able to provide a fingerprint for a feature in the
environment that is robust to viewing angle and
scale.  This enables the algorithm to detect and
match features that were previously observed.
SURF is similar to the SIFT [46] algorithm, but
is faster. Fig. 5 shows an example of a typical
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match obtained from a different flight angle of
the same area. The reference feature set shown
in Fig. 5 is taken during an eastward pass over
the area, whereas the test feature set is produced
from a westward pass over the same area. Note
that the features detected and used by SURF are
not necessarily easily distinguishable to the
human eye.

FIG. 4. EXAMPLE OF WHITE TARGETS USED IN

FURI CTD FOR SLAM FEATURES.

FIG. 5. EXAMPLE OF SURF FEATURE DETECTION

AND MATCHING.

4.3.3   Landmarks

Certain features in an image can be easily
identified by a human operator, or are unique
enough that the onboard software can identify it.
The navigation solution we have developed is
able to use this information provided either a
priori or via an external interface. Fig. 6 shows
an example of matching a house in a satellite
image to a house in an image captured by the
aircraft.  Note that features around the house
make the particular house quite unique and
easily identified within the image.  Feeding the
true location of the house to the navigation
computer, combined with the pixel coordinates,
gives an absolute reference for the navigation
system.  This enables a large portion of the
absolute error to be removed.

In addition to fusing image information
about landmarks directly into the navigation
filter, we also enable the option of an operator
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to correct the SLAM map.  In such a case, the
operator matches a distinct feature in the map
(using a corresponding image from the onboard
system) to a map feature, and sends a reference

set of coordinates for the feature to the
navigation system.

FIG. 6. EXAMPLE OF IDENTIFICATION OF A BUILDING IN IMAGE FRAME.

4.4   Tightly-Coupled GPS

A typical GPS receiver will output an
estimate of position and velocity of the receiver,
which most navigation systems will use to aid
the inertial navigation solution.  However, the
GPS receiver itself calculates the estimate from
the time of flight of signals received from a
number of different satellites, as well as the
doppler velocities of the signals.  Most modern
receivers run a filter internally, which can
introduce latencies associated with an
accelerating vehicle.  An alternative approach is
to use the raw data produced by the GPS unit
directly in the navigation filter.  The raw data
consists of:
 Ephemeris data (satellite position and

velocity data as a function of time),
 Pseudorange data (time of flight of signal

multiplied by speed of light),
 Doppler data (frequency shift converted into

range rate).
Because the time of flight is computed based on
the receiver’s clock, an additional clock offset

must be estimated as part of the solution.  This
means that at least 4 satellites must be visible to
obtain an initial position fix.  Many receivers
cease outputting position and velocity data
when the number of satellites visible drops
below 4. When the raw data is fused in a
Kalman filter, it is possible to update the state
estimate of the vehicle with less than 4
satellites.  Using the raw data in this manner is
referred to as a tightly-coupled GPS solution.

5   Design Methodology

The FCC is rigorously tested within a
simulation framework prior to being deployed
onto target hardware.  The simulation
framework is designed and implemented in the
MATLAB/Simulink environment and includes
detailed models of the physical vehicle and its
sensor suite.  The model-based design approach
enables rapid testing of prototype designs that
adhere to actual system interfaces without even
knowing what hardware is going to be used.
The advantage of using model-based design is
that models of the complete FCC are available

Satellite imagery (reference)
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that allow payloads to be integrated into the
system with minimal effort.

The ASN system is designed from the
ground up, beginning with the strapdown
algorithms.  Truth data is utilized to validate the
strapdown algorithm, followed by previously
logged flight data. Obviously there is no
substitute for real data, but the quality of the
IMU used means that only short flights are
useful for log data replays of the strapdown
algorithm. Once the performance of the
strapdown algorithm is confirmed, the EKF is
designed.  The last stage of design involves
managing data and internal algorithm timing.

6 All-Source Navigation Overview

6.1   Coordinate Frames

Three key coordinate frames are used
within the navigation system: 1) Earth-Centred
Inertial (ECI) Frame, 2) Earth-Centred-Earth-
Fixed (ECEF) Frame, 3) Local Level North-
East-Down Frame (NED) Frame.

The ECI frame has its origin at the centre

of the Earth. The xi-axis points towards the

Vernal Equinox, the zi-axis points in the

direction of the Earth’s angular momentum
vector (out of the North Pole), and the yi-axis

completes the right-handed triad. Fig. 7 shows
the definitions of the three reference frames.

The inertial frame remains fixed relative to
the stars. This is not a good reference frame for
navigation because we would require
knowledge of the sidereal time s , which

describes the angle of Earth’s prime meridian
with respect to the Vernal Equinox. Even small
errors in this estimate results in large position
errors and hence it is not a desirable frame to
use for terrestrial navigation.  Since the aircraft
is moving close to the Earth’s surface, it is
preferable to use a coordinate frame that
remains fixed relative to the Earth. This is the

ECEF frame, which has its ze-axis aligned with

zi, but the xe-axis lies in the plane of the prime

meridian (zero longitude), and the ye-axis

completes the right-handed triad.  The ECEF

frame is needed when considering navigating
globally on the Earth.  The ECEF frame remains
invariant to variations in the Earth model used
to represent the position of a vehicle relative to
the surface.

The local level NED frame is defined such
that its x-axis points North, y-axis points East,
and the z-axis points downwards along the local
vertical. This frame is attached to the local
tangent plane at the Earth’s surface. The Earth is
not a perfect sphere and bulges outwards at the
equator. It is modeled as an ellipsoid, and the
WGS-84 ellipsoid is the current international
standard. This means that, in general, the local
vertical does not point towards the center of the
Earth, as shown in Fig. 8.  The WGS-84
ellipsoid gives a good approximation for the
local direction of the gravity vector at the
Earth’s surface.  The local direction of gravity is
used for defining the orientation of the vehicle
for flight control and waypoint navigation.

FIG. 7. REFERENCE FRAMES USED FOR

TERRESTRIAL NAVIGATION.

The WGS-84 ellipsoid uses a set of
geodetic variables to determine position. These

are the latitude, , longitude, , and height, h

(LLH). Note that the altitude above the ellipsoid
is different from the altitude above ground or
altitude above sea level. The ECEF coordinates
for a given LLH position are given by
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The inverse of Eqs. (1) to (3) can be computed
from a variety of approximate or closed-form
solutions.

FIG. 8. COORDINATES OF THE REFERENCE

ELLIPSOID.

The NED frame is related to the ECEF frame
through the geodetic coordinates as follows
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The aircraft body frame is defined relative to the
NED frame via the Euler angles.  The IMU
itself is not necessarily aligned with the aircraft
body, and its orientation is defined by a 3-2-1
Euler rotation sequence relative to the aircraft
body frame as shown in Fig. 9.

6.2   Camera Calibration

The camera used on platform is calibrated
using a two-step process.  In the first step, the
camera is detached from the aircraft and a series
of images are taken of a checkerboard pattern of
known geometry from different perspectives.
The camera calibration toolbox developed for
MATLAB is utilized to extract the corners of

the checkerboard pattern and to obtain the
intrinsic camera parameters

u
f ,

v
f ,

0
u , and

0
v .

In addition to this, a fifth order distortion model
is used to correct the warping of the images.

FIG. 9. DEFINITION OF THE AIRCRAFT BODY

FRAME AND THE ORIENTATION OF THE IMU
FRAME.

The camera is then installed on the aircraft
in a turret whose location has been measured
relative to the IMU.  The second stage of the
calibration involves estimating the
transformation between the camera frame and

the aircraft body frame, b
c
C .  To obtain these

estimates, the aircraft is flown over a series of
targets that have been placed on the ground and
surveyed to centimeter accuracy.  The
observations of the targets are then matched to
the known targets and a least squares
optimization is carried out using the installation

angles  , ,
s s s
   of the sensor as parameters.

This procedure is discussed in more detail in the
companion paper [2].
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6.3 Navigation Alignment

Navigation alignment must be performed
before the navigation system can commence its
core task of predicting and correcting the
navigation state.  The alignment procedure is
intended to provide the initial estimate of the
state vector.  In high grade systems, alignment
can take several minutes to complete due to the
use of gyro-compassing to obtain attitude.
Unfortunately, MEMs IMUs cannot be used for
this purpose due to the high level of noise
present on the gyro readings.

6.3.1   Static Alignment

During static alignment, the initial attitude
is obtained from a set of inclinometers that have
significantly lower bandwidth than the
accelerometers.  Initial heading can be provided
either via an operator command, or by using
dual GPS antennae. IMU bias estimates are
obtained by using the measured attitude and the
computed gravity vector, as well as the
computed Earth rate projected into the IMU
axes.  Initial position is obtained from the GPS
unit.  For static alignment, the initial velocity is
necessarily zero.

6.3.2   In-Motion Alignment

In-motion alignment is much more
challenging because assumptions cannot be
made about the platform motion.  Our in-motion
alignment algorithm utilizes point samples of
position and velocity from the GPS unit, and an
estimate of heading from the velocity vector.
The initial attitude is computed using a multiple
model-like approach.  When a model converges,
the state vector is declared usable and the main
navigation process commences.  We have found
that our approach works successfully in flight
during maneuvers, i.e., banked turns, despite
very large initial attitude errors.

7 Simulation Architecture

All components of the system are
implemented in the Simulink environment
(running MATLAB R2010b SP1).  Simulink
provides a powerful model-based design

environment that can be linked to a set of
functional requirements described in a set of
IBM Rational DOORS modules.  In fact, all
system interfaces are described in DOORS
modules, from which a complete set of interface
code for C++ and MATLAB is autogenerated.

The complete flight vehicle is modeled
using Simulink blocks (engine, undercarriage,
aerodynamics, actuators), together with a
representative model of the environment (wind,
gust, turbulence, gravity, atmosphere, ground).
Flight physics are modeled in the Earth-
Centered-Earth-Fixed (ECEF) coordinate frame.
In additional to the physics model of the
vehicle, a complete sensor simulation with
interfaces and noise characteristics matching the
real sensors is performed (Inertial Measurement
Unit, GPS, air data, etc).  The sensor data is fed
into a Simulink model of the flight control
computer to enable simulation of the closed-
loop control system.  Note that because the
flight control computer code is generated from
the Simulink models via Real-Time Workshop,
the simulation is virtually an exact match to the
implementation on the target hardware on the
real vehicle.  The high fidelity simulation
environment allows the ASN algorithms to be
tested completely without ever having an
aircraft in the sky.

8 Embedded Real-Time Implementation

The algorithms that are designed,
implemented and tested in Simulink are
converted into C code by the Real-Time
Workshop Embedded Coder.  As noted above, a
set of software interfaces to the code is
autogenerated from DOORS, minimizing the
amount of hand-code that is required to run the
software as an executable on the target
hardware.  The C code is wrapped in C++ with
appropriate data and message handling code.  It
is scheduled using a real-time scheduler which
runs in the main thread at 100 Hz.  The linux
operating system running a real-time kernel is
used for the ASN system.  The Green Hills
Integrity operating system is used for the actual
flight control computer.
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To ensure maximum efficiency, we have
developed a set of highly optimized S-functions
for performing the expensive matrix operations
required for the Kalman filter implementation.
These functions exploit features from the Intel
Math Kernel Library [47].  In fact, the autocode
generated from Simulink is configured to
automatically use the Intel library for all matrix
operations performed throughout the ASN
system.  This significantly speeds up the real-
time implementation.

In addition to the core algorithms, an
additional process is executed to log the input
and output data of the algorithmic code.  All the
inputs and outputs are logged, which enables
offline data replays to be conducted using a set
of support tools that we have developed.  This
enables bugs to be found and removed in a rapid
fashion.

9 Hardware Overview

The flight vehicle platform that we have
used to conduct flight operations is the
Kingfisher 2 vehicle, shown in Fig. 10.
Kingfisher 2 was designed and built by BAE
Systems Australia to allow rapid prototyping of
payloads and is not a production system.  The
key characteristics of the platform are given in
Table 4.

FIG. 10. KINGFISHER 2 VEHICLE LANDING AT

WEST SALE.

The flight control computer forms the core
product of the vehicle management system,
which consists of an actuation unit, two GPS

units, an IMU, an air data system, weight on
wheel sensors, an accurate height sensor, and a
C2 communications system.  The FCC uses a
Radstone IMP2A as the hardware board.  The
FCC runs a variety of core processes in separate
address spaces to maintain a high integrity
system.  The FCC mounting in the airframe,
together with the payload computer and turret
controller, described in [2], is shown in Figs. 11
and 12.

A ground station (Fig. 13) that
communicates over a C2 link is used to control
and monitor the vehicle.  It uses the same
hardware as the FCC for reliability, but
additionally utilizes a Windows-based graphical
user interface.

TABLE 4. KINGFISHER PLATFORM ATTRIBUTES.

Attribute Value
Mass (including payload) 125 kg
Wing span 4.13 m
Wing area 2.67 m2

Max. airspeed 100 kts
Max. cross-wind 15 kts
Max. tail-wind 10 kts

A manual handset is used by an external
pilot to take over control in the case of failure of
a flight critical component (such as IMU or air
data).  The pilot’s commands are sent to the
vehicle via the ground station and bypass the
core autonomous processes (the inputs are
scaled and limited to prevent the pilot from
overstressing the airframe).  In the flight tests
reported in this work, the pilot was never
required to take control of the vehicle.

The ASN algorithms are housed on a
Kontron CP308 board, which features a Core-2
Duo.  One core is dedicated to running the All-
Source Navigation system, and the second core
is dedicated to running the Intelligent Landing
System described in [2].  In addition, inputs and
outputs from all processes are logged on a solid
state hard drive.  The turret control subsystem
runs on a Kontron CP307, and is responsible for
managing the turret control and logging all raw
imagery.  A 50 minute flight generates roughly
40 GB of image data.
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FIG. 11. ALL-SOURCE NAVIGATION TEST

HARDWARE.

FIG. 12. FCC AND ASN HARDWARE INSTALLED

IN KINGFISHER 2.

FIG. 13. GROUND CONTROL STATION USED FOR

CONTROLLING KINGFISHER 2 UAV.

10 West Sale Aerodrome Operations

The Kingfisher 2 vehicle is operated and
maintained at a facility situated near the West
Sale Aerodrome, see Fig. 14.  The ground
station is housed in the hangar, and
communication antennae as well as a
differential GPS antenna are mounted on the
hangar roof.

The vehicle is first prepared for flight at
the hangar, and navigation alignment and pre-
flight tests are conducted outside of the hangar.
The aircraft is connected to an external power
source to prevent the internal batteries from
running low.  Once standard operation of the
system is confirmed, it is towed on the back of a
trailer to one of the ends of the runway.  The
takeoff direction is specified either via air traffic
control (when inside ATC hours), or by the
wind direction (when outside ATC hours).
After the appropriate set of radio calls are made
to ATC, the vehicle is deployed to the runway
and becomes airborne under autonomous
control.

FIG. 14. VIEW OF BAE SYSTEMS AUSTRALIA’S

HANGAR FACILITY.

During UAV operations, other aircraft
frequently takeoff and land at the Aerodrome,
and the operations crew must ensure separation
is maintained (this is achieved via the
autonomous system using features such as
loiter, heading hold, altitude hold, etc.).
Because the ASN system is experimental and
runs SLAM closed-loop, it can be enabled or
disabled manually by the vehicle operator. By
default it is disabled.  The FCC also performs
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integrity checking on the ASN system and
associated navigation data.  If the FCC
determines that ASN is faulty, it locks it out for
a pre-determined period of time and only allows
it to be re-enabled if it is healthy.  This may
happen, for example, during GPS denied testing
if the system drifts by a large amount.

11 Flight Test Results

The ASN system was flight tested during
November 2011 at the West Sale facility.  One
of the goals of the flight testing was to
demonstrate the Intelligent Landing System,
described in [2].  Results from those trials are
presented in [2].  A total of 22 flights were
undertaken.  ASN was running for 21 flights,
and was in active control of the vehicle for 20
flights.  This means that the ASN navigation
solution was flying the plane closed-loop.  GPS
was enabled for the majority of flights while
confidence in image processing was gained, and
algorithms tuned using real data.  We conducted
8 flights with closed-loop GPS-denied
navigation.  This section only presents the
results obtained from one of those flights.

11.1   In-Flight Alignment Results

In-flight navigation alignment was
performed on a number of occasions.  This was
during testing of the algorithm, as well as after
manually restarting the system in-air. In all
cases the navigation system successfully aligned
and was able to fly and land the plane.

An example of in-flight alignment is
shown in Fig. 15.  In-flight alignment was
triggered during the turn immediately after
takeoff.  This represents a non-level situation
where the effect of angular misalignment is
more pronounced.  The accuracy of the
alignment can be seen by examining the filter
corrections that are applied following the
alignment.  Note that the results shown include
the actual state during the alignment.  The only
discernible correction occurs in the fusion
following the commencement of the alignment.

FIG. 15. ASN GROUND TRACK PRIOR TO, AND

FOLLOWING IN-FLIGHT ALIGNMENT DURING A

TURN.

FIG. 16. ASN IN-FLIGHT ALIGNMENT FILTER

RESULTS FOR EULER ANGLES.

FIG. 17. ASN IN-FLIGHT ALIGNMENT VELOCITY

RESULTS.

Fig. 16 shows the Euler angles following
the commencement of alignment.  This
illustrates that the filter corrections tend to
converge to small values within the first two

Alignment starts



PAUL WILLIAMS & MICHAEL CRUMP

16

seconds.  The initial roll angle of ~20 deg is
handled easily by the alignment algorithm.  Fig.
17 shows the corresponding velocities in the
period following the commencement of
alignment.  It can be seen that the velocity
converges extremely well after approximately 2
seconds.  We conclude that the in-flight
alignment algorithm is suitable for non-level
flight conditions and demonstrates excellent
convergence.

11.2   GPS-Denied Results

In the GPS-denied flight test shown in this
section, GPS was turned off during a portion of
the flight for approximately 9 minutes.
Although not shown here, ASN has been
successful in navigating for 30 minutes in-flight
without GPS, and for over 24 hours in
hardware-in-the-loop simulations.

Fig. 18 shows an aerial plot of the ASN
navigation solution.  Fig. 18 shows the SLAM
map formed by SLAM measurements extracted
from log data.  The locations where GPS is
disabled and re-enabled are shown.  The aircraft
is put into a loiter during the mission, during
which time the SLAM solution is active.  The
results show the varying nature of the mapped
features in terms of their uncertainties.  The
benefit of SLAM is clearly evident when
compared to the free-inertial solution.  The free-

inertial solution begins to drift following the
first turn after GPS is denied.  The solution then
rapidly diverges.  In comparison, the ASN
solution remains stable and accurate when
compared with the GPS-enabled solution.  The
GPS-enabled solution is computed from the log
data via a replay.

Fig. 19 shows the NED position difference
between the SLAM solution and the GPS-
enabled navigation solution.  It can be seen that
the position error remains constrained in the
absence of GPS due to loop closure of the
SLAM solution.  The position error peaks at 11
m in the East direction, but is generally less than
10 m.  The error in height tends to be more
stable than horizontal position due to the use of
pressure altitude.  Fig. 20 shows the Euler angle
difference between the SLAM solution and the
GPS-enabled navigation solution.  The
maximum error remains less than 1.5 deg.  Fig.
21 shows the execution time of the ASN
computer during a SLAM flight.  The peak
execution time is 2.75 ms, which is substantially
lower than the 10 ms available.  The mean
execution time is 0.39 ms.  The execution time
alternates between troughs and peaks.  The
peaks occur on fusion frames.



FIG. 18. ASN FLIGHT RESULTS WITH SLAM AND GPS DENIAL ACTIVE, SHOWING FREE-INERTIAL

SOLUTION (NO SLAM DURING GPS DENIAL), GPS ENABLED SOLUTION, AND SLAM-ENABLED

SOLUTION. YELLOW ELLIPSES ARE MAP STORE FEATURES/COVARIANCES. MAGENTA ELLIPSES ARE

ACTIVE MAP FEATURES/COVARIANCES.

FIG. 19. NORTH, EAST, AND DOWN

COMPONENTS OF POSITION ERROR OF SLAM
SOLUTION COMPARED WITH GPS SOLUTION.

FIG. 20. EULER ANGLE ERRORS OF SLAM
SOLUTION COMPARED WITH GPS SOLUTION.

GPS denial starts

GPS denial ends
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FIG. 21. ASN FRAME EXECUTION TIME FOR

FLIGHT INCLUDING SLAM.

12 Conclusions

All-source navigation is an architecture
that allows virtually any sensor to be integrated
and used by the navigation system.  It is
designed to be robust to faulty measurements,
and out of order sensor data.  It handles sensors
with variable and different latencies.  The ASN
system is able to operate in GPS-denied
environments by using a combination of data
gathered from a downward looking camera.
These include salient features, and frame-to-
frame tracking.  The ASN system has been
extensively tested in a fully representative
simulation environment and test flown on 20
flights of the Kingfisher 2 UAV.  It has been
successfully used to perform in-flight alignment
and GPS-denied navigation.
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