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Abstract

The effect of grid topology and resolution is studied for
decaying, homogenous isotropic turbulence using unstruc-
tured grids. The grid topology is examined via an ap-
proach which includes grids of structured-like quality (or-
dered hexahedra) and also grids which consist entirely of
random tetrahedra. The grid resolution is varied to include
three levels for each topology. Decaying turbulence is cho-
sen for its well-documented behavior and ease for examin-
ing statistical quantities. It is expected that not all turbu-
lence models will behave the same on all grids. To limit
such variability, Delayed Detached Eddy Simulations are
considered exclusively. Metrics of merit include the en-
ergy spectra measured at two different times, the decay of
the resolved turbulent kinetic energy, time history of the
skewness and kurtosis of the velocity gradients, and the
evolution of the transverse Taylor microscale. Data are
compared to available experiments. The goal of this work
is to provide guidance to users of industrial CFD codes,
specifically BCFD, who are interested in unsteady simula-
tion of turbulent flows. Results show a wide range of be-
havior with variation in model coefficient, grid resolution,
and differencing scheme.

1 Introduction

The study of decaying, homogeneous isotropic turbulence
(DHIT) dates back to the very early days of turbulence re-
search. Isotropic turbulence is a rich environment in which
to study turbulence statistics and is representative of a large
class of flows such as atmospheric turbulence and mas-
sively separated flows far downstream from any walls. Due
to the lack of walls in homogeneous turbulence, it is an
ideal problem to study with computational fluid dynam-
ics (CFD) using a variety of numerical methods. Histor-
ically, the vast majority of CFD simulations of DHIT are
done with spectral codes or higher-order methods due to
their ease of implementation for this problem. However,
it is of key importance to also understand how commer-

cial and industrial-type CFD codes, which do not typically
employ such higher-order numerics for reasons of robust-
ness, behave in the simulation of unsteady flows. It is
quite common for industrial codes to be used in the so-
lution of steady-state problems [18], and their accuracy for
such problems is not in question. The numerics of indus-
trial codes such as BCFD have been formulated specifically
for high speed aerodynamic flows in steady conditions. It
is becoming more common to use these codes, which often
use unstructured grid topologies, for the solution of flows
which are inherently unsteady.

One of the earliest works to examine the impact of grid
topology on the DHIT flow field was that of Simons and
Pletcher [13]. In many respects, our study mirrors much
of theirs while probing deeper into the issues. To the au-
thors’ knowledge, theirs is the only other study to look at
isotropic turbulence with random tetrahedra. Several trends
were seen in [13] which provided some of the initial effort
of the current study. For example, they report the skew-
ness of the velocity gradients as a function of time. In the
hex grid results, the skewness is a smooth curve in time.
For the tet grids, much variability is seen in time which
could indicate eddies are not able to set up in a fashion
which allows stable energy transfer between scales. This
is concerning, and this trends needs to be understood as it
could impact future “best practice” grid generation guide-
lines for unsteady flows. Nonorthogonal grids have been
examined in isotropic turbulence by Lopez and Palma [8].
They found that grid nonorthogonality did not adversely
impact the simulation of DHIT. Only structured grids were
considered in their study.

Experimental data for isotropic turbulence typically
uses Taylor’s hypothesis to liken the flow downstream of
grid generated turbulence to that of temporally decaying
isotropic turbulence. Such a study was performed by
Comte-Bellot and Corrsin [1, 2], hereafter referred to as
CBC. More recent experimental data is available for higher
Reynolds numbers (see the work by Kang et al. [5]). But
due to the widespread use of the CBC data for benchmark-
ing hybrid RANS/LES models, this current work will also
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use the CBC conditions for comparisons.
It is of interest to have a documented study which

clearly shows the impact of both grid topology and reso-
lution on the turbulent flow field. Isotropic turbulence pro-
vides a unique environment to study the impact of topology
since the geometry consists of a cube with periodic bound-
ary conditions on all six faces. For unstructured grids, a
“perfect” hexahedral grid may be generated for such a ge-
ometry which is comprised of cells of equal size, analogous
to a structured grid. In previous studies [6], tetrahedral
grids have been also used to examine this problem. How-
ever, their tetrahedra are generated by subdividing their
hexahedral cells, resulting in a field of tetrahedra which are
more ordered than normally found in typical unstructured
meshes. It would be of great importance to know how a
typical tetrahedral grid (i.e., one generated using practices
normally used in industry which results in a random field
of tets) performs against a hex grid of equivalent size. In
order to fully ascertain the impact of topology, it would be
ideal if an entire family of hex and tet grids of comparable
resolutions were examined.

2 Technical Approach

Given the need for a comparative study in unsteady flows
using unstructured grids, the following approach is used in
this work. Two sets of grids were generated for a cube of
size 2πLre f . The choice of Lre f was identical to that of
Strelets [15, 16]. The experimental domain was of size
11Mg, where Mg was the physical diameter of a bar in
the grid (2”). Therefore, 2πLre f = 11Mg. The velocity
scale, Ure f , was chosen such that Ure f = (3/2)1/2u′0, where
u′0 = 22.2 cm/s and sets U2

re f equal to the TKE of a unit vol-
ume of the experiment. The nondimensional energy spec-
trum and wavenumbers shown in the figures are obtained as
E = Edimensional/(U2

re f Lre f ) and k = kdimensionalLre f , respec-
tively. The grids for the study were generated with MAD-
CAP and AFLR. Two types of grids were examined, hexa-
hedral (hex) and tetrahedral (tet). The hex grids were gen-
erated by first creating a structured set of grids of 323, 643,
and 1283 nodes. These were then converted into unstruc-
tured hex grids using MADCAP. This gave grids of 313,
633, and 1273 cells, as BCFD’s unstructured solver is cell-
based. The tet grids were generated using MADCAP and
AFLR. The coarse, medium, and fine tet grids were gen-
erated to have approximately the same number of cells as
the corresponding grid in the hex family and the coarse and
medium tet grids are shown in Figs. 1-2, respectively. The
fine tet grid is not shown to conserve space. The grid sizes
for the tet grids were 30,875 (coarse), 247,644 (medium),
and 1,966,221 (fine) cells. This method of tet grid genera-
tion was as close to industry practices as possible, and was

distinctly different from most approaches in the literature
which subdivide the hex cells to obtain the tet grid. Subdi-
vision of hexes rarely, if ever, takes place in industry, and
results from such grids do not give an accurate picture of
how standard tet grids behave.

Figure 1: Coarse Tet Grid

Figure 2: Medium Tet Grid

Generation of the initial velocity field was accom-
plished via a tool provided by Strelets [16]. Due to the
nature of Strelets’ tool being node based, and BCFD us-
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ing cell-centered logic, hexahedral grids which were 313,
633, and 1273 were used in this study. The grid size is
the same as node based structured grids in which the first
and last point are identical. In the current work, the peri-
odicity is enforced on the first and last cell face in the un-
structured grids. To generate an initial turbulent viscosity
field, the velocity field was held fixed and the turbulence
equations solved until they were converged. The initial tur-
bulent viscosity field on the tet grids was interpolated from
the fine hex grid. This introduces a filtering effect on the
field which damps the higher frequencies. Regardless, the
evolution of the turbulent field in time should still be rele-
vant on the tet grids.

The tetrahedral grids were chosen to be a random
field of tets rather than a set of subdivided hexahedra and
presents a challenge for the initial velocity field on the tet
mesh. The tool provided by Strelets [16] is FFT based and
requires grid sizes which are powers of two in each direc-
tion. As such, the tet velocity field is interpolated from the
fine hex grid field. Since this interpolation does introduce a
filtering effect, spectra are not considered on the tet meshes.
Comparison of the skewness, kurtosis, Taylor microscale
and decay of TKE is still appropriate, with the understand-
ing that the initial conditions on the tet meshes are slightly
damped compared to the hex grids’ initial conditions.

A vast number of turbulence models exist for attempt-
ing to deal with high Reynolds number turbulent flows.
One of the more widely used models is the Delayed De-
tached Eddy Simulation, or DDES, method [14]. Another
is the improved DDES model [12]. Other models exist as
well, but due to limited computer resources and given the
popularity of DDES in commercial codes, DDES was ex-
amined exclusively in the current study.

Second-order spatial accuracy in a finite volume
framework is obtained through piecewise linear reconstruc-
tion of the solution based on the nodal or cell-center values.
This linear reconstruction is used in conjuction with the cell
values to derive values at the face-center to be used by the
flux calculation, e.g.

ql = qP +∇qFP ·~xPF (1)

qr = qN +∇qFN ·~xNF (2)

where qP exists at ~xP and qN exists at ~xN , where the ge-
ometry is sketched in Figure 3. It is these improved face
states (ql and qr) which lead to improved accuracy over
first-order methods which simply combine the cell-center
states (qp and qn) and introduce excessive dissipation. Note
that ∇qFP and ∇qFN are the gradients for a particular face
as observed by the parent and neighbor cells, respectively.

~xP

~xPF

~xN~xNF

~xPN

Figure 3: Mesh geometric properties.

Two approaches were used in the present study: a com-
pact central difference computed about the center of each
face and a cell gradient formulated from a least-squares
procedure, respectively. The central difference is closely
aligned to common structured grid central difference cal-
culations were a gradient is derived for each face using the
cell-values that share each face. This approach is sketched
in 4a where each line indicates a finite difference stencil for
a particular face. In the present study, this approach was
only used for uniform hexahedral elements such that the
line connecting the cell-centers (~xPN in Figure 3) passes ex-
actly through the face-center. Furthermore, since the grid
is uniform the face-center is located halfway between the
two cell-centers and a true second-order central difference
is obtained for the face gradient. Since the stencil only in-
volves the parent and neighbor cell values the gradients and
face states are identical on either side of the interface, i.e.

∇qFP = ∇qFN (3)

ql = qr (4)

This feature eliminates the dissipation term from the Rie-
mann solver and the flux calculation degenerates to the av-
erage of the analytical fluxes, i.e.

F̂ =
1
2
{Fl +FR −A(qr −ql)} =

1
2
(Fl +Fr) for ql = qr

(5)
where F̂ denotes the flux through a face, Fl and Fr are the
fluxes based on ql and qr, respectively, and A represents
either scalar or matrix dissipation dependent on the cho-
sen flux scheme. The elimination of the dissipation term,
combined with the compact nature of the stencil provides a
low-numerical dissipation scheme which is capable of mea-
suring the highest frequencies representable on a give com-
putational mesh. However, in general unstructured grids,
or in simulations with appreciable compressibility effects
and discontinuities the central difference scheme cannot be
used due to robustness and stability problems. In these
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cases, it is typical to use a wider stencil and compute cell-
based gradients rather than face-based gradients. Other
approaches could involve including artificial dissipation to
the equations, but are not considered here.

The cell-based gradient used in the present work is
generated from the least-squares fit of the solution values in
the neighborhood of the cell in question. The most robust
approach is shown in Figure 4b where all node-neighbors
of a given cell are considered in the least-squares prob-
lem. Following Mavriplis [9], inverse distance weighting
was used to alleviate numerical stiffness issues in regions
of anisotropic mesh. For a 3-dimensional tetrahedral grid
the typical number of node-neighbors is about 50, resulting
in a relatively expensive method for computing the gradi-
ent. Additionally, because it has a larger stencil, it will
tend to damp the highest frequency features as compared
to the central difference approach. While this can im-
pact accuracy, it however also tends to improve robustness.
Similar conclusions were reached by [3] who show that
general robustness on 3-dimensional unstructured grids re-
quires gradient stencils that extend beyond simply the face-
neighbors.

(a) Face-based central difference stencil

(b) Least Squares cell gradient stencil

Figure 4: Representative stencils utilized for different gra-
dient calculation methods

A number of turbulent statistics/quantities are exam-
ined in the current work. The aim is to understand in a
statistical sense the performance of DDES on hex and tet
meshes. The quantities of interest are now defined. The
skewness of the velocity gradients is known from experi-
ments to be approximately -0.4 in isotropic turbulence [11].

The skewness is defined as

Ski j =

〈(
∂ui
∂x j

)3
〉

〈(
∂ui
∂x j

)2
〉3/2 (6)

where the < > denote the expected value of the quantity
enclosed. Typically, only Sk11 is considered for isotropic
turbulence, and is linked to the vortex stretching and trans-
fer of energy between scales [11].

Kurtosis is also considered in this study. The kurtosis
of the velocity gradient is given by Pope [11] as

Kui j =

〈(
∂ui
∂x j

)4
〉

〈(
∂ui
∂x j

)2
〉2 (7)

and is an indication of the likelihood of extreme events in
the flow.

The transverse Taylor microscale, λg , is defined as〈(
∂u1

∂x1

)2
〉

=
2u′2

λ2
g

(8)

and can be viewed as a measure of the length scale at which
dissipation becomes dominant.

The decay of turbulent kinetic energy (TKE) is an im-
portant quantity for a CFD code to be able to accurately
predict. The decay rate is accepted[19, 11] to follow the
following form

3
2

u2 = A(t − t0)−p (9)

where A is a constant. The simplest way of extracting the
exponent p is as follows. By taking the time derivative of
eq. 9, we can derive the following

− 3
2 u2

∂

∂t

( 3
2 u2

) =
−T KE
T K̇E

=
t − t0

p
(10)

By plotting −T KE/T K̇E against t, we can estimate p from
the inverse of the slope of the curve [19]. It is widely ac-
cepted that the value of p should be 1.2 to 1.4 [11, 17, 10].
If this exponent is not within this range, the simulations can
rapidly lose any physical meaning [17]. In practice, p was
found by performing a least squares linear fit of the data in
0.2 second intervals with 0.1 seconds of overlap between
intervals. The slope of the best fit line of each segment in
time was then used to find p as a function of time.

The large list of turbulence statistics examined in this
work, along with the spectra, provide an insightful view
into DHIT using a commercial CFD code. To the authors’
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knowledge, no similar exhaustive study exists. It is hoped
that this work will give the users of CFD codes, particularly
BCFD, guidance when performing unsteady CFD simula-
tions in which off-body turbulent structures are of key im-
portance.

3 Results

3.1 Effect of Differencing Scheme

For the hex grids, numerous differencing schemes were
available. It would be an idealized situation where all users
of a code followed the same practices in choosing which
schemes to use. As such, it was beneficial to document
what users can expect given their (sometimes poor) choice
of schemes. The hex grids have numerous differencing op-
tions available: central differencing (CD) about the cell
face, a least squares gradient approach (LS), or a Green-
Gauss gradient approach. While it is known from prior
studies that the central differencing scheme can produce
accurate unsteady flow results, many users choose other
schemes for robustness reasons [3]. For this section, we
will be comparing the trends of using the hex grids with
central differencing and the hex grid using the least squares
operator.

Energy spectra clearly show the effect of the differenc-
ing scheme for the hex grids in Figs. 5 to 10. Two different
times are shows, t=0.284 and 0.655 seconds, corresponding
to the two positions measured downstream of the grid in
the CBC experiment. There was minimal difference in the
spectra at low wavenumbers (with “low” being k < 4,5, and
10 for the coarse, medium, and fine hex grids, respectively)
when either central differencing or least squares gradients
were used. This makes sense as the lowest wavenumbers
represents large length scales which should easily be ac-
curately represented by either differencing approach. This
also implies that if one is only interested in the lowest fre-
quencies, either approach could be used equally well. Af-
ter this region of matching spectra at low wavenumbers,
the least squares approach was seen to rapidly dissipate
the high frequencies. This was not surprising, as the least
squares stencil was large (consisting of all node neighbors)
and will damp the higher frequency content. It was ob-
vious that if one was interested in high frequencies, only
two choices are available: use hex grids with central dif-
ferencing or use grids which are several orders of magni-
tude larger than otherwise called for when using the least
squares operator. For example, the coarse hex grid with
central differencing accurately predicted the spectra up to
its cut-off wavenumber of 15. The fine hex grid with least
squares accurately predicted the spectra to wavenumber 10.
This clearly indicates the grid resolution requirements if

one was interested in energy content at high frequencies
and wished to use robust gradient calculations such as the
least squares approach: One must increase the grid resolu-
tion by roughly a factor of 4 in each direction over what
the Nyquist theorem would indicate as required grid. This
may be even worse if one uses tets, as the number of node
neighbors would be even greater than for hexes.

As the skewness can be tied to the energy transfer be-
tween different scales as well as the vortex stretching, it
was an important statistic to accurately reproduce in nu-
merical simulations. The skewness of the velocity gradi-
ents has been measured to be approximately -0.4. Only
CDES = 0.65 will be considered in this present discussion
for brevity. On the coarse grid, shown in Fig. 11, Sk11

was seen to nearly go to zero when the least squares op-
erator was used on hexes, while the central differencing
allowed Sk11 to approach -0.1. The medium grid, shown
in Fig. 12, however, shows that the central differencing
produced a rather stable value of Sk11 = −0.24. The least
squares operator on the medium grid gives a larger value
of Sk11 = −0.38, but with much slower transient response.
The fine hex grid was seen to give Sk11 = −0.35 and -0.38
for CD and LS, respectively, and is shown in Fig. 13. The
LS approach certainly has greater numerical dissipation, as
observed in the spectra. This numerical dissipation also ap-
parently acts to give the correct trends in skewness, perhaps
acting as an implicit LES model.

The kurtosis, or flatness, of the velocity derivatives is
known to be ∼ 4 in low Reynolds number grid turbulence
[11]. It is a measure of the probability of extreme events
occurring in the flow field. The value of Ku11was seen to be
3.2, 3.4, and 3.6 for CD on the coarse, medium and fine hex
grids, respectively, in Figs. 14 to 16. The value of Ku11is
seen to be 3.2 on all grid levels for the LS simulations.
Also, the value of Ku11was seen to grow in time when using
CD as the turbulent flow field evolved. When using LS,
the kurtosis of the velocity gradient was seen to decrease
in time for the coarse grid while the medium and fine hex
grids were seen to decrease, then increase, then decrease in
time. In previous work, Thornber and Drikakis [17] also
observed the kurtosis to generally grow in time.

The decay of TKE is an obvious measure of the dissi-
pation of a code. In this study, the resolved TKE in each
simulation was considered, defined as uiui/2. For sake of
comparison, the TKE was normalized by the TKE at time
= 0 seconds for each solution. The experimental data was
also filtered to the appropriate grid level, and likewise nor-
malized. This will facilitate hex/tet comparisons later. For
each grid level, the LS approach was seen to be signifi-
cantly more dissipative than the CD approach, shown in
Fig. 17 to 19. The LS approach did, however, become
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increasingly closer to the CD results as the grid was re-
fined. The CD approach yielded results which were in good
agreement with experimental data, particularly at higher
grid resolution.

In looking at the decay exponent p, shown in Figs. 20-
22, several trends are worth noting. The CD approach gives
value of p which start large in time and then decay on the
coarse and medium hex grid, but grows in time on the fine
grid. The LS approach yielded lower values of p on the
coarse and medium grids than central differencing. Also,
the value of p grew in time on the medium and fine grids
when LS was used and was within accepted ranges. How-
ever, on the coarse grid, the value of p grew then decayed
to roughly the correct value. Recall that only CDES = 0.65
was considered for this discussion on differencing scheme.

The transverse Taylor microscale, while perhaps lack-
ing a clear physical interpretation, can be viewed as an in-
dicator as to which length scale dissipation becomes dom-
inant. The transverse Taylor microscale is shown in Figs.
23 -25 for the coarse, medium, and fine grids, respectively.
The coarse grid results indicated that λg was on the order of
0.8” for CD, but nearly 2” for LS calculations. The medium
grid results indicate that λg was on the order of 0.5” for CD,
and nearly 1” for LS calculations. The fine grid results in-
dicate that λg was on the order of 0.3” for CD, and 0.6”
for LS calculations. The CBC experiment gives λg values
nearly identical to the fine grid with CD. In general, it can
be said that LS predicts nearly double the value of λg than
CD on the same grid. Also, the value of λg was roughly cut
in half each time the grid was doubled in each direction.

3.2 Effect of grid topology

This section describes the effect of changing the grid topol-
ogy, holding all else as constant as possible. Three tetrahe-
dral grids are used alongside the hex grids. Since tets are
now involved, they preclude straightforward implementa-
tion of low dissipation schemes. It is normal practice to use
BCFD’s least squares gradient calculation for evaluation of
the derivatives on tet grids. This involves a large stencil of
node neighbors. Unfortunately, this gives a strong flavor of
“implicit LES”, which in of itself likely provides enough
numerical viscosity to act as a subgrid model. Even so,
it was still beneficial to compare DDES solutions on the
tet grids against solutions run on the hex grids with equal
numerics (i.e., least squares gradient calculation). This pri-
marily boiled down to the stencil for hexes and tets. This
current work was different from prior approaches in liter-
ature in that prior approaches generate their tet grids by
subdividing the hex grids, giving tet grids which have an
inherent order to them. Even in an approach by Knight et
al. [6], where the nodes of the tets are randomly perturbed,

their resulting grid was still generated by subdividing hexes
and as such was far more ordered than a typical tet grid re-
sulting from a volume grid generator such as AFLR. The
goal of this section was to document for the user what type
of effect will be seen by using a tet mesh rather than a hex
mesh using equal numerics in BCFD. Central differencing
was not considered in this section’s discussion.

Energy spectra are not considered in this section, as it
was not possible to accurately extract the spectra from a
random field of tets. Only the turbulent statistics will be
used to compare the grid topology. Recall that the tet grids
are using somewhat different initial conditions since they
were interpolated from the fine hex grid. This did intro-
duce a filtering effect on the flow field where some high
frequencies are lost. Evolving the solution in time gives
the grid/solver time to respond to the different initial con-
ditions and provide a similar decaying flow field, albeit one
with less total TKE.

In Figs. 11 -13, the skewness of the velocity gradi-
ent can be compared for hexes and tets using LS. For all
grid levels, the tet grids were seen to predict larger nega-
tive values of Sk11 than hex grids. The difference between
the two topologies decreased as the grid was refined. In
fact, there were only slight differences in skewness when
the fine grid was used. The skewness values on the coarse
grids were generally smaller than accepted values for both
topologies (with the coarse hex grid with LS giving nearly
zero skewness), while the medium and fine grids gave rea-
sonable skewness levels. The kurtosis of the velocity gra-
dient, shown in Figs. 14 -16, was seen to always be larger
on the tet grids than the hex grids. On the coarse grids,
both topologies showed a decrease in Ku11 in time. The
medium hex grid showed an initial decrease in Ku11, fol-
lowed by an increase, then a final decrease. The medium tet
grid showed only an initial increase then a decrease around
time = 0.3 seconds. The fine grids do not exhibit similar
behavior between the two topologies. The fine hex grid be-
haves the same as the medium hex grid. The fine tet grid
shows an additional increase in Ku11 at the end of the tem-
poral evolution which was not seen for the hex grid. Similar
behavior in higher-order statistics was also seen in [17] on
their coarser grids. Across the grid resolution sweep, the
hex grids seem to be approaching a grid converged value
of kurtosis, whereas the tet grids have not yet approached a
grid converged state.

In viewing the decay of TKE for different grid topolo-
gies, one needs to remember that the initial conditions were
slightly damped on the tet meshes. On all grid levels, it was
observed that the hex grids initially decayed faster than the
tet grids. This difference diminished as the grid was re-
fined. The hex grids more closely predicted the experimen-
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tal values on the fine grid.
The decay exponent p on the coarse tet grid, shown in

Fig. 20, shows similar magnitude as the coarse hex grid
with LS initially but the hex grid maintains a much more
constant value of p in time than the coarse tet grid. The
coarse tet grid approach accepted values of p, while the
coarse hex grid with LS tends towards value of p ∼ 1.1. As
the grid is refined to the medium level, the value of p tends
to approach accepted values at long times on both hex and
tet grids, shown in Fig. 21. The fine grid results, shown
in Fig. 22, do not maintain this closeness between hex and
tet results. The fine hex grid with LS yields p values close
to the medium hex grid, which are both in agreement with
theory. The fine tet grid yields p values significantly larger
than the hex grid. This indicates that the hex grid seems to
maintain reasonable turbulence decay across a wider range
of grid resolutions than does the same problem solved on
tet grids. The user should be aware of this and adjust their
grid resolution accordingly. It can also be viewed as the hex
grids with LS appear to be approaching a grid converged
value of p, while the tet grids have not yet achieved grid
convergence of p.

The results from the prediction of the transverse Tay-
lor microscale were most interesting when considering grid
topology. The results are shown in Figs. 23-25 for the
coarse, medium, and fine grids, respectively. For all grid
levels, the hex grids are predicting slightly higher values
of λg. This difference diminished as the grid was refined.
This indicates that although the LS stencil on the tet grid
was larger than the hex LS stencil, it did not significantly
impact the prediction of λg. None of the LS predictions
matched the experimental values, but trends indicate that
the correct values of the microscale could be met using
LS on even finer grids. Grid topology did not seem to be
strongly influencing the prediction of λg.

3.3 Effect of CDES

It is not standard practice to vary CDES for an unsteady sim-
ulation. For problems such as airfoils at high angle of at-
tack, it has been shown that CDES = 0.65 gives reasonable
results [15]. In such flows, the primary metrics of accuracy
are lift and drag, and off-body eddies are not of large conse-
quence. However, in flow fields where off-body structures
are of primary importance, variation of CDES is sometimes
performed by users. Examples of this include aero-optic
calculations or predictions of distortion patterns near the
center of an engine face where it has been found that vari-
ation of model coefficients is often required to achieve re-
sults which match experimental data [7]. Both of these ex-
amples involve turbulent flow far from walls, and can be
considered to have large regions of flow which are some-

what isotropic. It is hoped that this study could lead to
a better approach for specifying CDES, as the results may
show the “best” value of CDES is grid resolution dependant,
and may depend on what turbulent property one is most
interested in. All grids and differencing schemes will be
considered in this section, although the trends for one grid
typically (but not always) apply the others in terms of CDES

behavior.
Recall tet grids are not considered for spectral energy

content, as no good approach existed for extracting this
data from tets. The energy spectra are only accurately pre-
dicted by the hex grids using the CD approach. The LS
method failed to predict high wavenumber behavior. Addi-
tionally, CDES = 0.65 was seen to give the best prediction
of spectra across all grid levels for hexes with CD. Increas-
ing CDES served to damp the high wavenumbers while not
having an impact on the low wavenumbers, see Figs. 5-
10. This held true for the LS approach as well, although
to a much lesser degree as the damping provided by the
LS method overwhelmed the change caused by variation
of CDES.

Variation of CDES did have a noticeable impact on Sk11,
shown in Figs. 11-13, for both CD and LS although the
trend is more pronounced with CD. For the hex grids with
CD, increasing CDES caused a more negative value of Sk11,
with a decreasing spread in Sk11 as the grid was refined.
Typically, larger values of CDES produced values of Sk11

which were closer to experimental values of -0.3 to -0.4 (es-
pecially true on the medium and fine grids). This was an in-
teresting find, as although CDES = 0.65 was seen to predict
good spectra for CD, values of CDES = 1.3 are needed to
give good values of Sk11. The trend of increasing skewness
of the velocity gradients with increasing CDES has been pre-
viously documented for isotropic turbulence [4]. For the
LS operator on the coarse hex grid, increasing CDES caused
less negative values of Sk11. This can also be attributed to
the larger stencil size, as eventually even with the CD op-
erator there will be a large enough CDES to damp gradients
and cause a reduction in the magnitude of Sk11. The LS
operator just put the coarse grid simulations in a state al-
ready full of dissipation, and adding more via CDES causes
further reduction in gradients. It should also be noted that
there was little spread in Sk11 as CDES was varied for the LS
operator. On the medium grid, the LS trends were the same
as the CD trends with CDES variation, and the LS approach
gave suitable values of Sk11. On the fine grid, a variety
of trends were seen. The LS operator on the hex grid saw
more negative values of Sk11 as CDES was increased. The
LS operator on the tet grid saw less negative values of Sk11

as CDES was increased. On the fine grid, all approaches
gave reasonable values of Sk11 using any value of CDES.
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Looking at the kurtosis of the velocity gradient can
give insight into as to what variation of CDES does to the
likelihood of extreme events. The value of Ku11 was seen
to decrease with CDES on all grid levels, as seen in Figs. 14-
16. This trend was consistent with the idea that increasing
CDES increases the turbulent viscosity and damp extreme
events. This trend was seen for all grid levels/schemes.

As expected, increasing CDES caused increased damp-
ing of TKE, shown in Figs. 17-19, for all grid levels and
schemes. The magnitude of the difference in TKE levels
as CDES was varied was largest for the coarse hex grid us-
ing CD. The spread in the hex grid results with CD was
smaller as the grid was refined. Little spread in the TKE
was observed when LS was used on any of the grids.

The decay rate exponent’s dependence upon CDES will
now be examined in Figs. 20-22. First, on the coarse grid,
the CD approach was seen to predict values of p greater
than 2 for CDES = 0.65, which is far from the 1.2-1.4 gen-
erally accepted values. However, CDES = 1.0 and 0.8 were
seen to give quite reasonable values of p. Increasing CDES

further caused a reduction in p to values less than 1.2. The
effect of CDES on the LS approach was minimal on the
coarse hex and tet grids. Increasing CDES caused a slight
increase/decrease in p when LS was used on the tet/hex
grids, respectively. On the medium hex grid, CD gives
p > 1.5 for CDES = 0.65. Increasing CDES decreases p
and CDES = 0.8 gives p = 1.3, a reasonable value. Using
LS on the medium hex grid, a tight grouping of data was
seen when CDES was varied, with values in the 1.3 range
at large times with larger CDES having slightly smaller p
values. Using LS on the medium tet grid, a wider range
of p values was seen than on hexes for t < 0.4 seconds but
still within reasonable levels at larger times. On the fine
hex grid, CD was seen to produce p values 1.7 to 1.5 for
CDES = 0.65 to 1.3, respectively. The fine hex grid results
using LS produced a tight spread in p about p = 1.4 with a
decrease in p with an increase in CDES. The fine tet grid re-
sults using LS showed large sensitivity to CDES. The value
of p ranged from 2.0 to 1.5 for CDES = 0.65 to 1.3, respec-
tively. On the fine grids, an increase in CDES was seen to
always reduce the value of p.

The transverse Taylor microscale was not seen to be
strongly dependent on CDES when the LS was used on any
of the grids, as shown in Figs. 23-25. On all grids for ei-
ther differencing scheme, an increase in CDES caused an in-
crease in λg. It was seen that λg became a weaker function
of CDES as the grid was refined. The best estimate of λg was
found using the fine hex grid with CD using CDES = 0.65.

4 Summary

Simulations of DHIT were performed using the BCFD
code with the DDES turbulence model. Two grid topolo-
gies, hex and tet, were examined for three levels of grid
refinement. Two gradient operators were examined on the
hex grids (central differencing and a least squares method),
and only the least squares method was examined on the tet
grids. Turbulence statistics considered include the energy
spectra, the skewness and kurtosis of the velocity gradient,
the decay of turbulent kinetic energy and its decay expo-
nent, and the transverse Taylor microscale. Comparisons
were made with accepted experimental data.

It was found that the spectra are only accurately repro-
duced using the hex grids with central differencing. The
LS approach was seen to excessively damp the high fre-
quencies. In general, the LS approach sufficiently predicts
low wavenumber behavior which may be enough for some
users. The model coefficient CDES was not seen to have a
large impact on the solutions using LS. For the hex grids
using central differencing, CDES = 0.65 was found to pre-
dict the spectra well on all grids. Other statistics such as
the decay rate exponent were more accurately predicted by
larger CDES values. Most users would be well served to
not vary CDES unless a specific reason existed in trying to
match a very specific aspect of turbulence. At the fine grid
level, all turbulent statistics were reasonably predicted with
most statistics even being reasonably well predicted at the
medium grid level. The coarse grid level did not seem to
be sufficient to sustain meaningful turbulence as evidenced
by small skewness values.

Future work needs to include developing higher order
compact stencils for tet grids. It was clear that the LS sten-
cil on tet meshes was the root cause of the dissipation on tet
grids. It should be noted that a parallel study is currently
taking place which is examining the grid size/topology im-
pact on unsteady loads. The outcome of this current work
suggests that unsteady loads, which presumably depend on
only lower frequencies, may be successfully predicted by
coarser grids using LS type stencils. In conclusion, one
needs to consider what flow feature is most important -
spectra, decay rates, large vs small scales, etc, and use this
work as a guide when determining the choice of numerics
(both turbulence model coefficient specification and differ-
encing scheme) and grid size/topology.
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Figure 5: Spectra at t=0.284 seconds, Coarse Hex Grid,
DDES

Figure 6: Spectra at t=0.284 seconds, Medium Hex Grid,
DDES

Figure 7: Spectra at t=0.284 seconds, Fine Hex Grid,
DDES

Figure 8: Spectra at t=0.655 seconds, Coarse Hex Grid,
DDES
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Figure 9: Spectra at t=0.655 seconds, Medium Hex Grid,
DDES

Figure 10: Spectra at t=0.655 seconds, Fine Hex Grid,
DDES

Figure 11: Skewness, Coarse Grids, DDES

Figure 12: Skewness, Medium Grids, DDES
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Figure 13: Skewness, Fine Grids, DDES

Figure 14: Kurtosis, Coarse Grids, DDES

Figure 15: Kurtosis, Medium Grids, DDES

Figure 16: Kurtosis, Fine Grids, DDES
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Figure 17: TKE, Coarse Grids, DDES

Figure 18: TKE, Medium Grids, DDES

Figure 19: TKE, Fine Grids, DDES
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Figure 20: p, Coarse Grids, DDES
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Figure 21: p, Medium Grids, DDES
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Figure 22: p, Fine Grid, DDES

Figure 23: Transverse Taylor Microscale, Coarse Grids,
DDES

Figure 24: Transverse Taylor Microscale, Medium Grids,
DDES
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Figure 25: Transverse Taylor Microscale, Fine Grids,
DDES
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