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Abstract  

The unscented Kalman filter (UKF) is adopted 
in the interacting multiple model (IMM) 
framework to deal with the system nonlinearity 
in navigation applications. The adaptive tuning 
system (ATS) is employed for assisting the 
unscented Kalman filter in the IMM framework, 
resulting in an interacting multiple model 
adaptive unscented Kalman filter (IMM-AUKF). 
Two models, a standard UKF and an adaptive 
UKF (AUKF), are used in the IMM for 
dynamically adjusting the process noise to 
enhance the estimation accuracy and tracking 
capability. Accuracy comparison on navigation 
sensor fusion for AUKF, IMM-UKF, and IMM-
AUKF approaches are presented. Furthermore, 
a performance measure referred to as the 
Instability Index (ISI) is introduced to evaluate 
the stability influenced by time-varying 
dynamics characteristics. Among the three 
approaches, the IMM-AUKF approach has the 
best overall positioning performance. Unlike the 
IMM-UKF, both IMM-AUKF and AUKF have 
equivalently good ISI values, indicating that 
positioning accuracies by the two methods are 
relatively reliable under the change of dynamics 
characteristics. 

1  Introduction  
The extended Kalman filter (EKF) [1,2] has 
been shown to be a minimum mean square error 
estimator. Unfortunately, the fact that EKF 
highly depends on a predefined dynamics model 
forms a major drawback. For achieving good 
filtering results, the designers are required to 
have the complete a priori knowledge on both 

the dynamic process and measurement models, 
in addition to the assumption that both the 
process and measurement are corrupted by zero-
mean Gaussian white sequences. The adaptive 
Kalman filter algorithm [3,4] has been one of 
the strategies considered for estimating the state 
vector to prevent divergence problem due to 
modeling errors. Moreover, the calculation of 
the Jacobian matrices makes it difficult to 
implement, especially for non-differentiable 
function. 

The interacting multiple model (IMM) 
algorithm [5,6] has the configuration that runs 
in parallel several model-matched state 
estimation filters, which exchange information 
(interact) at each sampling time. The of IMM 
algorithm has been originally applied to target 
tracking [7-9], and recently extended to GPS 
navigation [10,11]. A model probability 
evaluator calculates the current probability of 
the vehicle being in each of the possible modes. 
A global estimate of the vehicle’s state is 
computed using the latest mode probabilities. 
This algorithm carries out a soft-switching 
between the various modes by adjusting the 
probabilities of each mode, which are used as 
weightings in the combined global state 
estimate. The covariance matrix associated with 
this combined estimate takes into account the 
covariances of the mode-conditioned estimates 
as well as the differences between these 
estimates. The AKF approach is based on 
parametric adaptation, while the IMM approach 
is based on filter structural adaptation (model 
switching). 

The unscented Kalman filter (UKF) is a 
nonlinear, distribution approximation method, 
which uses a finite number of sigma points to 
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propagate the probability of state distribution 
through the nonlinear dynamics of system. The 
UKF made a Gaussian approximation with a 
limited number of points (sigma points) by 
using the Unscented Transform (UT) [12-15]. 
The deterministic sampling approach is used to 
capture the mean and covariance estimates with 
a minimal set of samples, and the posterior 
mean and covariance undergoing a nonlinear 
propagation can be calculated accurately at least 
to the second order. 

The UKF naturally suffers the same 
problem as the EKF. The uncertainty of the 
process noise and measurement noise will 
degrade the performance of UKF. An adaptive 
mechanism which dynamically identifies 
uncertainties or modeling errors can be adopted. 
To deal with noise uncertainty and system 
nonlinearity simultaneously, the IMM-UKF can 
be introduced. In the approach, multiple models 
are developed to describe various dynamic 
behaviors. In each model an UKF is running, 
and the IMM algorithm makes uses of model 
probabilities to weight the inputs and output of a 
bank of parallel filters at each time instant. By 
monitoring the innovation information, the 
IMM-UKF augmented by an adaptive tuning 
system (ATS), referred to the IMM-AUKF 
herein, is employed for dynamically adjusting 
the process noise for further enhancing the 
estimation accuracy and tracking capability.  

The Global Positioning System (GPS) 
[1,16] and inertial navigation system (INS) have 
complementary operational characteristics and 
the synergy of both systems has been widely 
explored. The GPS/INS integrated navigation 
system, typically carried out through the EKF, is 
the adequate solution to provide a navigation 
system that has superior performance in 
comparison with either GPS or INS stand-alone 
system. The example on loosely-coupled 
GPS/INS integrated navigation processing 
based on the IMM-AUKF will be presented. 
Performance improvement will be demonstrated 
using the proposed IMM-AUKF method as 
compared to the AUKF and IMM-UKF 
approaches. 

This paper is organized as follows. In 
Section 2, preliminary background on the IMM-
UKF is discussed. The proposed sensor fusion 

strategy is introduced in Section 3. In Section 4, 
navigation integration application is carried out 
to evaluate the performance of the proposed 
approach. Conclusions are given in Section 5. 

2  The Interacting Multiple Model Unscented 
Kalman Filter 

The unscented Kalman filtering deals with 
the case governed by the nonlinear stochastic 
difference equations: 

kkk kf wxx +=+ ),(1                  (1a) 
kkk kh vxz += ),(                   (1b) 

where the state vector n
k ℜ∈x , process noise 

vector n
k ℜ∈w , measurement vector m

k ℜ∈z , 
and measurement noise vector m

k ℜ∈v . The 
vectors kw  and kv  are zero mean Gaussian 
white sequences having zero cross-correlation 
with each other: 
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where kQ  is the process noise covariance matrix, 

kR  is the measurement noise covariance matrix. 
Instead of linearizing using Jacobian 

matrices as in the EKF and achieving first-order 
accuracy, the UKF uses a deterministic 
sampling approach to capture the mean and 
covariance estimates with a minimal set of 
sample points. The UKF was first proposed by 
Julier, et al. [17] to address nonlinear state 
estimation in the context of control theory. 
When the sample points are propagated through 
the true nonlinear system, the posterior mean 
and covariance can be captured accurately to the 
3rd order of Taylor series expansion for any 
nonlinear system. One of the remarkable merits 
is that the overall computational complexity of 
the UKF is the same as that of the EKF [18]. 

The first step in the UKF is to sample the 
prior state distribution, i.e., generate the sigma 
points through the UT, which is a method for 
calculating the statistics of a random variable 
which undergoes a nonlinear transformation. 
The basic premise is that to approximate a 
probability distribution is easier than to 
approximate an arbitrary nonlinear 
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transformation. The samples are propagated 
through true nonlinear equations, and the 
linearization of the model is not required. 

Suppose the mean x  and covariance P  of 
vector x  are known, a set of deterministic 
vector called sigma points can then be found. 
The ensemble mean and covariance of the sigma 
points are equal to x  and P . The nonlinear 
function )(xy f=  is applied to each 
deterministic vector to obtain transformed 
vectors. The ensemble mean and covariance of 
the transformed vectors will give a good 
estimate of the true mean and covariance of y , 
which is the key to the unscented transformation. 
The UKF approach estimates are expected to be 
closer to the true values than the EKF approach. 

The sigma vectors are propagated through 
the nonlinear function to yield a set of 
transformed sigma points, 

nif ii 2,...,0)( ==      Xy                (2) 

The mean and covariance of iy  are 
approximated by a weighted average mean and 
covariance of the transformed sigma points as 
follows: 
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As compared to the EKF’s linear approximation, 
the unscented transformation is accurate to the 
second order for any nonlinear function. 

The IMM-UKF algorithm uses model 
(Markov chain state) probabilities to weight the 
input and output of a bank of parallel UKFs at 
each time instant. The approach takes into 
account a set of models to represent the system 
behavior patterns or system model. The overall 
estimates is obtained by a combination of the 
estimates from the filters running in parallel 
based on the individual models that match the 
system modes. Each cycle consists of four 
major steps: interaction (mixing), filtering, 
mode probability calculation, and estimate 
combination. One cycle of IMM-UKF can be 
written as follows: 
 
1. Model interaction/mixing 

For given target states j
kk

j
k 1|11 −−− = xx  with 

corresponding covariances j
kk

j
k 1|11 −−− = PP  and 

mixing probabilities ji
kk
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1|1 −−μ  for every model, an 

initial estimate-covariance pair is given by: 
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The model transition probabilities, which are 
related to Markov chain, are defined as: 
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where rji  ,...,2,1, = , and r  is the number of sub-
models. Calculating the mixing probabilities 
with mode switching probability matrix π ij  and 
the Gaussian mixing probabilities are computed 
via the equations 
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where c j  is a normalization factor is 
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2. Model individual filtering 
- Step 1 in UKF loop. The unscented transform 
creates 12 +n  sigma vectors X  (a capital letter) 
and weighted points W . For state estimation at 
instant 1−k , sigma points are generated 
according to 
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where i
j

kn ))(( 0
1−+ Pλ  is the i th row (or column) 

of the matrix square root. j
kn 0

1)( −+ Pλ  can be 
obtained from the lower-triangular matrix of the 
Cholesky factorization; nkn −+= )(2αλ  is a 
scaling parameter used to control the covariance 
matrix; α  determines the spread of the sigma 
points and is usually set to a small positive 

)141( ≤≤− αe e.g., ; k  is a secondly scaling 
parameter (usually set as 0); β  is used to 
incorporate prior knowledge of the distribution 
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of x  (When x  is normally distributed, 2=β  is 
an optimal value); )(m

iW  is the weight for the 
mean associated with the i th point; and )(c

iW  is 
the weigh for the covariance associated with the 
i th point. 
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- Step 2 in UKF loop. Time update (prediction 
steps) 
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- Step 3 in UKF loop. Measurement update 
(correction steps) 
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The samples are propagated through true 
nonlinear equations; the linearization is 
unnecessary (Calculation of Jacobian is not 
required). They can capture the states up to at 
least second order, where as the EKF is only a 
first order approximation. 
 
3. Model probabilities update 
Model probability j

kμ  is updated according to 
the model likelihood and model transition 
probability governed by the finite-state Markov 
chain: 
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4. Combination of state estimation and 
covariance combination 
 
The model-individual estimates and 
covariances are combined to an overall state 
and covariance. 
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3 The Proposed Sensor Fusion Strategy 
Fig. 1 shows the block diagram of the proposed 
IMM-AUKF algorithm. Two models are used in 
the IMM configuration: a standard (non-
adaptive) UKF and an adaptive UKF (AUKF). 
To account for the modeling error or statistic 
uncertainties, the UKF is augmented by an ATS 
for determining the process noise covariance 

kQ  of the AUKF, which is then the upper bound 
of process noise covariance in the IMM. The 
ATS is designed according to the innovation 
information, and then adjust the bandwidth of 
the IMM filter through reducing or increasing 
the upper bound of the process noise covariance. 
For timely reflecting the change in vehicle 
dynamics, the degree of divergence (DOD) 
parameter ξ  is defined as the normalized 
innovation squared value at the present epoch: 

kzz
T
k υPυ 1−=ξ                     (26) 

where T
mk υυυ ]...[ 21    =υ , m  is the number of 

measurements. This statement is equivalent to 
the trace of the practical innovation covariance 
divided by the theoretical one. Furthermore, the 
DOD parameter ξ  follows the Chi-square 
distribution, and the probability of ξ  less than 
its expectation value will be always larger than 
50%. 

The innovation reflects the discrepancy 
between the predicted measurement and the 
actual measurement. It represents the additional 
information available to the filter as a 
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consequence of the new observation. As the 
statistical sample variance estimate of zzP , 
matrix the zzP̂ can be computed through 
averaging inside a moving estimation window  

∑
=

=
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where M  is the number of samples (usually 
referred to the window size); 10 +−= Mkj  is the 
first sample inside the estimation window. The 
benefit of the adaptive algorithm is that it keeps 
the covariance consistent with the real 
performance. The innovation sequences have 
been utilized by the correlation and covariance-
matching techniques to estimate the noise 
covariances. The basic idea behind the 
covariance-matching approach is to make the 
actual value of the covariance of the residual 
consistent with its theoretical value. The 
estimate of process noise kQ  is calculated 
through 

T
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For more detailed information on derivation of 
these equations, see Mohamed & Schwarz [3]. 
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Fig. 1. The block diagram of the IMM-AUKF algorithm 
(one cycle with two modes). 
 

By monitoring the DOD parameter ξ , the 
ATS is employed for on-line tuning of the 
process noise covariance and improves 
estimation performance. The adaptation rule for 
the AUKF is given by: 
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where the estimated process noise covariance 
kQ̂  is calculated by (28), and the pre-specified 

multiplier γ  is an adequately large number (e.g. 
100 is used in this paper) to ensure two models 
function properly under the Bayesian exclusive 
assumption in the IMM. 

A smaller process noise covariance kQ  
indicates that the vehicle is in low dynamic 
motion; while a larger process noise covariance 
indicates that the vehicle is in high dynamics 
maneuvering. An adequately small process 
noise covariance is chosen as the lower bound 
in the standard UKF ( LQ ), which is suitable for 
the non maneuvering case. The block diagram 
of the AUKF algorithm is shown in Fig. 2. 
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Fig. 2. The block diagram of AUKF. 
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4 Navigation Integration Performance 
Evaluation 
Simulation experiments were carried out to 
evaluate the performance of the proposed IMM-
AUKF approach in comparison with the IMM-
UKF and AUKF methods for GPS/INS 
navigation sensor fusion. The commercial 
software Satellite Navigation (SATNAV) 
Toolbox by GPSoft LLC was employed for 
generating the satellite positions and 
pseudoranges. The satellite constellation was 
simulated and the error sources corrupting GPS 
measurements include ionospheric delay, 
tropospheric delay, receiver noise and multipath. 
It is assumed that the differential GPS mode is 
used and most of the errors can be corrected, 
while the multipath and receiver thermal noise 
cannot be eliminated. Fig. 3 shows the 
configuration of the loosely-coupled feedback 
GPS/INS integrated navigation processing using 
the IMM-AUKF. The measurement is the 
residual between GPS generated position and 
INS predicted position. 

The differential equations describing the 
two-dimensional inertial navigation state are: 
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where [ ua , va ] are the measured accelerations in 
the body frame, rω  is the measured yaw rate in 
the body frame, as shown in Fig. 4. The error 
model for INS is augmented by some sensor 
error states such as accelerometer biases and 
gyroscope drifts. Actually, there are several 
random errors associated with each inertial 
sensor. It is usually difficult to set a certain 
stochastic model for each inertial sensor that 
works efficiently at all environments and 
reflects the long-term behavior of sensor errors. 
The difficulty of modeling the errors of INS 
raised the need for a model-less GPS/INS 
integration technique. 
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Fig. 3. Configuration of the loosely-coupled feedback 
integrated navigation using the proposed approach. 
 

 
Fig. 4. Illustration of the two-dimensional inertial 
navigation. 
 

The experiment was conducted on a 
simulated vehicle trajectory originating from the 
(0,0,0) m location in the ENU coordinate frame. 
The simulated sensor outputs for the 
accelerometers and gyroscope are shown as in 
Fig. 5. The designed vehicle trajectory covers 
four categories of dynamic characteristics 
according to the level of dynamic involved: (1) 
constant-velocity straight-line during the time 
intervals, 0-200, 401-600, 901-1200, and 1276-
1600s, all at a speed of π10  m/s; (2) counter-
clockwise circular motion with radius 1000 
meters during 201-400s; (3) clockwise circular 
motions with radius 2000 meters during 601-
900s, and (4) clockwise circular motions with 
radius 500 meters during 1200-1275s, 
respectively. The four levels of vehicle 
dynamics involved are HM (201-400s, medium-
high dynamic motion), HL (601-900s, low-high 
dynamic motion), HH (1200-1275s, high 
dynamic motion), and L (for the rest of time 
intervals, low dynamic environments), 
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respectively. The trajectories for the simulated 
vehicle (solid) and the unaided INS derived 
position (dashed) is shown in Fig. 6. Fig. 7 
shows the east and north components of INS 
navigation errors. 

The architecture for IMM-AUKF is similar 
to that of IMM-UKF except that one of the 
UKFs in IMM-AUKF structure is augmented by 
the parameter adaptation mechanism (i.e., ATS). 
The process noise covariance matrices in the 
IMM-UKF do not change subject to the change 
in dynamic characteristics, while in the IMM-
AUKF, one of the process noise covariance 
matrices is determined by the ATS. As for the 
initial value of multiplier ( γ ), 100=γ  is chosen 
(i.e., the pre-specified process noise covariance 
for Model 2 is set to be 100 times to that of 
Model 1) for the IMM-AUKF.  

The following model transition probability 
matrices of the Markov chain ijπ  were assumed:  

otherwise
ji

N
.ij

=

⎪⎩

⎪
⎨
⎧

=
−

−
 if

        
1
9901

99.0
π              (31) 

In this paper, 2=r , therefore 

⎥
⎦

⎤
⎢
⎣

⎡
=

99.001.0
01.099.0

ijπ  

The initial model probability for each sub-
model is chosen as 

otherwise
if

N

j 15.0

1
5.010

=
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⎪
⎨
⎧

=
−

−
j 

         μ                 (32) 
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Fig. 5. Simulated sensor outputs for the accelerometers 
and gyroscope. 
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Fig. 6. Trajectory for the simulated vehicle (solid) and the 
INS derived position (dashed). 
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Fig. 7. East and north components of INS navigation 
errors. 
 

Fig. 8 shows the trajectories of ATS 
outputs and the corresponding DOD parameter 
ξ . The resulting model probabilities for the two 
models obtained by the proposed IMM-AUKF 
is depicted in Fig. 9. It can be seen that the 
proposed method adequately capture the change 
of dynamic characteristics. Results for the 
IMM-UKF, AUKF, and IMM-AUKF 
approaches are as follows. The results for the 
corresponding four levels of dynamics are 
denoted as E-L, E-HL, E-HM, and E-HH, for 
the east component; N-L, N-HL, N-HM, and N-
HH for the north component, respectively. The 
overall performance in east and north direction, 
respectively, is denoted as E and N, respectively, 
i.e., E = E-(L∪HL∪HM∪HH), and N = N-(L
∪ HL ∪ HM ∪ HH). The mean values and 
standard deviations of positioning errors based 
on 50 Monte Carlo runs are illustrated in Figs. 

Starting point 
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10-11, and summarized in Table 1. It can be 
seen that substantial accuracy improvement is 
achieved by the proposed method.  

In addition, a dimensionless performance 
measure referred to the Instability Index (ISI) is 
used to investigate the level of 
stability/sensitivity influenced by the change of 
dynamics:  

%100
)(1

))((
×=

meter
meterstdISI χ           (33) 

where the variable ∑
=

=
50

1
,

50
1

i
HRMSEiχ , and 

HRMSEi,  represents the position root mean 
squared error (RMSE) for the i-th run in the H 
dynamic region, i.e., }HHHM,HL,{H∈ , and 

∑
=

−=−=
3

1

22 )(
3
1])[()(

i
iE χχχχ χstd

∑
=

==
3

13
1][

i
iE χχχ  

The ISI is simply a measure of accuracy 
variation among each of the three dynamic 
levels (HL, HM, and HH). A filter with a larger 
ISI value indicates that the filter is less 
stable/more sensitive to the change of dynamics. 
 

Some remarks are given as follows. 
(1) In the time intervals, 0-200, 401-600, 901-
1200, and 1276-1600s (“L” time intervals), the 
vehicle is not maneuvering and is conducting 
constant-velocity straight-line motion. For this 
case, all the AUKF, IMM-UKF, and IMM-
AUKF provide equivalently good results. The 
navigation accuracies for the three approaches 
lead to very similar results. 
(2) In the time intervals, 201-400s (HM), 601-
900s (HL), and 1200-1275s (HH), the vehicle is 
maneuvering. From Fig. 10 and Table 1 (a), it 
can be seen that the position errors for the three 
approaches has the relations:  
- In HL interval:  

AUKFUKF-IMMAUKF-IMM << ; 
- In HM and HH intervals: 

UKF-IMMAUKFAUKF-IMM <<< .  
The IMM-UKF outperforms the AUKF in low 
dynamic region, while the AUKF outperforms 
the IMM-UKF in high dynamic region. Among 
the three approaches, the proposed IMM-AUKF 
approach has the best positioning accuracy. 
(3) As shown in Fig. 11 and Table 1(b), the 

standard deviations of positioning errors for 
IMM-UKF are large in E-HM (2.3904m) and N-
HM (0.9829m), indicating that IMM-UKF 
occasionally performs well while sometimes 
gives abnormally large errors in the medium 
dynamic motion (HL). 
(4) The ISI is an indicator of the sensitivity with 
respect to the change of dynamic. From Table 2, 
the values of the ISI measure has the relation: 

UKF-IMMAUKF-IMMAUKF <<≈ . 
Since the AUKF has the smallest ISI value, it 
therefore has the best stability. On the contrary, 
IMM-UKF has the largest ISI value, thus is 
relatively sensitive to the dynamics. Overall, the 
IMM-AUKF gains the merits from both the 
IMM-UKF and AUKF, and is able to achieving 
promising navigation accuracy improvement 
and stability enhancement. 
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Fig. 8 The trajectories of ATS outputs (top) and the 
corresponding DOD parameter ξ  (bottom). 
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Fig. 9. Model probabilities for the IMM-AUKF. 
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Fig. 10. Mean values of east and north position errors by 
IMM-UKF, AUKF, and IMM-AUKF. 
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Fig. 11. Standard deviations of east and north position 
errors by IMM-UKF, AUKF, and IMM-AUKF. 
 
 
Table 1. Mean and standard deviation of position errors 
for three approaches based on 50 Monte Carlo runs (in 
meters). 

 

 
 

 
Table 2. Comparison of Instability Index (ISI) for three 
approaches. 

ISI E-(HL HM HH)∪ ∪  N-(HL HM HH)∪ ∪  Overall 

IMM-UKF 185.37% 261.71% 223.54% 

AUKF 13.19% 28.93% 21.06% 

IMM-AUKF 19.96% 25.50% 22.73% 

5 Conclusions 
This paper has presented an IMM-AUKF 
algorithm for navigation sensor fusion. The 
AKF approach is featured on filter parametric 
adaptation, and the IMM approach is featured 
on structural adaptation (model switching). To 
solve the possible degradation problem caused 
by noise uncertainty and modeling error, the 
synthesis of two types of adaptive approaches, 
AKF algorithm and IMM algorithm, are 
proposed, leading to a new fusion method. Two 
models, a non-adaptive UKF and an AUKF, 
have been used in the IMM architecture. To 
adjust the bandwidth of the IMM filter, the 
DOD parameter ξ  (defined as the normalized 
innovation squared value at present epoch) is 
used in the ATS loop for determining the upper 
bound of process noise covariance matrix to 
account for the modeling error or statistic 
uncertainties and accordingly enhance the 
estimation accuracy and tracking capability. 
Furthermore, a measure called the ISI has been 
introduced to evaluate the stability or sensitivity 
subject to the change of vehicle dynamics. The 
proposed IMM-AUKF algorithm shows robust 
performance in both navigational accuracy and 
system stability as compared to the AUKF and 
IMM-UKF approaches. 
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