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Abstract

The transmission of sound from a source outside
an non-isothermal high-speed boundary layer is
considered. The sound source is assumed to lie
in a uniform stream, matched to a zero velocity
at the wall by a linear velocity profile. The unidi-
rectional shear mean flow is assumed to be isen-
tropic, but non-homentropic, so that the entropy,
sound speed and temperature can vary from one
streamline to the other. The condition of home-
nergetic flow or constant enthalpy is used to re-
late the sound speed to the mean flow velocity,
and specify the temperature profile in the bound-
ary layer. Compared to an homentropic boundary
layer, where sound refraction is due to the shear
flow alone, a non-homentropic boundary layer
introduces additional refraction due to the non-
uniform sound speed and associated temperature
gradients. It is shown that for a high-speed, even
in isentropic conditions, the non-homentropic ef-
fects of temperature gradients and non-uniform
sound speed can cause significant sound atten-
uation, viz. for the same sound source outside
the boundary layer, the acoustic pressure at the
wall can be substantially reduced. This agrees
qualitatively with the result of testing of prop-
fans at high-subsonic speed, which showed sig-
nificant sound attenuation in the fuselage bound-
ary layer.

1 Introduction

The propagation of sound in shear flows is spec-
ified by a wave equation ([27], [39], [50], [48],
[44], [13], [12]) which has been studied mostly
by numerical and approximate analytical meth-
ods, with three motivations in mind: (i) prop-
agation in ducts containing a shear flow, such
as jet engine ducts ([56], [45], [42], [28], [53],
[54], [19], [20], [36], [55], [41], [33]); (ii) ef-
fect of boundary layers, on sound near a wall,
such as fuselage or cabin of an aircraft ([1], [22],
[23], [47], [26]); (iii) effect of laminar shear lay-
ers on sound transmission, e.g. shear layers of
a jet exhaust or wake of a control or high-lift
device ([43], [25], [2], [3], [38]). The model
of a shear layer as a laminar shear flow of fi-
nite width ([34]) is intermediate between a vor-
tex sheet ([43], [46]) as a discontinuity of tan-
gential velocity, and a irregular shear layer ([31],
[5], [6], [7], [8]), which may entrain turbulence
([40], [51], [30], [29], [9], [10], [11]).

In the present paper sound propagation in
laminar shear flow is considered. The simplest
velocity profile is the linear shear, which may
be matched to uniform streams to represent (i)
a boundary layer near a flat wall, (ii) a double
boundary layer in a parallel-sided duct or (iii) a
shear layer between stream of different veloci-
ties. The effect of the uniform flow reduces to
a Doppler effect, whereas the linear shear has a
critical layer, which has been considered in the
literature, sometimes implicitly, by four meth-
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ods of solution: (a) in terms of parabolic cylin-
der functions ([24]), (b) in terms of Whittaker
functions ([34], [35]), (c) in terms of conflu-
ent hypergeometric functions ([52], [37], [38])
and (d) as a linear combination of Frobenius-
Fuchs series which are even and odd relative to
the critical layer ([17]). These four methods ad-
dress the acoustic wave equation in linear shear
flow, which has two singularities: one regular, at
the critical layer and another irregular, at infin-
ity, where the mean flow velocity diverges. In
the neighborhood of the regular singularity ([32],
[21], [49]), the Frobenius-Fuchs method supplies
a pair of linearly independent solutions in power
series (in the case of a linear shear flow there is
no logarithmic singularity at the critical layer).
In the neighborhood of the irregular singularity
([32]), the Frobenius-Fuchs method breaks down,
i.e. provides no solution at all or at most one
solution; in this case the method of normal inte-
grals or infinite determinants may be used. They
are not needed for the linear shear flow, since the
wave equation has only two singularities and thus
the expansion about the regular singularity (i.e.
the critical layer), has infinite radius of conver-
gence (up to the irregular singularity at infinity).
Note that the critical layer and other singularities
of the wave equation determine the form of its so-
lution. The latter also appear for sound propaga-
tion on homentropic shear flow with other veloc-
ity profiles, e.g. exponential [18] or hyperbolic
tangent [14].

All the literature mentioned before, concern-
ing the acoustics of unidirectional shear flow, as-
sumes uniform sound speed; since for an unidi-
rectional shear flow, the mean flow pressure is
uniform, it follows from the equation of state,
that the mean flow mass density, temperature and
entropy are also uniform, i.e. all those results
concerns the acoustics or stability of linear, ho-
mentropic shear flow. In order to assess the ef-
fect of not assuming an homentropic mean flow,
in the present paper a linear homenergetic shear
flow is considered, for which the stagnation en-
thalpy, not the entropy, is conserved. In this case
the sound speed is related to the mean flow ve-
locity, i.e. is no longer isothermal, i.e. it can

support a temperature gradient. This introduces
an extra term in the acoustic wave equation; be-
sides, it adds another two singularities, at the crit-
ical flow conditions, where the sound speed van-
ishes. Thus, whereas the acoustic wave equa-
tion in a linear shear flow has two singularities
in the homentropic case (treated in the literature),
in the present homenergetic case it has four sin-
gularities: (i) a regular singularity at the critical
layer and an irregular singularity at infinity, in-
herited from the low Mach number (or homen-
tropic) case; (ii) two regular singularities at the
critical flow conditions, which occur for high-
speed non-homentropic mean flow.

In order to compare the homentropic and the
homenergetic models, the sound field due to a
time harmonic line source outside the boundary
layer for an homogeneuous shear flow is com-
pared with the homenergetic case.

2 Homentropic and homenergetic mean
shear flows

The wave equation for an unidirecitonal sheared
mean flow where the sound speed is allowed to
vary in a transverse direction can be written as
[13],[12]:

d
dt

(
1
c2

d2 p
dt2 −∇(logρ0) .∇p−∇

2 p
)

+2U ′
∂2

∂x∂y
= 0

(1)

Since the mean flow properties depend only
on the transverse coordinate y, i.e. the mean flow
is steady and longitudinally uniform, it is conve-
nient to use the a Fourier decomposition in time t
and longitudinal coordinate x:

p(x,y, t) =
∫
R2

ei(ωt−kx)dωdk (2)

where P(y;k,ω) denotes the acoustic pressure
perturbation spectrum, for a wave of frequency
ω and longitudinal wave number k at position y.
The dependence of the acoustic pressure on the
latter is generally not sinusoidal, i.e. is specified
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by substituting (2) in (1), viz.:

(ω− kU)P′′+
2[kU ′+(ω− kU)c′/c]P′+

(ω− kU)[(ω− kU)2/c2− k2]P = 0.

(3)

Most of the literature on the acoustics of lin-
ear shear flows ([39], [24], [25], [34], [35], [52],
[37], [38], [17]) assumes an homentropic flow,
i.e. constant entropy; in this case the sound speed
is constant, and the wave equation (3) reduces to
the well-known form ([27], [50], [44])

(ω− kU)P′′+2kU ′P′+

(ω− kU)[(ω− kU)2/c2− k2]P = 0,
(4)

which is the one considered in all of the ref-
erences above. The derivation of (3) applies
equally well to isentropic, non-hometropic mean
flow [13], [12], [15], [16], in which case the
wave equation (4) holds only at low Mach num-
ber, when the sound speed is constant. In the
present paper neither the restriction to homen-
tropic mean flow nor the restriction to low Mach
number mean flow is made, so the equation (3)
does not reduce to (4), i.e. the mean flow tem-
perature is not assumed to be uniform. Thus the
acoustic wave equation (3) describes the prop-
agation of sound in a non-isothermal unidirec-
tional shear flow, if the isentropic condition is re-
tained, but the homentropic condition is not im-
posed. A temperature profile, which is consistent
with isentropic, non-homentropic mean flow, i.e.
allows ρ0, T , c to vary from one streamline to the
next (i.e. as function of y), is the condition ([4])
of homenergetic mean flow, i.e. constant stagna-
tion enthalpy; this relates the sound speed c(y)
and mean flow velocity U(y) at arbitrary stream-
line to the stagnation sound speed c0 by

[c(y)]2 = c2
0− ε

2[U(y)]2

where ε =
√

(γ−1)/2. Thus the acoustic wave
equation in a high-Mach number homenergetic

shear flow:

(ω− kU)(c2
0− ε

2U2)P′′+

2U ′[k(c2
0− ε

2U2)− ε
2U(ω− kU)]P′+

(ω− kU)[(ω− kU)2− k2(c2
0− ε

2U2)]P = 0
(5)

has the following singularities: (i) a critical layer
where the Doppler shifted frequency vanishes:

0 = ω∗(yc) = ω− kU(yc) ∴U(yc) = ω/k,

i.e. the mean flow velocity equals the acous-
tic phase speed calculated form the horizontal
wavenumber; (ii) two critical flow points, where
the sound speed vanishes:

0 = c(y±) ∴U(y±) =±c0/ε =±
√

2/(γ−1);

(iii) the points at infinity y = ±∞ may also be
singularities.

In order to complete the specification of the
wave equation (5) a linear shear flow is consid-
ered:

U(y) = Ωy, (6)

for which the vorticity is constant Ω = dU/dy =
const and specifies the position of the critical

layer, viz.
yc = ω/Ωk,

which is generally distinct from the two critical
flow points

y± =±c0/εΩ.

Coincidence would be possible only for yc = y+
if the phase speed has a precise relation to the
stagnation sound speed

ω

k
=

c0

ε
,

for propagation in the positive x-direction k > 0;
alternatively yc = y− for propagation in the nega-
tive x-direction k < 0. The change of independent
variable

ζ := y/yc = Ωky/ω,

places the critical layer at the point unity ζc = 1
and transforms the wave equation (5) to:(

1−Λ
2
ζ

2)(1−ζ)T ′′+

2
(
1−Λ

2
ζ
)

T ′−
α(1−ζ)

[
1−Λ

2
ζ

2−β(1−ζ)2]T = 0,

(7)
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where T (ζ;α,β,Λ) = P(y;k,ω,c0). Here the
three dimensionless parameters

α := (ω/Ω)2, β := ω/kc0 Λ := εω/kc0

denotes, respectively, (i) the square of the ratio of
wave frequency ω to mean vorticity Ω, which is
smaller for larger shear flow effect; (ii) the square
of the ratio of horizontal phase speed u = ω/k
to sound speed c0, viz. β = u/c0, so that β = 1
for horizontal propagation, β > 1 for transversely
propagating waves ω > kc0 and β < 1 for trans-
versely evanescent waves; (iii) Λ = 0 for low
Mach number flow c = c0 or γ = 1 or ε = 0, so
that Λ 6= 0 is a measure of high speed effects.

The change of independent variable

ξ =
ζ−1

1/Λ−1

shifts the regular singularities at the critical layer
and critical flow points to:

ζc,ζ±= 1,±Λ
−1 7→ ξc,ξ+,ξ−= 0,1,

Λ+1
Λ−1

:=F

(8)
and leads to the differential equation

ξ(ξ−1)(ξ−F)R′′−2[F−Λξ/(Λ−1)]R′−
α(1−1/Λ)2

ξ[(ξ−1)(ξ−F)+β
2
ξ

2/Λ
2]R = 0,

(9)

where R(ξ;α,β,Λ) := T (ζ;α,β,Λ). The point at
infinity is an irregular singulary of the wave equa-
tion.

Since the critical layer corresponds to the reg-
ular singularity ξ = 0 of the differential equation
(9), the solution in its neighborhood can be deter-
mined by the Frobenius-Fuchs method:

R(ξ) = (A+B logξ)R3(ξ)+B ¯̄R0

where A, B are constants of integration and the
two particular integrals are: (i) of the first kind:

R3(ξ) =
∞

∑
n=0

an(3)ξn+3,

which vanishes at the critical layer and has recur-
rence formula for the coefficients, σ ∈ R:

F(n+σ+1)(n+σ−2)an+1(σ) =

2 [Λ/(Λ−1)] (n+σ)(n+σ−2)an(σ)−[
αF(1−1/Λ)2− (n+σ−1)(n+σ−2)

]
an−1(σ)−

(α/Λ)(1−1/Λ)2[
(1+F)an−2(σ)− (Λ−1)2(1+β

2/Λ
2)an−3(σ)

]
¯̄R0

∞

∑
n=0

bn(0)ξn,

and (ii) of the second kind:

bn(0) = an(0)+ lim
σ→0

σa′n(σ).

3 Line source outside a boundary layer

The linear shear flow assumed before (6) could be
unbounded for the homentropic case and is lim-
ited by the critical flow points (8) in the homen-
ergetic case. In either case the linear shear flow
can be matched to an uniform stream:

U(y) =

{
Ωy if y≤ L
ΩL :=U∞ if y≥ L

where L = U∞/Ω is the boundary layer thick-
ness and U∞ the free stream velocity. The criti-
cal layer occurs in the boundary layer if yc < L or
ω < ΩkL. The acoustic field inside the boundary
layer has been calculated before and the acoustic
pressure P(y;k,ω) and velocity ∼ P′(Y ;k,ω) are
to be matched across y = L to the acoustic field
in the free stream, thus determining the constants
of integration A, B in the general solutions. In
the free stream the mean flow velocity is constant
and the wave equation (3) simplifies to

P′′∞ +K2P∞ = Sδ(y− y0) (10)

where K is the vertical wavenumber in the free
stream:

K :=
√
(ω− kU∞)2/c2

∞− k2,

and a line source of strength S was placed in the
free stream at a distance y0 from the wall. The
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forced solution of (10) is the first term of:

P∞(y;k,ω) =− iS/4K exp[iK |y− y0|]+
C+ exp(−iKy)

and the second term is an upward propagating
wave of amplitude C+, reflected from the bound-
ary layer (because the source lies in the free
stream). The source strength is chosen to be
S = i4K and C+ is determined so as to satisfy a
rigid wall condition. The dimensionless parame-
ters of the solution in the boundary layer are re-
considered bearing in mind the matching to the
uniform stream, viz.:

α∞ := (ω/Ω)2 = (ωL/U∞)
2, β∞ := ω/Kc∞,

Λ∞ = εω/Kc∞ = εβ∞.

Note the relation between the free stream and
stagnation sound speeds:

c2
0 = c2

∞ + ε
2U2

∞ = c2
∞(1+ ε

2M2
∞), M∞ :=U∞/c∞

where M∞ denotes the free stream Mach number.
The distance from the wall is made dimensionless
dividing by the boundary layer thickness:

z := y/L = Ωy/U∞,

Finally, using the above non-dimensional param-
eters, the vertical wave number can be written as

K = k
√
(β−M∞)2−1,

so that it is real, i.e. waves propagate in the free
stream iff M∞−1≤ β∞ ≤ 1+M∞.

4 Results and Discussion

The first set of plots (Figures 1 to 4) concern
sound propagation in an homenergetic shear flow.
In the case (Figure 1) of a high subsonic free
stream propagation in the free stream corre-
sponds to β∞ < −0.3 or β∞ > 1.7. For a wave
frequency equal to the vorticity β∞ = α∞ = 1,
the amplitude (Figure 1a) is almost uniform in
the case of downstream propagation β∞ = 2, and
decays rapidly away from the wall in the case
of upstream propagation β∞ = 4; in the cases of

evanescence in the free stream the amplitude in-
creases slowly away from the wall for upstream
β∞ = −0.1, and oscillates for downstream prop-
agation β∞ = 0.5. The phase (Figure 1b) varies
little in all cases, and is largest for upstream prop-
agation β∞ = 4 and lowest for upstream propaga-
tion β∞ = 2, with smaller values in modulus in
the evanescent cases β∞ =−0.1,0.5.

Fig. 1 Amplitude (a) and (b) phase of acous-
tic pressure versus distance from a rigid wall,
made dimensionless dividing by the boundary
layer thickness, for an homonergetic flow with
linear velocity profile, matched to an uniform
stream of high subsonic Mach number . Sound
from a line source at a distance from the wall
equal to the double of boundary layer thickness.
Wave frequency equal to vorticity α∞ = 1, and
four values of ratio of horizontal phase speed to
sound speed in free stream, including positive
β∞ > 0 and negative β∞ < 0 horizontal wavenum-
ber k corresponding respectively to downstream
and upstream propagation.

For a sonic free stream M∞ = 1, the propaga-
tion range in the free stream is β∞ < 0, β∞ > 2.
For a wave frequency much higher than the vor-
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ticity α∞ = 10, corresponding (Figure 2) to ray
theory, there is small change in amplitude (Figure
2a) or phase (Figure 2b) for downstream evanes-
cence β∞ = 1; the amplitude oscillations are more
marked for propagation downstream β∞ = 4 and
upstream β∞ = −0.5, with phase jumps of π at
the nodes.

Fig. 2 As Figure 1, for sonic free stream β∞ = 1,
wave frequency much higher than vorticity α∞ =
10, and three values of β∞.

For a supersonic free stream β∞ = 3.5 the
propagating range is β∞ < 2.5 or β∞ > 4.5. For
(Figure 3) a frequency small compared with the
vorticity α∞ = 0.1, the amplitude (Figure 3a) and
phase (Figure 3b) vary little in the case of down-
stream evanescence β∞ = 3. In the other case
of downstream evanescence β∞ = 2 there is sig-
nificant amplitude variation and smooth phase
changes. In the case of upstream propagation
β∞ = −4, the amplitude oscillation includes a
node in the boundary layer, corresponding to a
jump of in the otherwise constant phase.

The last two plots (Figures 4 and 5) concern a
comparison of the sound field due to a line source

Fig. 3 As Figure 1, for supersonic free stream
M∞ = 3.5, wave frequency much smaller than
vorticity α∞ = 0.1, and three values of β∞.

over a rigid wall at a distance of two boundary
layer thicknesses, for a boundary layer with a lin-
ear velocity profile in homentropic (dotted line)
or homenergetic (solid line) conditions. Note
that the homentropic boundary layer is isother-
mal, i.e. has a constant sound speed everywhere;
the homenergetic shear flow has a sound speed
and temperature which, for a linear velocity pro-
file, decrease away from the wall leading to a
negative temperature gradient. The first plot con-
cerns a case of wave frequency equal to the vor-
ticity α∞ = 1, and oblique upstream propagation
β∞ = 4, for which there is no critical level in the
boundary layer (Figure 4), since β∞ > M∞ im-
plies zc > 1. The amplitude (Figure 4a) is almost
identical for the homentropic (S) and homener-
getic (E) case at low free stream Mach number
M∞ = 0.1, but the difference increases with in-
creasing Mach number M∞ = 0.2,0.7,1, leading
to very different values of the wall pressure in
the supersonic case M∞ = 3.5, when the acoustic
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pressure at the wall is much larger in the homen-
tropic case. The reduction in sound speed in the
free stream in the homenergetic case, implies that
sound propagates against a sound speed increas-
ing towards the wall, thus causing reflection and
a leading to a smaller amplitude at the wall. The
phase (Figure 4b) is larger for the homentropic
than for the homenergetic case, with a small dif-
ference at low Mach number M∞ = 0.1, and a
more noticeable difference for increasing Mach
number M∞ = 0.2,0.7,1. The constant sound
speed in the homentropic case leads to a larger
phase shift than the sound speed decreasing into
the free stream in the homenergetic case. The ex-
ception is the supersonic free stream M∞ = 3.5,
for which the phase is the same in the home-
ntropic and homenergetic cases. The reason is
that M∞ = 3.5 is the only case in Figure 4 of
evanescence β∞ < M∞ + 1 for β∞ = 4. Thus
for M∞ = 3.5 the evanescent waves in the free
stream have the same phase in the homentropic
and homenergetic cases. The phases differ in the
homentropic and homenergetic cases for propa-
gation in the free stream M∞ +1 < β∞ +4 which
includes all cases in Figure 4 except M∞ = 3.5.

The final plot (Figure 5) concerns again wave
frequency equal to the vorticity α∞ = 1, with
the condition β∞ = M∞/2 which places the criti-
cal layer zc = 0.5 at the middle of the boundary
layer. The amplitude (Figure 5a) of the sound
field is always larger in the homentropic than in
the homenergetic case; it is almost uniform in the
homentropic case and has a dip in the homener-
getic case. The homentropic case corresponding
to constant sound speed implies sound reflection
due only to the velocity gradient in the shear flow;
the reflection is stronger for the homenergetic
case because then it is augmented by the gradient
in sound speed (or temperature). With increasing
Mach number, the amplitude decreases monoton-
ically in the homentropic case, and tends to in-
crease in the homenergetic case. The phase (Fig-
ure 5b) differs most between the homentropic and
homenergetic case for the largest Mach number,
and is more uniform in the former case. The ho-
mentropic case of constant sound speed leads to
a larger phase than the homenergetic case where

Fig. 4 As Figure 1, comparing the sound fields
due to a line source for homenergetic (solid line)
and homentropic (dotted line) shear flows, for
low speed M∞ = 0.1, incompressible M∞ = 0.3,
subsonic M∞ = 0.7, sonic M∞ = 1 and supersonic
M∞3.5 free streams. Wave frequency equal to
vorticity α∞ = 1 and β∞ = 4

the sound speed decays away from the wall; the
effect is more noticeable for larger free stream
Mach number because then the change is sound
speed (or temperature gradient) is larger. The
near coincidence of the homentropic and homen-
ergetic case at low Mach number results from the
sound speed being nearly constant in that case, so
that the wave equation (3) simplifies to the usual
form (4); as the Mach number increases, the extra
terms in (3) compared with (4) play a larger role.

The sound field due to a source in a uni-
form stream, matched to a linear shear flow, was
considered for the homentropic case [17], when
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the flow is isothermal. The consideration of the
same unidirectional shear flow velocity profile in
non-homentropic conditions, e.g. for a homen-
ergetic profile, leads to an non-isothermal flow,
with variable sound speed. The additional refrac-
tion effects are significant if the Mach number is
supersonic, and lead to a noticeable reduction of
acoustic pressure at the wall, for an homonergetic
compared with an isothermal boundary layer. For
subsonic Mach numbers the temperature gradi-
ents are small and have a small effect. The ve-
locity profile has a significant effect, even at low
Mach numbers, in the presence of a critical level.

Fig. 5 As Figure 4, with the relation β∞ = M∞/2
to ensure that there is a critical level in the middle
of the boundary layer yc = L/2.
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