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Abstract 

This paper considers a new methodology for 
large scale optimization that involves structural 
design analyses by finite element method (FEM) 
models of a composite aircraft fuselage barrel. 
A natural decomposition of the overall design 
optimization problem into two levels, i.e. the 
fuselage barrel level and the level of the 
individual fuselage panels, exists in these 
analyses. Therefore we implemented a variant 
of the multi-level optimization methodology 
known as BLISS (Bi-Level Integrated System 
Synthesis), which we first apply to a relatively 
simple test case based on the 10-bar truss 
optimization problem. In the fuselage barrel 
optimization, the decomposition into two levels 
allows for fast analysis with relatively coarse 
models of the whole fuselage barrel, while much 
more detailed models are used for the panel 
level analyses. These detailed panel models may 
include specific composite material properties 
like lay-ups and fiber orientations and detailed 
geometric aspects of frames and stringers. For 
further speed-up of the optimization process we 
apply surrogate modeling methods for the 
representation of the sub-system behavior. In 
this way the design variables that originate from 
the different model levels can be incorporated in 
a computationally efficient manner. 
 
 

1 Introduction 

Ongoing developments in materials 
technologies have enabled the continuous 
improvement of airframe structures through the 
introduction of new materials and the related 
manufacturing processes. For example, 
composite materials allow for the design of 
more integrated and lighter structures that 
potentially require less maintenance then the 
traditional metallic ones. Composites are 
increasingly used on business jets, regional and 
commercial aircraft, representing for example 
up to 50% of the structural weight for the 
Airbus A350 XWB [1]. 

 
Due to their material properties, design 

options and the wide range of possible fiber 
reinforcements, composite materials offer a 
huge range of design variables, with a strong 
dependency on manufacturing [2]. Hence these 
composite materials provide much extended 
design freedom, but also additional 
complications like anisotropic behavior, to the 
design and development of new products when 
compared to more traditional materials. 
Consequently, one of the major challenges in 
the design of airframe structures is to find the 
best combination of in-service aircraft 
performance versus lifecycle cost within a 
design space of unprecedented size and 
complexity. 
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When considering the design challenge as 

an optimization problem for a large structural 
aircraft component, such as the aircraft fuselage, 
the number of design variables in this 
optimization problem (i.e. the dimensionality of 
the design space) and the number of possible 
constraints will become extremely large. One 
approach to deal with such a large scale design 
optimization problem is to decompose the 
overall problem into a number of smaller scale 
design optimization problems. These smaller 
scale problems typically consider a series of 
aspects or sub-systems in various levels of 
detail. Such an approach is commonly referred 
to as multi-level optimization (MLO) [3]. 

 
In this paper we present an implementation 

of a variant of the MLO method known as 
BLISS (Bi-level integrated system synthesis) 
[4]. We apply this MLO method to the design 
optimization of a composite aircraft fuselage 
barrel. The multi-level decomposition into two 
levels allows for fast analysis with relatively 
coarse models of the whole fuselage barrel, and 
much more detailed models for the panel level 
analyses. The design variables that originate 
from the different model levels can be 
incorporated in a computationally efficient 
manner. 

2 MLO background 

MLO requires a proper consistency in the 
decomposition of the considered overall design 
optimization problem. In the past decades, 
various methods such as simultaneous analysis 
and design (SAND), Concurrent Subspace 
Optimization (CSSO), Collaborative 
Optimization (CO), have been developed for the 
decomposition and multi-level optimization of 
complex systems [5]. These methods originate 
predominantly from the field of 
Multidisciplinary Design Optimization (MDO), 
where an intrinsic decomposition of the overall 
design problem is normally required due to the 
multiple specific disciplinary analyses that are 
applied. Another method originating from the 
MDO field is BLISS [4], for which a more 
recent formulation was given by Agte et al. in 

2005 [6]. In this formulation the system to be 
optimized is non-hierarchically divided into 
sub-systems, i.e., each sub-system may directly 
interact with each of the other sub-systems. In 
this paper we will build upon the latter BLISS 
formulation. The advantage of this BLISS 
formulation over ‘single-level’ or ‘All-in-One’ 
(AiO) optimization is that it allows the sub-
systems to be concurrently optimized. 

 
The BLISS optimization method [6] was 

designed for optimization of non-hierarchic 
systems involving multidisciplinary analyses (as 
in MDO). We made some further developments 
to the method, aiming for application to 
structural optimization problems with a more 
hierarchic nature. Among others, we 
implemented more appropriate surrogate 
(approximation) models of the sub-systems, 
applying specific local sampling methods and 
specific least-squares fitting methods. 

3 MLO test problem: 10-bar truss 

To illustrate the functionality of the MLO 
method we first show an application to a variant 
of the well-known structural optimization test 
problem of the 10-bar truss system (fig. 1). 

 

 
 
Fig. 1: The 10-bar truss system (left) and the cross-section 
of each bar with the design variables (x1,x2,x3) of truss bar 
i. 

 
The objective is to minimize the total mass 

of the system for given external forces 
( 5544 ,,, yxyx FFFF ), subject to constraints related 

to maximum stress allowables and Euler 
buckling and local web buckling for the bars, 
using the design variables in the R3 vector 
x(i)=(x1,x2,x3)

(i) of each of the 10 truss bars as 
independent variables. 
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In an AiO optimization approach, the mass 

minimization of the whole system under the 
given constraints, is directly performed in the 
30-dimensional space of the design variables of 
all 10 bars. 

 
In a MLO approach the aim is to 

decompose the problem into separate and 
simplified optimizations on the level of the bar 
and on the level of the whole system. The 
advantage is that the bar optimizations are 
performed in the 3-dimensional space of the bar 
design variables. The disadvantage is that we 
need exchange of constraint information 
between the bar level and system level, which 
requires iterations of optimizations on the two 
levels. 

 
For the problem decomposition in our 

MLO method we consider the cross-sectional 
area y(i)=(x1x2+2x1x3)

(i) of each of the 10 bars as 
an additional set of independent variables, 
expressed by the R10 vector y. The mass of each 
bar depends only on the bar area y(i) and not 
explicitly on the bar design variables x(i). The 
forces in the bars (f(i)) in static equilibrium of 
the system under the external forces depend on 
the stiffness of each bar, which is proportional 
to the bar cross-sectional area y(i). Hence the 
allowable tension and compression stresses in 
each of the bars can be expressed as the stress 
constraints given in (eq. (5)) below. Two types 
of buckling constraints are considered in this 
problem: Euler buckling and local web 
buckling, expressed as: 
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where L(i) is the length, I(i) is the second moment 
of area and R(i) is the thickness-height ratio 
(x1/x2) of bar i and E is Young’s modulus ν is 
Poisson’s ratio of the (linear elastic) material of 
the bars. These buckling constraints depend on 
the bar forces (f(i)), but also have an explicit 
dependency on the bar design variables x(i) and 
are therefore expressed as given in (eq. (6)) 
below. 
 

The 10-bar truss optimization problem can 
therefore be formulated as a system level 
minimization expressed in y (∈ R10): 
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subject to the constraints, expressed in x(i) (∈ 
R3) and y: 
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where m(i) is the mass of truss bar i and M is the 
total mass of the system. The bounds on the bar 
design variables are explicitly expressed as a 
constraint function of x(i) (eq. (4)).  
 

In our MLO method we now minimize on 
the bar-level the cross-sectional area (y(i)) of the 
bar under the given constraints (eqs. (4,5,6)) in 
the R3 space of the bar design variables for a 
series of prescribed force values f(i)*. This 
minimum bar area (y(i)

min(f
(i)*)) is driven by the 

constraints: either the bound, stress or buckling 
constraint is active in the minimum, as 
illustrated in the figure (fig. 2) below. 
Obviously the buckling behavior of the long 
(diagonal) bars is slightly different from the 
short bars. 
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Fig. 2: The optimal cross-sectional areas (2 middle graphs) of the long (diagonal) bars (red curves) and short bars (blue 
curves) as a function of prescribed bar force (y(i)

min(f
(i)* )) for the bars in the 10-bar truss problem. These optimal bar areas 

depend on the various constraints that are active at each force value (as illustrated by the 2 upper and 2 lower graphs). 
 

 
For very low tension force only the bound 

constraint is active (small horizontal part of the 
curves in the graphs), i.e., the minimum bar area 
is determined by the lower bounds of the bar 
design variables (x1,x2,x3). For higher tension 
force only the stress constraints are active. For 
low compressive force the Euler buckling 
constraints are active and for slightly higher 
compressive force also the web buckling 
constraints become active. For further increased 
compressive force the stress constraints become 
active, while the Euler constraint is nearly 
active (“switching on and off”). For the long 
bars (i.e., the diagonal bars in the 10-bar truss 
system, indicated by the red lines in the graphs) 
the buckling constraints remain active until 
higher compressive force values than for the 
short bars (i.e., the horizontal and vertical bars 
in the 10-bar truss system, indicated by the blue 
lines in the graphs). 
 

From the bar level optimization results of 
minimum (allowable) bar area values as a 
function of prescribed bar force (y(i)

min(f
(i)*)), we 

construct a surrogate model where the aim is to 
achieve optimal accuracy with as few as 
possible prescribed force sample points. 
Therefore we applied specific iterative local 
force sampling and various fitting methods to 
capture as good as possible the minimum 
(allowable) bar area (see fig. 3 below). 

 

  

  
 
Fig. 3: Illustration of the surrogate model accuracy for 
minimum bar area as function of prescribed bar force 
obtained with various fitting methods: Weighted Least 
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Squares (WLS), Moving Least Squares (MLS) [9], 
Mixtures of Experts (MoE) [10], and the results for each 
of these fits for a specific local force sample in the central 
part of the curve. 
 

The MoE method appeared to provide the 
most accurate surrogate model, and was applied 
with a local sampling in 6 force values per bar. 
The surrogate model of the minimum bar area 
as a function of bar force that has been 
determined on the bar level is subsequently used 
on the system level as an in-equality constraint 
function in the minimization of the total mass, 
where the force in each of the bars is determined 
from the system equilibrium (f(i)(y)): 

 

))(( )()( yi(i)
min

i fyy >  (7) 

 
A number of load-cases, using different 

external force vectors ( 5544 ,,, yxyx FFFF ), was 

evaluated with both the AiO and the MLO 
approaches. In comparison with the AiO 
optimizations, the MLO method yields similar 
values for the minimum total mass within 1% 
deviation from the AiO results. However, the 
computational efficiency, particularly in terms 
of function evaluations on the bar level, is lower 
for the MLO method; see table 1 below. But it 
should be noted that the bar evaluations involve 
only 2 dofs, whereas the system evaluations 
involve 8 dofs. All optimizations in the AiO and 
the MLO evaluations were run with the non-
linear constrained minimization function 
(fmincon) of Matlab, where finite difference 
approximations of the gradients were used. 
 
Table 1: Computational efficiency of the MLO method 
compared to the AiO optimization for one load-case of 
the 10 bar truss problem. 

 
 
Method 

Approximate nr. of 
Function evals. 

Sys. level / Subsys. 
level 

Approximate nr. of 
Optim. iters. 

Sys.level / Subsys. 
level 

AiO 400 / n.a. 12 / n.a. 

MLO 200 / 5e3 20 / 1e3 

 
 

4 Fuselage barrel MLO 

The optimization of the fuselage barrel is 
aimed at minimization of the design objective, 
which is typically the fuselage weight. In 
analogy with the MLO method described above 
for the 10-bar truss problem, this is achieved 
through the two-level optimization approach in 
the following way. On the barrel level the 
optimization considers the minimization of the 
structural mass, taking into account constraint 
information coming from the panel level 
analyses. The loads on panel level are estimated 
by applying the fuselage loads (like axial 
compression, torsion, internal pressure, 
bending) to the coarse fuselage barrel model. 
The panel dimensions (like skin thickness, 
stringer height, fiber orientations) are then 
optimized on the panel level, subject to typical 
design constraints (such as buckling load, 
allowable mechanical stress, etc.) through 
evaluation of the detailed panel model. 

 
In analogy with the high number of sub-

system evaluations in the 10-bar truss problem 
(table 1), the panel level optimization process 
may require many evaluations of the detailed 
panel model, in particular if many design 
variables and constraints are considered on 
panel level. To overcome the computational 
burden and the process complexity of evaluating 
the detailed panel FEM model directly inside 
the optimization loop, computationally efficient 
surrogate models for the panel behavior are built 
and deployed. These surrogate models basically 
represent the values of the objective and 
constraint functions on panel level (such as 
panel weight, maximum stress, minimum 
buckling load factor) as a function of the panel 
design variables. They are built by applying 
various surrogate modeling methods [7] like 
least squares polynomial fitting, kriging models, 
neural networks and radial basis functions, to 
data sets of the panel behavior that are obtained 
from series of simulations with the detailed 
panel FEM model. 
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4.1 Barrel-panel optimization problem 

The multi-level barrel-panel optimization 
that we consider in this paper is limited to the 
minimization of the fuselage barrel weight, 
where only the skin thickness (tskin) is used as 
the design variable with bounds 1 mm < tskin < 5 
mm, and only skin buckling is used as 
constraint. Because we only consider the skin 
thickness as design variable and the 
optimization objective (weight) is linearly 
dependent on this variable, we will, instead, 
directly use skin thickness as objective function. 
Also only one barrel level load-case is 
considered, consisting of an axial compression 
of 5.4 MN (400 N/mm compression load 
intensity) and torsion about the fuselage axis of 
5.8 MNm (200 N/mm shear load intensity). See 
fig. 4 below. 

 

 
 
Fig. 4: Barrel loading considered in the multi-level barrel-
panel optimization. Axial compression and torsion loads 
of 5.4 MN and 5.8 MNm, respectively, are applied via a 
“virtual rigid ring” attached to the barrel skin. 
 

4.2 Panel level analyses 

The panel level analyses make use of a 
rather detailed parametric FEM model of a 
curved fuselage panel containing 5 stringers and 
4 frames, which was implemented in the FEM 
software Abaqus version 6.9 [8]. The panel has 
a curvature radius of about 2150 mm, and 
approximately 200 mm stringer pitch and 650 
mm frame pitch. Omega stringers of about 85 
mm total width, 30 mm height and 2 mm thick, 
and C-frames of about 25 mm width, 85 mm 
height and 2 mm thick are used. The boundary 
conditions for this panel model suppress all 
rotations and radial displacements of all four 
edges. Furthermore the axial displacements are 
suppressed on one curved edge and equality-
constrained on the other curved edge. The non-
curved edges have linearly constrained 

tangential displacements such that their angular 
rotation about the fuselage axis is linear over the 
full length of these edges. The panel model is 
loaded by a distributed axial compressive unit 
load (1 N/mm) on the equality-constrained 
curved edge, and by a distributed shear unit load 
on the straight edges (-1 N/mm) and on the 
curved edges (1 N/mm) (see fig. 5 below). 
 

 
Fig. 5: FEM model of the curved panel with loading and 
boundary conditions. The clamped curved edge is on the 
left side. 

 
The panel skin, as well as all the stringers 

and frames, are modeled by a total of 
approximately 3400 quadratic shell-elements (8 
nodes, 48 dofs, S8R [8]), yielding about 11000 
nodes and 42000 dofs for the whole panel 
model. Skin and stringers consist of a composite 
laminate with elastic ply properties given by the 
Young’s and shear moduli and Poisson’s ratio 
with approximate values: Ex=160GPa, 
Ey=9GPa, G=4GPa, ν=0.35. For the skin a fixed 
8-ply stacking sequence (45°/-
45°/90°/0°/0°/90°/-45°/45°) is used with (25%, 
25%, 25%, 25%) thickness contributions, 
respectively, for the (45°/-45°/90°/0°) plies. As 
mentioned above, total skin thickness (tskin) is 
the design variable, which is varied between 1 
mm and 5 mm. For the stringers also a 
composite with similar elastic properties as for 
the skin and a fixed 8-ply stacking sequence 
(45°/-45°/90°/0°/0°/90°/-45°/45°) is used with 
(15%, 15%, 10%, 60%) thickness contributions, 
respectively, for the (45°/-45°/90°/0°) plies. 
Aluminium frames are used with elastic 
material properties E=72GPa, G=27GPa, 
ν=0.33. 

 
The panel level analyses consider only 

linear buckling simulations, which were 
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evaluated using the Lanczos eigensolver [8]. 
Only the first 2 modes (see fig. 6 below) were 
evaluated requiring about 250 s CPU time on a 
standard PC (Pentium 4, 2.8 GHz). 

 
Fig. 6: Illustration of the first local buckling mode shape 
of the curved panel FEM model under combined 
compression and shear loading. 

 
The panel buckling analyses described 

above were performed for a series of 5 skin 
thickness values, equi-distantly sampled 
between the lower and upper bounds (1mm and 
5mm). In order to capture the panel buckling 
behaviour for various load conditions we also 
varied the ratio between compression and shear 
loading. This ratio is expressed by a 
compression-shear ratio angle (φ ∈ [0o, 90o]), 
such that the compression loading lc=cos(φ) 

N/mm and the corresponding shear loading 
ls=sin(φ) N/mm. For proper sampling of these 
load combinations we selected 5 values for φ on 
approximately equi-angular positions in the 
loading plane (see fig. 7 below), resulting in a 
set of 5 lc values and corresponding ls values. 

 
Fig. 7: Illustration of the considered compression and 
shear loading combinations in the panel analyses. 

 
From the buckling evaluations for the 5x5 

(full-factorial) sampling of skin thickness values 
and loading combinations, the eigenvalues 

(buckling values, λ) of the first mode were 
stored. The results are shown in the figure (see 
fig. 8 below). 

 
Fig. 8: Buckling values from the panel analyses, presented 
as a function of the skin thickness and compression and 
shear loading combinations. 

 
To obtain an accurate surrogate model 

representation of the 5x5 dataset of buckling 
values, we now apply various fitting methods 
[7] (see fig. 9) to fit the buckling values (λ) as a 
function of skin thickness (tskin) and 
compression-shear ratio angle (φ). From various 
fit assessments, among which a leave-one-out 
evaluation [7] (see fig. 9), it was concluded that 
the kriging models and 3rd order polynomial 
(poly3) fits were the most accurate, and because 
of its computational efficiency the latter was 
used in the barrel optimization. 

 
Fig. 9: Results of the fits assessments by leave-one-out 
evaluation, expressed in root mean squared error (RMSE) 
value on horizontal axis, of the various fitting methods 
(indicated in the graph on the vertical axis as poly* (least 
squares polynomials), kriging** (kriging models), ann 
(neural networks) and rbf and rbfopt (radial basis 
functions)). 
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The poly3 surrogate model of the panel 
level buckling values can be directly used in the 
barrel level optimization. From the local loading 
condition as obtained from the barrel model (in 
terms of axial compression and shear load 
intensities, and expressed by the compression-
shear ratio angle), the panel level optimization 
exists in finding the minimum skin thickness 
subject to the constraint that the local load 
intensities in the barrel are lower than the panel 
buckling load as predicted by the surrogate 
model. 

4.3 Barrel level analyses 

The barrel level analyses make use of a 
relatively coarse parametric FEM model, 
implemented in Abaqus [8], of a cylindrical 
fuselage barrel with a diameter of about 4300 
mm and length of about 11700 mm. Skins are 
modeled as linear shell elements (S4R [8]), 
grouped into a ‘crown section’ (barrel skin 
above the cabin floor) and ‘keel section’ (barrel 
skin below the cargo floor) for which separate 
thicknesses can be specified. The barrel model 
also contains 68 omega stringers (along the full 
length of the barrel) and 21 C-frames, both with 
similar shape and pitch as in the panel model, 
but modeled here by 2-node beam elements 
(B31 [8]). Also cabin and cargo floors and 
vertical struts below the cabin floor are included 
in the barrel model. The floors and struts 
structures are modeled by flat shell (S4R) 
elements with 27 (for cabin floor) and 15 (for 
cargo floor) omega-shaped stringers and 21 C-
shaped frames (in both floors and struts), also 
modeled as B31 elements. The full barrel model 
contains about 7400 elements (2500 shells 
(S4R); 4900 beams (B31)), about 2500 nodes 
and 15000 dofs. 

 
Materials in the barrel model are simplified 

to isotropic approximations of the materials 
used in the panel level model: E=85GPa and 
ν=0.35 for skins, E=110GPa and ν=0.35 for 
skin-stringers, and aluminium (E=72GPa, 
ν=0.3) for the frames and all shells, stringers 
and beams in the floors and struts. All skin-
stringers and skin-frames are 2 mm thick, all 
floors and struts structures are 3 mm thick. 

 

 
 
Fig. 10: Illustration of the cylindrical barrel model with 
skins, stringers, frames, floors and vertical struts 
structures. 

 
A linear static analysis of the barrel 

deformation for the considered load-case (see 
barrel loading in fig. 4 above) is performed, 
which requires about 15 s CPU time on a 
standard PC (Pentium 4, 2.8 GHz). The 
resulting deformation, strains and stresses in the 
whole barrel structure (see fig. 11 below) 
resulting from these analyses are then used in 
the barrel level optimization. 

 
Fig. 11: Illustration of the initial barrel deformation. The 
colors represent S22 stress values (in fuselage axis 
direction), indicating higher compressive stress (blue) in 
the crown region than in the keel region (green). 

4.4 Main results 

In the barrel model we identify two 
localized regions, in the centers of the crown 
and keel sections (i.e. the top and bottom skin 
areas near the mid-frame of the barrel), where 
we evaluate the local load intensities from the 
local stresses in the skins, stringers and frames. 
These load intensities are assumed to be 
representative for the panel loading in the crown 
and keel sections, and are used to identify the 
optimized panel skin thickness from the panel 
level results. The initial skin thicknesses in the 
whole barrel are 3mm. The local load intensities 
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in crown and keel in the initial barrel (table 2. 
below) yielded the corresponding compression-
shear ratio angle (φ) (table 2. below). 

 
Table 2: Local load intensities in the crown and keel 
region of the barrel model (Nxx is in barrel axis direction; 
Nxy is in plane panel shear load intensity; Nyy in 
circumferential direction was close to zero in the whole 
barrel for this load-case). The corresponding values of the 
compression-shear ratio angle φ, computed as φ = 
arctan(Nxy / Nxx), are also given. 
 Nxx 

(N/mm) 
Nxy 
(N/mm) 

φ tskin 
(mm) 

Crown-initial 390.4 202.8 27.5 3.0 

Keel-initial 211.0 131.6 32.0 3.0 

Crown-optimal 384.5 201.3 27.6 2.6 

Keel-optimal 171.6 104.9 31.5 1.9 

 
In the barrel level optimization the crown 

and keel skin thicknesses are minimized, subject 
to the buckling constraints based on the panel 
level analyses results. This is achieved by 
retaining the compression-shear ratio angle (φ) 
values in the crown and keel sections, which are 
computed by   φ=arctan(Nxy/Nxx). For these φ 
values the load intensities found in the barrel 
model are required to be lower than the 
buckling load predicted by the surrogate model 
of the panel level buckling values. The 
optimization iteration exists in updating of the 
crown and keel skin thicknesses in the barrel 
model, re-evaluating the local load intensities 
with the barrel model, and re-evaluating the 
objective (skin thickness) and constraint 
function (local load intensities shall be lower 
than the predicted buckling load) with the 
surrogate model. This iteration needed 4 steps to 
converge to an optimal solution for the crown 
and keel skin thicknesses with an absolute 
convergence tolerance of 0.1 mm. The resulting 
values for the optimal crown and keel skin 
thicknesses are also given in table 2. 

5 Conclusions and discussion 

An implementation of a two-level MLO 
method has been described. The accuracy and 
efficiency of this method has been assessed in 
comparison with a direct (AiO) optimization 
approach on a test problem based on the 10-bar 

truss optimization problem. Furthermore this 
MLO method has been applied to an 
optimization of a composite fuselage barrel, in 
which parametric FEM models of the fuselage 
barrel and panel were used. 

 
Current results, which are based on 

relatively simple barrel and panel models, 
indicate that the described optimization method 
is feasible and efficient. In only few iterations of 
the barrel level optimization a feasible optimum 
was found. We have not compared this result 
with a direct AiO optimization of the barrel, but 
it should be noted that for such an AiO 
optimization the barrel model should be much 
more detailed in order to be able to predict the 
local skin buckling constraint that was 
considered here. 

 
The barrel-panel optimization problem 

shown here was limited to a simple case, where 
only one design variable was considered. This 
was sufficient to demonstrate the applicability 
of the MLO method to this design case. But a 
further elaboration of this optimization, e.g. by 
considering more design variables (like stringer 
dimensions and composite fiber orientations) 
and additional constraint functions (e.g. 
considering local stresses or strains) will allow 
for more detailed assessment of the benefits of 
the MLO method. Furthermore, the 
incorporation of multiple load-cases and more 
localized regions (representative for local panel 
loading) in the barrel level analyses would be 
useful. Work is ongoing to incorporate these 
aspects in the barrel-panel optimization 
problem. 

 
The FEM models that are used for the 

fuselage barrel and panel will need further 
enhancements, e.g. for the boundary conditions, 
material behavior and considered load-cases. 
Because we considered only linear buckling in 
the panel level analyses, a rather coarse mesh 
was used here. Still we checked the mesh 
dependency of the results by applying a double 
and triple refinement of the mesh in the 2 
central bays of the panel, yielding however no 
significantly different values. 
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The constraint in the barrel optimization 
was based on local skin buckling, which was 
evaluated with the panel level buckling 
analyses. However, for some of these 
evaluations, in particular for higher skin 
thickness and more shear loading, the buckling 
modes showed an increasing non-local behavior 
(i.e., modes were not restricted within single 
bays). Strictly considered these global buckling 
modes represent a stronger “un-allowable” 
panel behavior, but because the buckling modes 
for the optimum values found in the crown and 
keel were clearly local we accepted this result. 

 
Besides improvements of the barrel and 

panel models, the development and quality 
assessment of the surrogate models of the panel 
can be more extended. For example, only very 
coarse full-factorial sampling (5x5) of thickness 
and load ratio was applied here, which could be 
easily enhanced by applying for example D-
optimal or latin-hypercube schemes to improve 
the sampling efficiency. Moreover, detailed 
localized (re-)sampling by evaluations of the 
panel level model (i.e., around the loading 
found from the barrel analysis) and more 
advanced surrogate modeling methods like the 
MoE method that was presented in the 10-bar 
truss case, was not yet applied in the barrel-
panel case. These issues are addressed in 
ongoing work in this area. 
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