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Abstract  

The Air Transportation System (ATS) can be 

viewed as a collection of multiple, 

heterogeneous and independent systems 

operating in networks under the control of 

various stakeholders. Each stakeholder has a 

different perspective on the relevant efficiency 

metrics, making analysis as well as subsequent 

system-wide design decision-making very 

difficult. This paper analyzes the potential 

performance boundaries and trade-offs between 

efficiency metrics established around the 

passenger, airline and network-centered 

perspective by varying the service route network 

topology. The paper further initiates the 

formulation of aircraft design and resource 

allocation based on system-wide network 

efficiency of the ATS.  

1  Introduction  

Transforming national (and international) 

Air Transportation Systems (ATS) to meet 

future travel demand has been the focus of 

many researchers, technologists and policy-

makers. This challenge has become further 

complicated by increased emphasis on noise and 

emissions reductions and by increased economic 

pressure due to volatile fuel prices. Improving 

individual aircraft efficiencies (e.g., CO2, NOX) 

and air traffic management (ATM) practices 

have been common approaches to satisfy 

increasing travel demand while reducing 

environmental impacts. While these efforts are 

important and appropriate, they may not be 

sufficient. Other high-level factors beyond these 

largely determine the system-wide performance 

of air transportation, such as the airline service 

route network topology, aircraft fleet mix and 

resource allocation. These factors are wide in 

scope and complex in nature making analysis as 

well as subsequent design decisions extremely 

difficult. 

The lack of a universal definition that 

describes the overall performance of the ATS 

exacerbates the problem. This is mainly due to 

the distributed control and heterogeneous 

structure of the ATS which is composed of 

multiple stakeholders (e.g., passengers, airlines, 

airports, etc.) operating under a unique set of 

objectives, timescales and domains (e.g., 

economical, operational, and political) [1]. The 

unique stakeholder objectives, in turn, generate 

unique objectives, they also have their own 

perception of what “ATS performance” means. 

For example, ATS performance for an airline 

may be based on the economical effectiveness 

of meeting passenger travel demand. However, 

from a passenger point of view, performance 

may also be based on required travel time or 

number of connections, which does not 

necessarily coincide with an ATS architecture 

designed for economical effectiveness. Further, 

ATS performance defined by levels of noise or 

emissions may conflict with metrics for either 

the passengers or the airlines. 

2 Technical Approach 

2.1 Overview  

Research reported in this paper describes 

an heuristic approach to evaluate various ATS 

network types via several stakeholder-centered 

performance and efficiency metrics. The ATS 

architecture is simplified into a network of 
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service routes interconnecting airports and the 

impact of network topology characteristics to 

performance is explored. The approach is 

extended to an initial formulation of aircraft 

design and allocation based on system-wide 

efficiency of the ATS. 

2.1 Network Theory Background 

Network theory has produced powerful 

results from multiple domains (e.g., physics, 

information, social science, biology) in recent 

years concerning how real-world networks are 

structured. Random and scale-free networks are 

the two most discussed types of network 

topologies. Scale-free networks are similar to 

the hub-and-spoke networks of the ATS where 

few nodes with high degree (i.e., number of 

links) maintain much of the connectivity 

throughout the network. Similar structure is also 

seen in protein networks, social networks and 

the World Wide Web [2]. The prime benefits of 

this structure are that all nodes are connected 

via relatively few links, and new nodes can be 

easily integrated as long as the hub nodes are 

functional.  On the other hand, the main 

drawback of a scale-free network is that as the 

hub nodes become larger, the potential damage 

that can be caused by disabling the hub node 

significantly increases. Scale-free networks can 

be constructed using the Barabási-Albert (BA) 

model [2] which operates under the precept of a 

preferential attachment. In preferential 

attachment nodes with higher importance are 

granted a higher probability to attain a new link. 

In the BA model, importance of a node is 

valued by its local degree compared to the total 

degree of the network. In another words, the 

probability of node A linking with newly arrived 

node B is 

 

               
  

   
 
   

     (1) 

where j is the total number of nodes in the 

network and k is nodal degree. For random 

networks, links between nodes are constructed 

based on a uniform probability distribution 

function which remains constant for all node 

pairs that may form a link. While random 

networks require more links for equal 

connectivity compared to a scale-free, 

propagation of disruption throughout the 

network is much lower since nodal importance 

is more equally distributed than scale-free [2]. 

Some researchers have applied the analysis 

techniques developed in the network theory 

community to explore the structure of the ATS. 

Guimera, et al. analyzed the worldwide air 

transportation network topology and computed 

measures which characterized the relative 

importance of cities and airports [3]. Further, 

Bonnefoy and Hansman used the weighted 

degree distribution for light jet operations to 

understand the capability of airports to attract 

the use of very light jets [4]. In general, network 

theory has been very successful in aggregating 

the complexity of the ATS to better understand 

its fundamental characteristics. However, 

applying network theory not only as an analysis 

tool but also for designing the future ATS has 

been a continuing topic for our work [5, 6].  

2.2 Network Topology Generator (NTG)  

The unit of analysis in this study is the 

service route network, consisting of airports 

interconnected by airline routes. Links in the 

service route network are weighted by the 

number of passengers using the link to travel 

from their origin to destination airports (nodes). 

The particular network examined here assumes 

a single, monopolistic airline with an annual 

operation time scale.  

Different network topologies are generated 

by the network topology generator (NTG) and 

the correlation between topology characteristics 

and performance metrics defined in the later 

section is analyzed. More specifically, the NTG 

constructs a network with varying ratio of scale-

free and random characteristics, based on the 

user input. Fig. 1 shows the flow chart of this 

process. The NTG algorithm first generates two 

networks, random and scale-free with equal 

total degree for the same node set. The NTG 

then arbitrarily selects links from the scale-free 

and random network and places it in the final 

network; the number of links chosen from either 

the scale-free or random network depends on 

the user input mix ratio mentioned earlier. For 

http://arxiv.org/find/cond-mat/1/au:+Guimera_R/0/1/0/all/0/1
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example, if the mixture ratio was 80% scale 

free, the NTG will chose 80% of the final links 

from the scale-free network generated in the 

initial step, while extracting the remainder 20% 

from the random network. Networks blending 

scale-free and random topology features will be 

examined for the impact on the various 

stakeholder centered efficiencies. 

 

 

Fig. 1. Network Topology Generator logic 

flowchart.  

 

The network is instantiated with historical 

data on passenger demand and airport 

operations extracted from the 2005 DB1B 

Survey and T-100 Domestic Segment data 

respectively, both available from the Bureau of 

Transportation Statistics [7]. The number of 

nodes in the network is kept constant at 304, 

representing active airports only in the 

continental US. Once the network is constructed 

by the NTG, passengers are allocated to service 

route(s) with the shortest travel distance, 

according to their origin and destination 

location extracted from DB1B. 

2.3  Performance Metrics 

Stakeholders seek to optimize their operation 

with regard to their own objective metrics to 

extract maximum benefit from the system [8].  

For instance, airlines use the hub-and-spoke 

system to reduce costs by aggregating 

passengers from various origins and 

transporting them to a wide number of 

destinations. Such efficiently gained by the 

airlines come at the price of increased passenger 

travel time and network service fragility in case 

of a disruption. In the present study, metrics to 

representing the airline, passengers and 

regulatory agent stakeholders were created, as 

defined in the following subsection.  

2.3.1 Passenger Centered Efficiency 

Passenger travel distance efficiency (τ) 

describes the impact of airline service route 

network topology on travel distance for 

passengers.  

 

tot

ij

d

d
=τ    (2) 

 

dij is  the distance between the passenger's origin 

and destination where dtot is the total distance 

traveled by the passenger, which includes 

connections, if any. In this formulation, τ≤1. 

The number of connections required to 

complete the passenger itinerary was also 

computed.  A new metric which combines τ and 

the number of required connections to formulate 

total passenger travel time is currently under 

development but it is not part of the work in this 

paper. 

2.3.Network Centered Efficiency 

A wide variety of aspects contribute to 

network efficiency; one of the especially 

critically one is robustness. However, one 

cannot speak generally about robustness; 

instead, a class of possible disturbances must be 

specified in order to measure or estimate a 

particular robustness level of the system. Two 

general types of network disturbances are 

targeted and random. These disturbances disable 

the function of a node (airport) and either 

temporarily or permanently removes it from the 

entire network, along with any associated links. 

Random attacks are arbitrary failures that occur 

equally likely to any node within the network; 

they may represent incidents such as weather, 

accidents, and aircraft malfunctions. Targeted 
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attacks, on the other hand, are failure of specific 

nodes which are usually due to an intentional 

cause. In the real world, targeted attacks may 

occur as terrorism, strike, or war-related issues. 

Robustness of each network topology 

configuration is examined by measuring the 

degradation in τ and percent of passengers 

unable to travel after certain nodes are removed, 

mimicking targeted and random attacks.  For 

targeted attacks, nodes with the highest degree 

are removed while for the random attack, nodes 

are removed according to a uniform random 

distribution. 

2.3.3 Airline Centered Efficiency 

The amount of fuel required to transport 

the passengers was used as the airline centered 

efficiency; fuel used well represents direct 

operating cost. Three aircraft types 

differentiated by seat class (CRJ200, B737-300 

and B757-200) were sized in the Flight 

Optimization Software (FLOPS) provided by 

NASA [9]. Fuel burn lookup tables were created 

using the number of passengers and range of the 

mission. An example look-up table for the 

CRJ200 is shown in Table 1 below. For each 

route, a single aircraft with the best fuel 

efficiency was assigned. All aircraft models 

assume a constant load factor of 0.7 and 

passengers are evenly distributed among all 

flights.  

Table 1: Fuel Burn (lbs) look-up table for CRJ200 

 
 

However, since the current approach does 

not include any flight scheduling and or 

frequency modulation, larger aircraft are 

preferred on almost all routes due to higher fuel 

efficiency per passenger. In reality, larger 

aircraft on hub-to-spoke routes will be less 

efficient since in general, the number of 

passengers aboard is less per flight compared to 

a hub-hub flight. Further, in order to produce 

realistic results, the total number of operations 

should reflect historical and known benefits of 

smaller aircraft in terms of scheduling and 

turnaround time [10]. To do so, a penalty 

function was introduced in the fuel burn 

efficiency if the aircraft fails to maintain a 

minimum number of flights using a constant 

load factor of 0.7 and even distribution of 

passengers across all flights. The minimum 

number of operations required in a route is 

determined by its passenger volume. Fig. 2 

shows a box plot for number of operations that 

were carried out in a route with respect to the 

total number of passengers that traveled through 

that route in 2005. Based on this data, a penalty 

is added to aircraft which will have fewer 

operations than -1 sigma for routes with 

corresponding number of passengers in Fig. 2, 

such that 

 

 

,

,

,

i j

i j

i j

ops by aircraft
=

ops required
   (3) 

 

 

Fig. 2. Box plot of annual operations and passenger 

volume in air service routes for 2005.  

where i, j refers to a particular route. For 

example, if a certain route has a 50,000 annual 

passenger volume and the B757 requires 294 

operations (under 0.7 load factor) but the -1 

sigma for a route with that range of passenger 

volume is 1000, there will be a 29.4% reduction 

in the final fuel efficiency for the B757 for this 

particular route as a penalty for generating 

reasonable frequency. 

3 Results 

Twenty-four networks are generated by the 

NTG: topologies with six scale-free / random 
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mix ratios and four different network densities. 

Network density is the ratio between the total 

number of links and the number of possible 

links that can exist. Using 6% density (2612 

links) which was observed in the 2005 ATS 

network as a baseline, networks with 12%, 3% 

and 1% density were also considered. For some 

of the lower density networks, not all passenger 

trips were completed due to route unavailability. 

However, in all cases at least 99% of the 

passengers in the DB1B database were able to 

complete their trip with the network topologies 

constructed for this study. Further, since the 

NTG is a stochastic simulation, each network 

topology type was generated and analyzed ten 

times. Results presented in the next several 

sections are the average over those ten runs. 

3.1 Individual Stakeholder Efficiency 

3.1.1 Passenger Results 

Fig. 3 displays the τ for each topology type. 

Each column shows the different network mix 

ratios. For example, “BA80” means 80% of the 

links came from the BA (i.e. scale-free) logic 

while the remaining 20% is from the random 

network logic. As expected, τ increases for 

topologies with higher density and more scale-

free characteristics. However, the difference in τ 

was considerable between the higher and lower 

density networks. For example, τ in a network 

with 1% density was 37% less compared to a 

12% density network under the BA100 mix 

ratio. In a network with 304 nodes, this 10% 

difference in density is equivalent to 

approximately 5000 links. Since most demand is 

still satisfied, the service route network with 1% 

density was able to transport the same amount 

of demand with about 5000 fewer links, in 

exchange for lower travel distance efficiency. 

However, higher network density significantly 

decreases the minimum number of connections 

required on the shortest distance route [11], 

which brings more convenience to passengers. 

Additional analysis between degree, number of 

connections and travel distance efficiency may 

be a useful study for future ATS transformation 

efforts if links are considered as resources in 

constructing a network. Increasing the network 

density at first may seem like an effective way 

to increase τ. However as Figure 4 shows, the 

effectiveness for increasing τ by adding more 

links decreases exponentially.  

 

 

Fig. 3. Passenger travel distance efficiency for 

different network topology types and degree.  

 

 Fig. 4. Passenger travel efficiency with respect to 

network degree.  

 

3.1.2 Network-centered Efficiency Results 

For both random and targeted disturbances 

on each of the 24 network configurations, five, 

ten and fifteen nodes were removed to observe 

the degradation in the overall network 

performance. Tables 2 and 3 display the amount 

of performance degradation of the networks 

after the disruptions in terms of τ and percent of 

passengers unable to travel (due to their origin / 

destination airport being disabled or completely 

isolated), respectively. The τ in Table 2 applies 

only to passengers that are able to complete 

their trip after the disturbance and does not 

include stranded passengers depicted in Table 3. 

While both scale-free and random networks are 

fairly resistant towards random disruption, it can 

be observed that networks with the slightest 

scale-free characteristics are extremely fragile 
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towards targeted attacks until a certain network 

density is attained.  This phenomenon is due to 

the hub airports being located in highly 

populated regions. Areas with higher population 

are more likely to generate air travelers and 

utilize its hub airport. Any scale-free 

characteristic in the network topology develops 

the metropolitan airports as “hubs”, which 

impacts a great number of passengers when 

taken down by a targeted disruption.  

 

Table 2: Percent reduction in passenger travel 

efficiency after disruption  

 

 

Table 3: Percent of passengers that cannot be 

served after disruption  

 

On the other hand, while a large number of 

passengers were unable to travel after targeted 

attacks on networks that exhibit the slightest 

scale-free characteristics, a fully random 

topology is able to maintain routes to travel 

approximately 90% of the passengers for any 

network density setting. 

3.1.2 Airline Results 

Fig. 5 displays the amount of fuel required 

to transport passengers based on the logic for 

aircraft allocation to routes described in section 

2.3.3. As expected, networks with lower density 

require significantly more fuel due to the lower 

τ resulting from the higher number of 

connections needed to complete a passenger’s 

trip. However, it was quite interesting to 

observe that as the network density increases, 

the significance of the network topology type 

decreases in determining the amount of fuel 

required. For example, there is nearly a 50% 

increase in fuel requirements from BA100 to 

BA0 for networks with degree of 653, but only 

a 14% increase for networks with 5224 links. 

Similar phenomena can be seen in τ from Fig. 2. 

It is hypothesized that the network is reaching a 

saturation point where it is becoming more of a 

small world network [2] as total degree 

approaches somewhere between 2612 to 5224 

links, in conjunction with the travel demand 

pattern seen from the DB1B database. 

 

 

 

Fig. 5. Fuel required to transport 2005 demand for 

different network topology type and degree.  

 

Fig. 6 and 7 show a more detailed 

breakdown of operations by aircraft seat-class 

for the 1% and 6% density network, 

respectively. The CRJ200 becomes a more 
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preferred seat-class (vs. the B757-200) as the 

network density increases. The same 

phenomenon is also observed when the 

distribution of aircraft seat class assignment in 

terms of routes is investigated, as depicted in 

Fig. 8 and 9. In general, larger aircraft are 

preferable as the network density decreases due 

to the higher passenger volume on the routes. 

Compared to network density, network type has 

a smaller impact on the preferred aircraft type; 

however, networks with higher BA value seem 

better suited to smaller aircraft, due to higher 

frequency in hub-spoke type routes with 

relatively low passenger volume. This structure 

is also seen in the current US ATS network.   

 
Fig. 6. Aircraft use frequency for networks with 1% 

network density.  

 

 
Fig. 7. Aircraft use frequency for networks with 6% 

network density. 
 

 
Fig. 8. Distribution of aircraft on routes for networks 

with 1% network density. 
 

 
Fig. 9. Distribution of aircraft on routes for networks 

with 6% network density. 

3.2 Comprehensive Analysis of Results 

The prior section’s results have 

demonstrated that the ATS service network 

“efficiency” depends on the stakeholder metric. 

From the perspective of τ and amount of fuel 

required, a network that shows strong scale-free 

characteristics seems more suitable, as it has 

been known from practice. However, a random 

network configuration seems to be more ideal 

from a robustness standpoint, as it is more 

resistant to both targeted and random attacks 

compared to a topology with any scale-free 

characteristics. Further, if a certain threshold 

network density can be attained, the scale-free 

advantages on τ and fuel requirements are so 

negligible that a random topology becomes 

more preferred from its resilient features against 

targeted and random disruptions. To understand 

the trade-offs better, we can examine the various 
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metrics all together. Fig. 10 and 11 shows an 

example of this approach by utilizing the data 

generated in the previous section to visualize the 

trade regions.  

Fig. 10 shows the relationship between 

network topology type, network density, τ and 

resistance features against targeted disruptions. 

Increasing the scale-free characteristics (the BA 

value for the NTG) significantly increases τ 

even for a low density network, but also 

increases the potential damage from a targeted 

disruption. Within the options available in the 

scope of analysis presented here, the only 

method to simultaneously attain high τ and 

resistance against targeted disruptions is to 

increase the total network degree. Otherwise, 

the appropriate trade-offs to maximize the 

utility of the overall network by the decision-

makers. This process usually requires sacrifice 

in some performance dimensions, and 

appropriately defining the design objectives 

become extremely important especially under 

any strict constraints or restrictions.  

Similar analysis regarding correlation 

between total fuel burn, τ, network topology and 

density (degree) is shown in Fig. 11. Under the 

aircraft assignment logic, an almost linear 

relationship with a short tail between τ and fuel 

burn is observed. Higher τ is essential in 

lowering the total fuel burn required to transport 

the passengers, and to do so, the network degree 

or the network’s scale-free characteristics need 

to be increased. Similar to results displayed on 

Fig. 3 and 4, the effectiveness to increase τ (thus 

lower fuel burn) by changing the network 

topology exponentially decreases as the density 

is increased. Further, the ATS network seems to 

approach diminishing returns at 12% density 

where further fuel savings cannot be expected 

by changing network type or density. 

In summary, comprehensive analysis such 

as the ones shown in Fig. 10 and 11 allows the 

designers and decision-makers of the ATS to 

recognize the minimum level of network density 

or network topology type required to attain a 

certain objective, such as τ, fuel burn or 

resistance against failures. At the same time, 

this line of analysis can point out some of the 

performance boundaries rooting from 

limitations due to current technology or 

available resources. For example, with potential 

performance boundaries seen in fuel 

consumption reduction by changing network 

topology type and degree, more focus may need 

to be put on smarter aircraft route assignment 

strategies or tailor the aircraft design to make it 

more suitable for a specific network type. 

 

Fig. 10. Trade-off between passenger travel 

efficiency and network resistance against targeted 

failures (15 node removal). 
 

Fig. 11. Trade-off between fuel consumption and 

passenger travel efficiency for different network 

types. 

4 Initial Methods for Aircraft and Fleet 

Design based on Service Network Topology 

Usually when designing a new aircraft, a 

specific market area which the aircraft is going 

to be deployed is first researched and defined. 

This market description is later formulated into 
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a set of specific requirements that the aircraft 

design revolves around. However, in order to 

effectively improve overall performance of the 

ATS, aircraft design requirements should also 

stem from a system-wide perspective. In this 

section we propose a top-down approach on 

aircraft and fleet composition design based on 

the service network topology type. More 

specifically, the type of aircraft and fleet mix 

that will maximize the overall efficiency from 

an environmental standpoint for the different 

network topologies described in Section 3 is 

pursued.  

Aircraft efficiency is typically evaluated for 

each mission or flight independently but for the 

purpose of the network centered aircraft design, 

a simple yet effective metric to describe the 

cumulative efficiency to compare various 

aircraft, fleet mix and network topology 

combination was necessary. Payload Range 

Efficiency (PRE) [12] shown in (3) was 

extended to develop the network-wide PRE 

(PREnet) in (4). Given the aircraft specs, PRE 

describes aircraft efficiency for a particular 

service route by taking the ratio between Wpay, 

R, and Wfuel which is the payload weight, flight 

distance and weight of fuel required to fly the 

payload with Wpay lbs for R miles, respectively. 

Higher PRE indicate higher efficiency.  On the 

other hand, PREnet first normalizes the PRE for 

each route between node i and j with number of 

passengers using that route compared to the 

total number of passengers traveling in the 

entire network. This process will avoid highly 

efficient routes that are hardly utilized to have 

lower impact in the final PREnet value. After the 

normalized PRE for every service route is 

calculated, PREnet is calculated by simply 

summating the PRE for each route. 
 

              
*pay

fuel

W R

W
PRE                     (3) 
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1
,

1

*payload i j i j
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k k i j

net i j i
nej t
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P

W R

W  

 
  

 
 

 
 

(4)  

All aircrafts modeled in this study uses the 

Boeing 737-300 as a baseline with tailored 

payload and range capabilities using Raymer’s 

sizing method for preliminary aircraft design 

and the Breguet range equation [13]. To 

determine the fleet composition, a heuristic 

search is employed to find the most efficient 

combination of aircraft with range up to 3600 

miles and 400 seats, at 100 miles and 5 seat 

intervals. A constant weight of 200lbs per 

passenger is assumed for the payload and load 

factor is fixed at 0.7 for all ops. The penalty 

function for not producing enough operations 

discussed in Section 2.3.3 is also employed 

here. In addition, the resulting fleet is required 

to serve all passengers that are able to travel 

from their origin to destination. 
Fig. 12 and 13 displays the aircraft fleet composed of 

two and three aircraft which maximize PREnet for the 

various network constructed by the NTG. Each entry in 

Fig. 12 and 13 represents an aircraft preferred for the six 

network topology types (BA value) categorized by 

different marker types according to the network 

density shown in the legend. Surprisingly, 

network density and topology type had little 

impact on the preferred range for the aircraft in 

the fleet. Higher BA value topologies have a 

tendency to prefer a smaller seat size, but the 

network density had a significantly larger effect. 

Networks with higher density seem to prefer 

aircraft with smaller seat size most likely due to 

passenger volume being more spread out among 

the routes compared to the lower density 

networks. Table 4 shows the PREnet for both the 

two and three aircraft fleet in the different 

networks.  PREnet can be slightly increased by 

~5% if a third aircraft type is introduced to the 

fleet. When increasing the number of aircraft 

type, the aircraft with the longest range remains 

relatively unchanged since it needs to serve 

passengers with the longer range trips.  

 

Fig. 12. Fleet with 2 aircraft that maximize PREnet 

for various network topologies 
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Fig. 13. Fleet with 3 aircraft that maximize PREnet 

for various network topologies 

 

Table 4: Percent of passengers that cannot be served 

after disruption  

 

7 Conclusions  

Research reported in this paper provided an 

initial investigation on how the preferable 

architecture configurations for large scale 

systems like the ATS may differ depending on 

stakeholder viewpoints. A rudimentary trade-off 

among different service network configuration 

was examined for efficiency in processing travel 

demand, fuel consumption, resistance to various 

failure modes and preferred aircraft types. 

Current results presented throughout the paper 

show that the favorable network configurations 

may lie on opposite extremes depending on the 

different objectives examined. We do recognize 

that the control of the actual service route 

network structure is distributed among the 

various airlines; there is no central route-

allocating architect. However, the results 

reported here provide quantitative bounds on the 

efficiency and robustness of different network 

configurations that could serve as targets for 

system transformation. Given these targets, 

policymaking bodies, as well as airline 

enterprises, can use the influence factors they do 

control to drive overall system behavior towards 

these preferred network configurations. Before 

further work in ATS transformation is 

commenced, objectives need to be prioritized in 

order to clarify the ideal configuration of the 

future ATS.  
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