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Abstract  

Due to growing demand for air 

transportation, airport noise can be reasonably 

expected to increase. This, coupled with an 

increasing awareness of airport noise issues, 

suggests that the number and restrictiveness of 

noise regulations will increase. Noise 

regulations affect airlines, and compel them to 

alter their operations to minimize the impact of 

the regulations on their operating cost. The 

main operational changes for airlines are the 

network of airports they service (network 

topology), and the fleet utilization to service this 

network. 

This paper presents a framework to study 

the impacts of noise regulations on the network 

topology and direct operating costs for airlines. 

The study uses this framework to examine four 

types of noise regulations, and compares the 

effectiveness, advantages, and disadvantages of 

these regulations on airlines from 2008 to 2015. 

1 Introduction 

“There is sufficient scientific evidence that 

noise exposure can induce hearing impairment, 

hypertension, ischemic heart disease, 

annoyance, sleep disturbance, and decreased 

school performance [1].” The growing 

awareness of the detrimental aspects of aviation 

noise has led to the formation of active noise 

control groups that include community, airline, 

and airport representatives. These groups have 

imposed airport noise regulations to minimize 

the adverse impact of noise exposure. 

Operational restrictions, operational procedures, 

noise taxes, and noise exposure limits are some 

common examples of noise regulations. 

Because the noise regulations force airlines 

to adapt their network and fleet utilization, the 

airlines deviate from their optimal minimum 

direct operating cost (DOC). The DOC for an 

airline includes costs that are directly 

attributable to the airline‟s operations such as 

fuel costs, maintenance costs, crew costs, etc. 

Considering the same revenue, a lower DOC 

implies a higher profit. 

Rather than studying the impact of noise 

regulations only at the regulated airport, this 

paper explores the effect of noise regulations at 

the national airspace level. Thus, this study 

attempts to understand the operational changes 

due to noise regulations, and the costs of these 

changes to airlines. 

2 Methodology 

This study aims to combine the regulatory 

and operational aspects of aviation to illustrate 

the impact of noise regulations on airline 

operations. The study uses a calibrated network 

forecasting algorithm, a resource allocation 

problem, and an airport noise model to 

investigate the impact of noise regulations. Fig. 

1 illustrates the concept of the simulation 

model.  

 

 
Fig. 1: Simulation concept overview 
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The simulation begins by forecasting the 

next year‟s network structure by using the 

existing network structure and the projected 

demand. This is followed by optimally 

allocating the fleet to meet the demand over the 

network, while satisfying the specified noise 

constraints. The noise at each airport is 

computed using the results of the resource 

allocation. The cycle starts over when the new 

network is determined using the existing 

network, projected demand, and current noise 

levels. 

Section 3 presents the network forecasting 

algorithm, while Sections 4 and 5 detail the 

resource allocation process and the noise model, 

respectively. 

3 Network Forecasting Algorithm 

A network forecasting algorithm predicts 

the addition and removal of links in the 

network. To study the operational changes due 

to noise regulations on an airline‟s network, it is 

critical to be able to predict the change in an 

airline‟s network. Integrating this capability into 

the simulation helps understand the nature and 

extent of an airline‟s response to a regulation. 

To limit the scale of the problem this study 

uses the FAA‟s OEP-35 airports to represent the 

air transportation network. The OEP airports are 

commercial airports that serve major 

metropolitan areas and serve as hubs for major 

carriers. More than 70 percent of passengers 

move through these airports.
*
 These airports are 

chosen, because they cover a wide geographic 

area, they support a significant percentage of the 

passenger demand, but a small enough subset to 

be computationally inexpensive. 

3.1 Existing Model 

DeLaurentis, et al. [2] presented and 

compared several network forecasting models. 

Amongst the models presented, the fitness-

function forecasting algorithm was selected for 

this study because the model is node-based, 

which is appropriate for airport-related studies, 

                                                 
*
 http://www.faa.gov/about/office_org/headquarters_ 

offices/ato/publications/oep/faq/Airports/index.cfm 

and externalities (e.g. airport noise) can be 

easily incorporated into the model. In this 

model, the existence of a link in the next 

iteration depends on the fitness value of the link. 

This network forecasting algorithm 

computes a fitness value for each node (i) in the 

network based on node degree (k), eigenvector 

centrality (x), clustering coefficient (CC), 

population (p), and nodal weight (w). Eq. (1) 

presents the fitness function formulation 

presented by DeLaurentis, et al. [2]. The fitness 

value of each link in the system is a product of 

the fitness values of the nodes, which define the 

link. This approach follows the fundamentals of 

a scale-free network, [3] because nodes with 

higher fitness values have a higher probability 

of constructing a new link. 

 

 

 

    (1) 

 

 

 

Another advantage of this algorithm is that 

it only uses the previous year‟s network to 

predict the subsequent year‟s network topology. 

Thus, less data is required to initiate the model. 

DeLaurentis, et al. [2] used this algorithm 

to predict the addition of new links in the 

network with an average accuracy of 16.64% for 

the years 1990 to 2005. Here, accuracy was 

defined as the ratio of the number of correctly 

predicted routes to the number of actual new 

routes.  

3.2 Modified Network Forecast Model  

Although airlines both add and remove 

links every year, DeLaurentis, et al. [2] did not 

predict the removal of links from the network. 

Moreover, the parameters used in the fitness 

function were equally weighted. There is a 

possibility that a weighted fitness function 

might provide better results. This paper explores 

these two possible improvements. 

The original model used a probability 

threshold to determine if a particular route will 

be added to the network. This study specified 

the number of links to be added (deleted), and 
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selected the links with the highest (lowest) 

fitness values for addition (deletion). 

To reinforce the scale-free network 

structure, airport demand growth was 

incorporated as a parameter into the nodal 

fitness function. Moreover, in addition to the 

fitness function of the two nodes, the strength of 

an existing link (i.e. demand between the two 

nodes) was used to evaluate node-pairs for 

addition and deletion of new links.  

To summarize, the improvements to the 

model were using a weighted fitness function, 

including airport demand growth in the fitness 

function, and using the strength of a link to 

determine the link‟s fitness. This study tested 

these improvements using historical data from 

1990 to 2007. 

3.2.1 Historical Data 

To compute the parameters in the fitness 

function, the model required network 

information, and data on demand and population 

from 1990 to 2007. The Bureau of 

Transportation Statistics (BTS) maintains a 

comprehensive database of airline-reported 

domestic passenger demand information 

beginning from 1990
†
. This database was used 

to obtain network and passenger demand 

information. 

For each OEP-35 airport, the county-level 

decennial census reports were used to compute 

the population for the corresponding 

metropolitan areas in 1990 and 2000
‡
. The 

Census Bureau also provides yearly population 

estimates based on the decennial United States 

census, which was used to compute the 

metropolitan population in 2007. The 

populations in the intervening years were 

interpolated based on the populations in 1990, 

2000, and 2007. Care was taken to use the same 

area for population estimates despite changes in 

the reporting format and classification of areas. 

3.2.2 Demand distribution 

An important aspect of a network 

forecasting model is to distribute the demand on 

                                                 
†
 http://www.transtats.bts.gov/Fields.asp?Table_ID=311 

‡
 http://www.census.gov/ 

a network structure. While the FRATAR 

algorithm is the most widely used method of 

generating trip distributions [4], this algorithm 

has significant limitations which make it 

unusable in our analysis. Our study explores 

new network structures, and the FRATAR 

algorithm does not have a basis to determine the 

demand on new routes because it determines the 

optimal forecast trip distribution based on the 

current trip distribution.  

Fig. 2 presents a flow chart of a new 

algorithm developed to allocate demand over an 

evolving network.  

 

 

Fig. 2: New demand distribution algorithm 

 

In this algorithm, the new demand for 

existing links is equal to the product of the old 

demand values and the demand growth rate. The 

unallocated demand is defined as the difference 
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between the total new demand and the new 

demand allocated to the existing links. This 

unallocated demand is distributed amongst the 

new links in proportion to their fitness values. 

This algorithm works with both increasing and 

decreasing demand scenarios. 

3.3 Calibration 

The network forecasting algorithm is 

calibrated by determining the weighting of the 

fitness function that produces the maximum 

prediction accuracy of the algorithm as defined 

in Section 3.1. This paper uses an optimization 

approach to identify the optimal weighting for 

the parameters in the fitness function. Fig. 3 

presents the decomposition scheme for the 

optimization problem. 

 

 
Fig. 3: Decomposition scheme for 

optimization 

Because an unconstrained nonlinear 

optimization technique (simplex search method) 

was unable to handle the numerous local 

minima present in the solution space, this study 

used the genetic algorithm presented by 

Crossley, et al. [5] to find the optimal 

weighting. Initial experiments showed that route 

addition and route deletion emphasized different 

components of the fitness function. Therefore, 

developing separate weighting functions 

achieved the best prediction accuracy. 

Table 1 presents the optimal weighting for 

the route addition and deletion processes. These 

values show that the clustering coefficient, 

eigenvector centrality, and demand growth were 

more important to predict the routes that should 

be added, while node weight, population, and 

link weight were more important for forecasting 

route deletion. 

Table 1: Parameter weights for fitness 

function 

Parameter Addition Deletion 

Node Degree 0.7937 0.9524 

Node Weight 3.8095 4.9206 

Clustering Coefficient 3.5714 1.3492 

Eigenvector Centrality 3.0159 1.9048 

Population 0.0794 0.3968 

Demand Growth 1.2698 0.0794 

Link Weight 2.5397 3.3333 

 

Fig. 4 presents the yearly accuracy of the 

weighted and un-weighted fitness functions in 

forecasting changes in the network. Addition 

accuracy is defined as the percentage of actual 

additions predicted by the algorithm. Deletion 

accuracy is defined similarly. The plot shows 

that the fitness functions were better at 

forecasting addition of routes than deletion of 

routes. The average prediction accuracy 

improved from 62.93% to 80.10% for route 

addition, and from 23.8% to 55.69% for route 

deletion. This study used the weighted fitness 

function model obtained from the calibration 

process, because it forecasts the network 

changes better than the un-weighted function. 

 

 
Fig. 4: Prediction accuracy 

 

The considerable difference in prediction 

accuracy of the un-weighted model presented 

here compared to DeLaurentis‟ model [2] is 

attributed to the difference in the size of the 

network. The gains from weighting the 

parameters are significant, but cannot be 
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directly compared to the values presented by 

DeLaurentis, et al. [2]. 

3.4 Noise externalities  

DeLaurentis, et al. [2] briefly discussed 

the possibility of introducing externalities into 

the forecasting algorithm. In the simulation 

model, the effect of noise on the network 

structure was investigated by treating airport 

noise levels as externalities in the fleet 

forecasting algorithm. 

In this study, the proportion of an airport‟s 

contribution to the network‟s noise area was 

subtracted from the airport‟s fitness value. The 

noise externality is un-weighted, which 

penalizes airports with higher noise levels. The 

noise model is described in Section 5. 

4 Resource Allocation  

As stated earlier, airlines will adapt to 

noise regulations by changing the way they 

utilize aircraft to satisfy demand and lower 

operating costs. A resource allocation model 

provides a way to determine the nature and 

extent of an airline‟s response to the noise 

regulations. Thus, resource allocation provides a 

way to approximate the behavior of airlines 

under these new constraints.  

This paper used a scaled-down adaptation 

of the resource allocation approach presented by 

Zhao, et al. [6]. To simplify the resource 

allocation problem, this approach does not make 

distinctions for individual airlines, so it assumes 

that a benevolent monopolistic airline serves the 

network to satisfy all the passenger demand.  

This study also used the fleet abstraction 

presented by Zhao, et al. [6], where the entire 

fleet is divided into six seat-based classes. A 

combination of the most flown aircraft in 2005 

in each class (representative-in-class aircraft), 

and the aircraft with the newest Entry-in-

Service (EIS) date as of 2005 (best-in-class 

aircraft) represent all aircraft operations in a 

particular class. The two categories provide a 

distinction between the standard and the latest 

technology in each class. Table 2 presents the 

class definitions and the selected aircraft types 

in each category. 

Table 2: Representative and best in class 

aircraft 

Class Seats 
Rep.-in-

class 

Best-in-

class 

1 20-50 CRJ 200 ERJ 145 

2 51-99 CRJ 700 ERJ 170 

3 100-149 B737-300 B737-700 

4 150-199 B757-200 B737-800 

5 200-299 B767-300 A330-200 

6 300+ B777-200 B 777-200 

 

Eq. (2) presents the formulation for the 

resource allocation problem. 
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where, 

i, j = airport indices, a = aircraft type,  

C = aircraft effective capacity, D = demand, 

TA = turnaround-time, BT = block-time,  

MT = maintenance-time,  

X = number of round-trips,  

n = number of available aircraft 

 

While Zhao, et al. [6] used revenue 

maximization as their objective,  this study 
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minimized the DOC of the airline. The objective 

function of the resource allocation problem 

reflects the airline‟s priorities. Because a lower 

DOC will result in increasing profit for the same 

revenue, this objective was considered a 

reasonable surrogate for airline behavior. 

Constraint 1 checks that the demand 

between city-pairs is satisfied. Constraints 2 and 

3 ensure that an aircraft allocated to a particular 

route can service that route by tracking the 

range of the aircraft, and the runway length of 

the airports. Constraint 4 prevents the over-

utilization of aircraft. Constraint 5 is the 

placeholder for any noise constraints. 

5 Noise Model  

The noise model is an integral part of the 

simulation process. The noise model uses the 

operational information to compute the noise at 

each airport in the network. The FAA‟s 

Integrated Noise Model (INM) is the standard 

airport noise model. INM is unsuitable for fleet-

level studies because of its long setup and 

computation times [7].  

This study uses the noise model developed 

by Dikshit and Crossley [7]. This noise model 

uses a weighted-linear equation that estimates 

the area within the 65 dB Day-Night Level 

(DNL) contour around an airport as a linear 

function of the number of aircraft operations at 

that airport. Eq. (3) presents this noise model. 

 

 

 

      

..(3) 

 

 

 

 

where, 

X = number of operations, a = aircraft type,  

i = airport index, δ = day ratio, 

TO = takeoff, ARR = arrival,  

N
TO

 = 10
(EPNL/10)-7

, N
ARR

 = 10
((EPNL-10)/10)-7

, 

P = daytime aircraft coefficient,  

Q = nighttime aircraft coefficient 

 

The noise model, specifically developed 

for fleet-level studies, uses the noise energy 

equivalent of the FAA-published noise levels at 

the takeoff, sideline, and approach certification 

points. The noise model accounts for the 

difference between departure and arrival 

operations, the effect of takeoff gross weight 

(TOGW) on the takeoff noise, and correlates 

well (normalized RMSE = 4.79%) with the 

predictions of FAA‟s Integrated Noise Model 

(INM). The model‟s linearity with respect to the 

number of aircraft operations allows its use as 

an objective or constraint in a resource 

allocation problem. 

6 Data  

The simulation model requires information 

on future population changes and passenger 

demand as inputs to the network forecasting 

algorithm. The study needs examples of 

currently-implemented noise regulations to 

simulate such regulations in the model. The 

following paragraphs describe the source of this 

data. 

6.1 Future Population Estimates  

The U.S. Census Bureau projected state-

level population estimates from 2004 to 2030
§
. 

The population growth around each airport was 

approximated to be the same as the population 

growth in the state(s) that contained the 

metropolitan areas corresponding to each 

airport. This computation used the percentage 

change values for the period 2000-2010 to 

estimate the populations from 2008-2010, and 

the change values from 2010-2020 to estimate 

the populations from 2011-2015. 

6.2 Future Passenger Demand  

The 2007 and 2008 passenger demand was 

extracted from the BTS data mentioned in 

section 3.2.1. The Terminal Area Forecast 

(TAF) is the official forecast of aviation activity 

used to meet the budget and planning needs of 

                                                 
§
 http://www.census.gov/population/www/projections/ 

projectionsagesex.html 
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the FAA
**

. The 2009 TAF data was used to 

obtain the passenger demand at the OEP-35 

airports for the years 2009 to 2015. 

7 Noise Regulations   

Noise regulations are mandated by the 

airport authority to reduce the negative impacts 

of airport noise on the surrounding community. 

Over the years, several different forms of noise 

regulations have been implemented. The Boeing 

Corporation maintains an up-to-date list of 

airport noise regulations
††

. This study explored 

the impact of implementing noise regulations at 

three airports – ATL, JFK, and PHL. These 

airports were selected because they were well 

connected to the other OEP-35 airports, and any 

operational changes at these airports would 

likely cascade throughout the network. Another 

reason was that between these three airports, 

they spanned a wide range of passenger demand 

levels. 

This study considered four types of noise 

regulations – 1) airport noise restrictions, 2) 

noise taxes, 3) aircraft operations quotas, and 4) 

aircraft noise restrictions. For each type of 

regulation, six levels of severity were simulated. 

The following paragraphs discuss each of these 

regulations, and their implementation in the 

simulation.  

7. 1 Airport Noise Restrictions 

Airport noise restrictions specify the 

maximum noise levels at airports. This noise 

level may be specified using any metric (e.g. 

area exposed to noise, number of night-time 

awakenings, etc.). This study used the „Area 

within the 65 dB DNL contour‟ as its metric, 

because the noise model measures airport noise 

using this metric. 

Because the base year of this forecast 

model was 2007, the airport noise regulation 

was tied to the 2007 noise levels at the selected 

airports (i.e. the airport noise for any year could 

not be more than a specified percentage of the 

2007 airport noise level). The six levels of 

                                                 
**

 http://aspm.faa.gov/main/taf.asp 
††

 http://www.boeing.com/commercial/noise/list.html 

severity tested for airport noise restrictions were 

95%, 100%, 105%, 110%, 115%, and 120% of 

the 2007 noise levels. 

7. 2 Noise Taxes 

Noise taxes are a relatively new form of 

noise regulation. Noise taxes levy a fee (fixed or 

variable) based on the noise exposure of 

individual aircraft. The airport determines a 

threshold value, and all aircraft that are above 

the threshold have to pay the noise tax. 

Changing either the fee or the threshold value 

can vary the tax. 

This study used an adaptation of the noise 

tax levied by the Adelaide Airport
‡‡

. The 

threshold value at Adelaide, which is computed 

as the sum of the departure, sideline, and arrival 

certification noise, is equal to 265 dB. Eq. (4) 

presents the formula to compute the noise tax 

levied on aircraft exceeding this threshold. The 

severity of the regulation was varied using the 

rate parameter. The six levels of noise taxes 

tested in order of decreasing severity were 

$1200, $1000, $800, $600, $400, and $200. 

 
 

           (4) 

7. 3 Aircraft Operations Quotas 

Aircraft operations quotas limit the daily 

number of operations at any airport. This type of 

regulation may either have different quotas for 

different aircraft, or may only be applicable to 

certain types of aircraft. 

This regulation was implemented similarly 

to the maximum airport noise regulation. The 

aircraft operations quotas limited the total 

operations at the selected airports to a specified 

percentage of the 2007 value. The six levels of 

severity tested for operational quotas in order of 

decreasing severity were 75%, 80%, 85%, 90%, 

95%, and 100% of 2007 operations. 

7.4 Aircraft Noise Restriction 

Aircraft noise restrictions prohibit the use 

of certain aircraft at the selected airports based 

                                                 
‡‡

 

http://www.boeing.com/commercial/noise/adelaide.html 
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on their noise exposure. This regulation may be 

considered a special case of aircraft operations 

quotas. 

This paper restricted aircraft types on the 

basis of either their arrival or departure 

certification noise levels. Because the noise 

model uses various previously stated fleet 

abstractions, the number of types of aircraft in 

the fleet was limited. Therefore, the aircraft 

noise levels were discrete, which limited the 

effectiveness of this regulation. Furthermore, 

due to the multiple parameters (arrival and 

departure noise level limits), it was not always 

possible to compare two regulation levels. For 

purposes of brevity, the regulations are specified 

using the notation, [departure_noise_limit; 

arrival_noise_limit]. 

The regulation levels (in EPNdB) tested 

were [91; 97], [91; 98], [91; 100], [93; 97],   

[93; 98], and [93; 100]. Here, [91: 97] is the 

most stringent, while [93; 100] is the least 

stringent regulation. 

8 Results  

The simulation was run from 2007 to 2015 

without noise regulation for the baseline case 

and for the various types and levels of noise 

regulations detailed in Section 7. 

It is important to note that the selected 

levels of severity for each type of regulation 

may not be equivalent. While the rates for the 

noise taxes were chosen arbitrarily, the most 

stringent regulatory level for the other 

regulations reflects the most severe regulation 

that allowed the resource allocation module to 

find a solution. 

Since the relative severity of all aircraft 

noise restrictions could not be determined, only 

the results of the least and most severe 

regulations were plotted. The scenario without 

any noise regulations is considered the baseline 

scenario, and all regulated scenarios were 

compared to the baseline scenario. Because the 

network is set up to adapt to the noise 

regulation, the results may not be compared 

directly (because the values may correspond to 

different network structures), but the baseline 

value provides a reference for evaluation. For 

convenience, the „area within the 65 dB DNL 

contour‟ is referred to as the „noise area‟. 

8.1 Noise at Regulated Airports 

An important measure of the effectiveness 

of any noise regulation is the noise level at the 

regulated airports. Fig. 5 presents the impact of 

regulations at ATL (largest regulated airport) in 

2011 (mid-way point of the simulation), while 

Fig. 6 presents the corresponding plot for ATL 

in 2015 (end point of the simulation). 

 

 
Fig. 5: Impact of regulations at ATL in 2011 

 

 
Fig. 6: Impact of regulations at ATL in 2015 

 

At the least stringent level, none of the 

noise regulations were effective in curbing the 

noise at the given airport. At the most stringent 

level, noise taxes and operational quotas were 

more effective in curbing noise at the targeted 
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airports compared to the other restrictions. The 

impact of increasing the severity of the 

regulations was also more evident in noise taxes 

and operational restrictions. These trends were 

discernable in both 2011 and 2015. 

In comparison with the baseline, the 

operational restrictions and noise taxes were 

more effective in 2015 than in 2011. This can be 

attributed to a combination of changes in fleet 

utilization and network topology. Section 8.4 

presents the impact on network topology. To 

study the changes in the fleet servicing a 

regulated airport, Fig. 7 compares the changes 

in utilization of the fleet at ATL from 2011 to 

2015 of the baseline scenario with the level 2 

operations restriction. 

 

 
Fig. 7: Difference in fleet utilization 

 

Since the Boeing 777-200 was the 

representative aircraft, as well as the best-in-

class aircraft, in class 6, the operations were 

grouped together. The baseline scenario showed 

an increase in the utilization of best-in-class 

aircraft in classes 1, 4, and 5. It also showed a 

reduction in the use of all class 6 aircraft, and 

the representative aircraft in class 5.  

On the other hand, the regulation forced 

the airline to utilize a lot more representative 

aircraft in classes 5 and 6, while significantly 

reducing the number of class 4 representative 

aircraft. While the baseline scenario simply 

chose newer technology aircraft to reduce DOC, 

the regulation forces the airline to lower the 

number of operations at the airport, resulting in 

an increased use of larger aircraft rather than the 

most cost-effective. This example illustrates the 

effect of the restrictions on the airline‟s 

operations. 

8.2 Noise at Other Airports in the Network 

In addition to the noise at the regulated 

airports, this paper investigated the impact of 

these regulations on the other airports in the 

network. Fig. 8 presents the sum of the noise 

within the 65 dB DNL contour at the 32 

unregulated airports in 2011, and Fig. 9 presents 

the corresponding values in 2015. 

 

 
Fig. 8: Noise at non-regulated airports in 

2011 

 

 
Fig. 9: Noise at non-regulated airports in 

2015 

 

While operational quotas had the most 

detrimental effect on the noise at non-regulated 

airports in 2011, their adverse impact on noise 

at these airports increased exponentially in 

2015. This suggests that it was harder for 

airlines to cope with operational quotas in 

subsequent years. A larger proportion of noisier 
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aircraft were allocated to the non-regulated 

airports due to the absence of noise regulations. 

Thus, the non-regulated airports bore the brunt 

of this sub-optimal allocation. 

In contrast to operational quotas, the 

impact of noise taxes on noise at the non-

regulated airports remained consistent in the 

2011 and 2015 scenarios. Airport and aircraft 

noise restrictions did not have a large adverse 

impact on these non-regulated airports in either 

scenario. 

In 2011, there appeared to be a correlation 

between the extent of the regulations and the 

impact on the noise at the non-regulated airports 

for noise taxes and operational quotas. This 

trend continued and was more visible in 2015, 

even for airport noise regulations. 

8.3 Direct Operating Cost 

While noise regulations are important, 

they should not be prohibitively expensive for 

airlines. The impact on the airline DOC 

measures the relative burden imposed on the 

airline by these regulations. Fig. 10 presents the 

DOC for the airline in 2011 under various noise 

regulations, while Fig. 11 presents the values for 

the 2015 scenario. 

Because noise regulations result in a sub-

optimal allocation of resources, most of the 

regulated cases showed a higher DOC compared 

to the baseline. This difference was larger in 

2015 compared to 2011. Because the noise taxes 

directly impact the airline‟s DOC, the noise tax 

scenarios had the highest penalty on the DOC in 

both 2011 and 2015. Operational quotas had the 

second largest impact on the airline DOC. 

Thus, the two noise regulations that were 

most effective in reducing the airport noise were 

also the most severe on an airline‟s operating 

cost. Moreover, for the noise tax and operational 

quota scenarios, there was a direct correlation 

between the extent of regulation and the 

increase in DOC. 

Because the simulation‟s objective was to 

minimize the DOC, the fleet allocation is an 

important part of the simulation. Fig. 12 

compares the difference in aircraft utilization 

under the severest regulations of each kind with 

the baseline values in 2015. 

 
Fig. 10: DOC for OEP-35 airports in 2011 

 

 
Fig. 11: DOC for OEP-35 airports in 2015 

 

 
Fig. 12: Aircraft utilization in 2015 
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The airport noise restriction increased the 

utilization of the representative aircraft in class 

4 and the best-in-class aircraft in class 3, 

because these aircraft have lower contributions 

to airport noise per passenger. Since noise taxes 

penalize the airline on the basis of certification 

noise levels, under this constraint the simulation 

lowered the utilization of the class 4 

representative aircraft, and increased the use of 

the best-in-class aircraft in class 3 and the class 

2 representative aircraft. 

Interestingly, the operations quota 

restriction increased the use of all class 1 and 2 

aircraft. Since the simulation forced the airline 

to use all the larger aircraft to service the 

regulated airport (to minimize operations), the 

airline required many smaller aircraft to satisfy 

the demand at other non-regulated airports. This 

also explains the increased noise at non-

regulated airports. The aircraft noise restrictions 

did not produce any significant fleet-level 

utilization trends. 

8.4 Network Topology 

Network topology is the network structure 

created by the links connecting the nodes of the 

network. For each time-step of the simulation, 

the network forecasting algorithm adds and 

removes links in the network. Because noise is 

included as an externality, the noise regulations 

have an influence on the network topology of 

the airline. The degree of a node is the number 

of other nodes in the network connected to it. 

Over time, airline networks gravitate towards a 

scale-free structure. The degree distribution plot 

facilitates the study of the impact of noise 

regulations on the tendency to form scale-free 

networks. 

Fig. 13 presents a degree distribution of 

the network in 2011 for the most severe 

regulations, and Fig. 14 presents the equivalent 

distribution in 2015. 

The baseline network is similar to a scale-

free network structure [3], but it is not a true 

scale-free network due to the limited size and 

high inter-connectivity between the nodes. The 

2015 baseline network had a steeper slope and a 

shorter tail compared to the 2011 baseline 

network. 

In all regulated 2011 scenarios, except 

aircraft noise, the number of nodes with degree 

34 decreased, and number of nodes with degree 

33 and 32 increased. This pattern was again 

repeated with the number of nodes of degree 31 

decreasing, and number of nodes with degree 30 

increasing. 

 

 
Fig. 13: Network structure in 2011 
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Fig. 14: Network structure in 2015 

 

This pattern indicates that including noise 

as an externality in the fitness function lowered 

the fitness of the airports with heavier traffic, 

and increased the probability of linking of nodes 

with lower traffic. Thus, these noise regulations 

opposed the trend towards a scale-free network 

structure. 

This trend was also evident in the 2015 

scenario, even for aircraft noise regulations. 

Airport noise and noise tax regulations have a 

larger impact on the network than the other 

regulations in 2015. 

All regulatory scenarios showed one 

airport with a low node degree value compared 

to the others. On analysis, the anomalous airport 

was identified as MIA. MIA was consistently 

dropping links under noise regulations 

compared to the baseline. This decrease was 

accompanied by a corresponding increase in the 

connectivity of STL. Table 3 presents the node 

degree values for both airports for each scenario 

in 2011 and 2015. 

 

Table 3: Node degree: MIA and STL 

  2011 2015 

 
MIA STL MIA STL 

baseline 20 25 25 8 

airport noise 15 28 10 29 

noise tax 9 28 11 28 

operations quota 16 28 11 26 

aircraft noise 19 25 8 26 

 

In comparison to the baseline, the noise 

regulations forced the simulation to assign sub-

optimal aircraft to non-regulated airports. As 

explained in Section 8.2, this often increased the 

noise at the non-regulated airports. Since noise 

was included as an externality in the network 

forecasting model, the higher noise lowered the 

fitness values of the non-regulated airports. 

Non-regulated airports that had low fitness 

values to start with (e.g. MIA has a low fitness 

value due to low demand and low clustering 

coefficient) were most affected. As the 

simulation progressed, the impact on MIA was 

compounded. Other airports in the network, 

such as STL, were the unintended beneficiaries 

of the noise regulations. 

9 Conclusion 

In the near future, many airports will 

consider enacting noise regulations due to the 

increasing demand for air transportation, and the 

growing awareness of the ill-effects of airport 

noise. In addition to the local benefit, it is 

important to consider the system-level effects of 

these regulations.  
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This study investigated four types of noise 

regulations - airport noise limits, noise taxes, 

operational quotas, and aircraft noise 

restrictions - using a system-of-systems 

approach. The simulation model used a network 

forecasting algorithm, a resource allocation 

module, and a noise model to study the impact 

of implementing these noise regulations on the 

system.  

Noise taxes and operations quotas were 

the most effective at regulating noise at the 

targeted airports. Airport and aircraft noise 

restrictions prevented further increase in noise, 

but did not lower the noise significantly. Non-

regulated airports in the network were most 

affected by operational quotas, but this 

regulatory approach did not increase DOC 

prohibitively. On the other hand, noise taxes 

significantly increased the airline‟s DOC, but 

had a smaller impact on the non-regulated 

airports. 

Although airport and aircraft noise 

restrictions did not lower the noise at the 

regulated airports, they prevented any 

significant increase in the noise area at these 

airports. Moreover, airport and aircraft noise 

restrictions did not significantly impact either 

the noise at the non-regulated airports, or the 

direct operating cost of airlines. Thus, these 

restrictions may be a reasonable middle ground. 

Noise taxes and aircraft noise restrictions 

may be more effective if they were based on the 

actual noise contribution, rather than 

certification noise levels. Many airports 

currently employ a combination of noise 

regulations, and such customized measures may 

be needed to address the individual needs of 

each airport. 

As seen in section 8.4, noise regulations 

can affect other airports in the network in 

unintended ways. In addition to the extent of the 

regulations, the proportion of the network that is 

regulated is bound to affect all aspects of the 

system. All airports in the network will be 

affected by noise regulations at any airport in 

the network, and it is important to analyze these 

intricate interactions using a systems approach. 

While noise regulations are important, it is 

critical for the sustainable growth of aviation 

that these regulations are studied in a 

framework, such as the one presented in this 

paper, before implementation. 
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