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Abstract

In this paper, a procedure to develop an
analytical two-term truncated Volterra series
for the low order flight subsystems is presented.
The resultant models are given in the form of
first and second kernels. A parametric study of
the influence of each linear and nonlinear term
on kernel structures is investigated. A step input
is then employed to quantify and qualify the
nonlinear response characteristics. Uniaxial
surge and pitch motions are presented as
examples of the low order flight dynamic
systems. The proposed analytical Volterra-
based model offers an efficient nonlinear
preliminary design tool in qualifying the
aircraft responses before computer simulation is
invoked or available.

1 Introduction

Constructing an analytical model describing
nonlinear aircraft dynamic behavior has been
investigated using various approximation
techniques. Three common approaches appear
in the literature to predict nonlinear phenomena:
bifurcation approach, describing function
approach, and perturbation expansion approach.
Bifurcation analysis has been applied to many
nonlinear phenomena such as wing rock [1-5],
spin entry [6-7], and pilot-induced oscillation
[8]. Describing function analysis has been used
mostly to generate limit cycle behavior in many
flight dynamic models as reported in Refs. [8-
12]. Since perturbation expansion analysis
breaks down quickly in time or in parameter
strength. One example is given in Ref. [13].
Although all these techniques show potential to
understand and analyze nonlinear behavior of
aircraft, these methods sometimes do not
provide a precise cause-and-effect result, do not
address transient behavior, or do not cover a
sufficient range of time and/or parameter
variation.

Volterra theory has emerged as a popular
nonlinear modeling technique, primarily
because of the underlying analytical framework
and its extension of the impulse response
concept from linear theory. Volterra theory
dates back to 1887 with the first encompassing
publication appearing in 1927 and later in 1958
[14-15]. An early use of this theory was made
by Wiener and subsequent research was
conducted at the Massachusetts Institute of
Technology in the area of filtering and
electronic circuits [16-18]. Few applications of
the Volterra methodology to flight mechanics
appear in the literature. References [19-20] are
two notable exceptions. In these efforts,
modeling the longitudinal dynamics of a high
performance aircraft in limit cycling conditions
has been explored via the Volterra approach. In
Ref. [20], a differential form of a reduced third
order Volterra series was considered. The
approach proved the ability to capture the limit
cycle. This work was extended in Ref. [19] to a
global approach. An interesting application of
Volterra theory in flight mechanics is presented
in Ref. [21] to analytically define nonlinear
flying quality metrics. However, most of these
trials date back to the 1980s and early 1990s.
Recently, in Refs. [22-23], the authors bring
back the utilization of Volterra theory to flight
mechanics through a global piecewise approach.
This approach facilitates the use of Volterra
theory in a piecewise fashion for strong
nonlinearity. Continuing this effort of utilizing
Volterra theory in flight mechanics research, a
new trial to use the theory in analytically
predicting nonlinear behavior is investigated
herein.

This paper presents an analytical framework
to predict the nonlinear behavior of the first and
second order SDOF flight subsystems. Section 2
shows that the essence of aircraft nonlinear
behavior in multi-axis motion can be rendered
with simple first order and second order single
degree of freedom (SDOF) submodels. In
Sections 4, the outline of developing a closed
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form solution based on Volterra theory is briefly
discussed. Sections 4-5 provide generalized
closed form solutions to the first and second
order SDOF systems previously developed in
Section 2. More specifically, the nonlinear step
response of the low order systems is
investigated in Section 6-7 to qualify and
quantify these low order subsystems behavior.
In Section 8, numerical examples are presented
to assess the proposed Volterra-based models.
The work is finally concluded in Section 9.

2 Low order uniaxial flight subsystems

This section shows how the full order aircraft
dynamic model can be represented as a set of
low order flight dynamic subsystems while
preserving the link to the more general model.
The two low order system examples: surge and
pitch motions, are offered herein as
demonstrations. Each example represents a
SDOF uniaxial motion. Reference [24] contains
a frequently cited full order dynamic model of a
high performance aircraft. This model is
considered under many assumptions: the aircraft
is a rigid body with six degrees of freedom
(6DOF) except for an internal constant spinning
engine rotor, the aircraft mass is constant, the
aircraft body is symmetric about the XZ plane,
the atmosphere is stationary, and the earth is flat
with constant gravity. Based on those
assumptions the nonlinear equations of motion,
derived from Newtonian mechanics, are
as T

u=rv—gqw-—gsind+-—C, +— (1)
m 7 m

. . qs
V= pw—ru+gcosé?srngo+FCYT (2
v'\/:qu—pv+gcos¢9c05go+%cZT )
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p=—Lr—£qr+7@(r+pq)+ﬁ C. )
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o
r=ﬂ m+T4pQO+I Cy, +H.q (6)
z z z

The aerodynamic and engine data used in
the aircraft model have been developed by a test
at NASA Langley Research Center in 1979 as
listed in Ref. [24]. This test was conducted in
low-speed wind tunnel facilities. The model
data  represents the total aerodynamic
coefficients (c,_,C,,C, ,C_,C, ,Cy ) as
function of angle 'of attack a srdesﬁp angle B,
elevator deflection Je, aileron deflection d,, and
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rudder deflection o, as look-up tables. However,
the model is computationally expensive. In Ref.
[25], a simplified model of the aerodynamic
coefficients is represented. The new model has
the capability to reduce the computational cost
with an acceptable accuracy, but the simplicity
of this model restricts the angle of attack range
to -10° /+45° and the sideslip angle range to -

30°/+30°. The equivalent aerodynamic tables of
this model are given in Ref. [25]. All tabular
data are valid only for the limits on the angle of
attack, sideslip angle, and control surfaces (|Je| <
25, | 04| < 25, and | J; | < 25). The maximum
thrust (T) of the afterburner turbofan engine
model is given as a function of altitude H, Mach
number M, and throttle deflection oy. The
numerical values of the engine model are given
in Refs. [24-25].

The dominant behavior of a conventional
aircraft can be fairly well described by a
symmetric motion (longitudinal) and an
asymmetric motion (lateral-directional), if the
engine angular momentum He is assumed zero.
In the case of symmetric longitudinal flight, the
lateral-directional variables are exactly zero due
to airplane symmetry about the XZ plane. Using
the stability axes and the relatrons w =V sin(a),
u =V cos(a), and V2 = u? + w?, one can replace
the surge u and heave w equatlons by the total
velocity V and the angle of attack o equations.
A reduced nonlinear longitudinal model can
then describe the aircraft motion as
cos(a)

V= T(M,H,5, )2 c o(a,8,)-gsin(@—a) (")
- —S'”S‘/")T(M H, am)——c (,8,)+ Vcos(a—a) (8)
e, (@p-00,) ©)
0=q (10)

where

C, =—Cy, cos(a)—C,_sin(a)

C_=-C, cos(a)+C,, sin(«) (11)

If an autopilot is assumed to hold the
altitude to a constant value H, and the flight
path angle y, = 6, - o, at zero value, then the
total velocity variation is given as

cos(e, ) oVARS
m

v = m CD(aD’é‘eO)

TV Hy06)- @)

= t(,5,.0)
where a, and &, are the trimmed angle of
attack and  elevator deflection, which are
determrned by the specified parameter vector 4
= [Ho Vo]'. Equation (12) represents a first
order SDOF system for total velocity with the
throttle deflection as the input. The perturbation



form of Eq. (12) is given by introducing the
derivatives of the function f as

AV = ﬂ (é)AV + % (é)A@h + % 2\2/2 (é)AV 2

% f 1 9°f 2

* v, (Bavas, += 3o (9)A5m
The two perturbed quantltles AV and Adw, not
necessarily small, are measured from the
nominal values defined at the operating
condition. Since the aerodynamic and engine
models of the aircraft are given in the form of
look-up tables, a finite difference technique is
the proper choice to compute the derivatives
appearing in Eq. (13).

Another example of a longitudinal low
order flight subsystem is the nonlinear pitching
motion. In this pitching motion, the total
velocity is assumed constant in magnitude (V =
V,) and direction (y = yo = 0, € = ). The pitch
motion is then described by a second order
SDOF subsystem as

f=q

q_@ MT (0,q,5e)= f(@,q,ﬁe,é)

Y
The parameter vector 4 is introduced through §.
Expanding the nonlinear function f around the
nominal point, defined by 4, leads to
AO=Aq

Adzi(ﬂ)A ?(H)A(HE(A)A@ 21292 (g)Aez
= (Oha* + (G)M Q+ ( hans, (15)

Gq
1 az 2
a 06, (Q)Aq T 260 (9)A5
The perturbed quantities Af, Aq and Ade are
defined from the nominal value determlned by
the operating condition § = [Ho Vo]'.

The two uniaxial flight examples of surge
and pitch motions represent the aircraft behavior
as a SDOF first or second order system. In Ref.
[29], the authors developed another two
equivalent examples for the lateral motion. The
nonlinearity herein appears in the high order
aerodynamic and propulsive derivatives with
respect to the input and state signals. The linear
theory offers an analytical solution for such low
order systems, which counts the first order
derivatives only. When the aircraft operates at
unusual attitudes, the first order derivatives are
insufficient to render the behavior. Volterra
theory is used herein as a nonlinear approximate
technique to develop an analytical solution in
order to count these high order derivatives for
the first and second order SDOF systems as
shown in the next Sections.

(13)

(14)
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3 Volterra theory

Many physical systems can be described
across a set of nonlinear differential and
algebraic equations between the input signal
ueR™, the state signal xeR", and the output
signal ye RP. A commonly used representation
is the nonlinear state space form

X(t) = f(t, x(t)u(t))
y(t)= glt, x(t)u(t) (10

Vectors f eR" and g eR" denote the system
nonlinearities and teR' is time. Volterra theory
represents the input-output relation of a
nonlinear system as an infinite sum of multi-
dimensional convolution integrals [15].

yO)=h, )+ 3] jh —— rk)-l:[u(t—ri)dri 17

k=100

In Eq. (17), h, ﬁrl,fz,...,rk) denotes the k™ order
Volterra kernel. Volterra kernels are casual
functions with respect to their argument [15].
For developing analytical Volterra kernels from
the nonlinear differential equation, the
variational expansion form, also called the
differential form, is used. Variational method
was initially developed based on a perturbation
point of view with the first notable application
in Ref. [27] and it showed the capability to
capture the aircraft behavior in many nonlinear
phenomena in Refs. [19-23]

Before applying the differential method to
the low order flight systems in Section 2, the
outline of the method for a single input case is
first given to show the mechanism by which the
analytical kernels can be constructed. The
method assumes the state vector derivative X is
expandable as an infinite power series in terms
of the state vector xeR" and scalar input
ueR"' around an arbitrary point, defined by
(Xo,Uo), as

x=f(xu)=>Y Kxhl o — xﬁ@x (18)
i=0 j=0 k=1
In Eq. (18), ® is the Kronecker product. The
Kronecker product for two matrices P of
dimension NpxMp and Q of dimension NgxMg
is defined as [15]
P11Q PlMPQ
PRQ=| : S : (19)
N 1Q PN oMp Q
The resultant matrix P ® Q is of the size (pr

Ng)«(MpxMg). The matrix K of size n. n' is
defined as



_ (Kll)ij o (Klni )i,-
Ki=| ¢ i | ije{o12, 0} (20)
(Knl)J o (K )'l

Note Kk has a null value. Thus, the expansion
holds around an equilibrium point (x= 0). The
matrix K represents the derivatives of the
vector function f(x, u) with respect to X and W/
at point (Xo,U,). The input u is generalized to be
ou(t), where « is any arbitrary constant. In this
case, the response x(t) can be expanded in terms
of o as

X = Za X; (21)

By substituting in Eq (18) and rearrangmg
according to the coefficients of equal «' (i =

..), a set of differential equations is generated
as

X1 = K10X1 + K01u
%, = Ky oX, + Koox® + K xu + Ko,u? 22)
Xg = KXy + KyoX® + K[, ® X, + X, @ x|+

Equation (22) represents the system as an
infinite set of differential equations. Although
this expansion extends the n-dimensional
problem to infinite dimension, the original
nonlinearity of the system is broken down into a
sequence of pseudo-linear time invariant (PLTI)
systems, which are solvable. The input of each
PLTI system is a nonlinear function of all
previous system states and the input u. Figure 1
shows the schematic diagram of the method for
the PLTI systems through the k™ term. The first
PLTI system has a linear transition matrix &(t-
to) based on the square matrixk,,, which is
excited by input u multiplied the column vector
Ko~ The state response of this system, xi, in
closed-form is a convolution integration in
terms of u and t, which is mapped to the next
system by a nonlinear function fi(xs,u). This
sequence is repeated for a certain number Kk,
which provides satisfactory results. Note that fi;
(X1,X2,...,%-1,u),  where i = 1,2,....k,
automatlcally keeps the order of input u to the
power i. For example, fy(x3,u) is a sum of u?
xiu, and x®. By substituting for x; as a
convolution integral of u, the bilinear term, xyu,
and the state quadratlc term, x{?, become a
function of u?. Then, X is defined as a
convolution integral of U’ In general, this
condition is not essential to the method, but it is
necessary to extract the kernels. Thus, each state
response of the PLTI systems, x;, conceptually
yields the kernel hi(z,.., i) as described in the
next two Sections.
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Figure 1 Variational expansion method schematic diagram
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3 First order system generalized solution

The surge motion in Eq. (13) and another roll
motion presented in Ref. [29] are examples of
the SDOF first order flight system. The
generalized equation of motion of such systems
is
X = K x'Uud = KX+ KyoX? + KagX® + -+ Ky U + Kk xu

Z(;:Z(; 10 20 30 01 11 (23)

F Ky XU+ KopUZ + KpXUZ e+ Ko gU® o+
where k.J is the corresponding coeff|C|ent to the
term x'u’ and i, j =0,1,2,3,.... and koo = 0. Based
on the global Volterra approach in Refs. [22-
23], a small set of linear and nonlinear terms is
enough to specify the system characteristics in a
certain domain. Therefore, the quadratic state,
bilinear state-input, and quadratic input terms in
addition to the linear terms in Eqg. (23) are
considered to be sufficient. As a function of
these terms, the system is

X 2 aX + KgyU + KyoX® + Ky XU + KU (24)
Note the linear state term coefficient has been
re-symbolized by a instead of kjo. This re-
symbolization has the purpose to emphasize the
uniqueness of this term more than others, as
clearly indicated later in this Section.

The variational method is now applied to
develop the Volterra kernels. The state x can be
then expressed as a

X=0X, +a’X, +a’Xg +++ (25)
By substituting in Eg. (24) and equating o'
coefficients, where i =1,2,3, ..., a set of pseudo
differential equations is generated as
X, = ax; +Ky,u
X, = aX, + KyoXZ + Ky XU + Kg,u? (26)
X, = aXg + 2K, 0%, X, + Ky XU + Koy XU + K, X, U

The solution of the first differential equation of
X1 With a zero initial condition is

t
X, = k01_|.ea(t77)u(r)jr (27)
0



The solution of x; is then given as
t t
X, = kzoj (351(171))(12(1'k1 T+ k11J. ea(t#)xi(f
0 0

)J(r)dz'

+ kon. galt-o)y2 (T)d T (28)

= xP +x2% 4+ x!
where x3°, x> xq'represent the quadratic state,
bilinear ~ state- input, and quadratic input
components of X.

Using the convolution solution of x; from
Eg. (27) and substituting in Eq. (28), the
quadratic state component x3° and the bilinear
state-input component x*, are then given as

KooK
X® = 220701

]

0
tt

X5 = Ky1Kos J'J'[eam(t*fi"’fz)}.l(rl)u(fz Jz.dz, (30)
00

2

where max(x,y) refers to the maximum values
between x and y. Note the authors documented
the required mathematical manipulations to

(29)
p2lt-n)galtr, [ eamax(t—rlyt—rz)ll(rl)u(fz)d rdr,

O ey

derive Egs. (29-30) in Refs [29-31]. The
quadratic input component x;' yields to the
standard Volterra form as
t
X = kozfea("’)uz(r)dr
o (31)
= koz_[_“ea(tﬂ)é‘(f - Tz)J(Tl)u(Tz )d ndz,
00

where d(z1-72) is the impulse function.

Adding the quadratic and bilinear
components to the linear term offers an
approximate solution of x as

x [ pce

tt
+ I jhz — 7, t—7,)u(r (7, dz,dz,
00

where | | 32)
h1(7): k01ea(r)v hz(Tlvfz): h® + h;’s' +h)!

_ Kook ge(lgeles | _ gamerte )]
a

k,.K
+ —112 01 gamx(erz) ok e2s(r, —7,)
The resultant approximate solution is given by
the two kernels h; and h,. For any arbitrary
input u(t), one can compute the response x using
convolution integrals or the pseudo state space
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representation. These kernels are a unique
signature of the first order SDOF system. To
understand how the system behavior varies with
these parameters, their influence on each kernel
is presented next.

The first kernel hy is an exponential function
with a gain ko; and a power factor a. It is clear
that this power factor a controls the divergence
or convergence of the first kernel histories. In
the case of a > 0, the value of h; keeps
increasing with time to be infinite as time tends
to infinity. This observation concludes that the
system has a divergent or unstable response for
any input. If a is null, the first kernel is constant
with time, which means that the system linear
response is the input integration. In the case of a
< 0, at time zero, the value of hy is ko1. This
value keeps decreasing with time, yielding zero
at time equal to infinity. Figure 2 shows the
normalized generic shape of h; in the case of a
< 0. The normalized kernel starts at 1 heading
downward with an angle ¢ = arctan(a). This
slope is an indication of the initial or maximum
speed by which the system responds to any
arbitrary input. If a 2% value is considered as a
tolerance for approximate steady state, the
required time to be inside this zero vicinity js
labeled here as the linear kernel settling time 7y
. This time is computed as a function of a to be

. —-In(0.02) 4

B -

The second kernel has three components:
quadratlc state kernel h®, bilinear state-input
kernelh)® | and quadratic input kernel h' . Each
component is a two dimensional surface as a
function of 7; and 7. The quadratic state kernel
h* has three exponential terms. The linear
coefficient a controls the divergence and
convergence of this surface. In the case of a= 0,
the surface is defined by k,k2 max(zi, z2) using
I’Hopital’s rule. This maximum operator
represents two ramp surfaces z; and =, merged at
the diagonal line, which implies that if the
system is critically stable in the linear sense (a =
0), the state quadratic term has a divergent
kernel shape (instability). Such a conclusion is
not accessible using the linear analysis. When a
> 0, the surface starts at the zero value heading
upwards to a divergence referring to unstable
behavior for any external excitation. If the value
of a is negative, the surface starts at zero and
diminishes at infinite time arguments z; and z,.
The exponential term with the maximum
operation in the exponent works on directing the
surface upward and enforcing the surface edges
to be zero, while the two regular exponential

for a <0 (33)
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terms of 7; and 7, work on heading the surface
downward. The irregular exponential term
competes with the two regular terms reaching a
maximum surface value at 71 = 7, = In(2)/|a|~
0.7/|al, beyond which this effect diminishes.
The two standard exponential terms then
dominate the shape of the surface, yielding zero
as the two arguments 7; and 7, go to infinity.
One example of this surface is given in Figure
3, where a = -5 1/s. The overall shape of this
kernel is determined by its diagonal (r1 = 7).
The normalized general shape of this diagonal is
shown in Figure 4. The surface has a maximum
value 0.25k,k’ /aat timez)> = In(2)/ja] =
0.7/|a]. The required time by which the surface
is considered as zero is referred to here as the
quadratic state kernel’s settling time 7,5 = 4/]a]

The surface of the bilinear state-input kernel
component h,” is an exponential function,
which includes a maximum operator in the
power. The surface heads to zero (stable or
convergent) as r; and 7 tend to infinity in the
case of a < 0, or head to infinity (unstable or
divergent) in the case of a > 0. When a = 0, the
normalized surface is a flat one with a value 0.5.
Figure 5 shows an example of the bilinear state-
input kernel at a = -5 1/s. The diagonal shape of
this kernel is the same as the linear first kernel
in Figure 2 with a different gain of koiki1/2, but
with the same initial slope angle ¢ = arctan(a)
and the same settling time 72" =7, = 4/[a|. The
surface of the quadratic input kernel component
hy' is an exponential impulse sheet oriented
vertically on the diagonal line 7; = 15, which has
the same shape and characteristics of the first
kernel in Figure 2, but with a gain of ko, instead
of k01.

1t

hy (n)/kgy

* t(s) 7

Figure 2 First order system first kernel in the case of a <0
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Figure 5 First order system bilinear state-input second kernel at a =
-51/s

4 Second order system generalized solution

The pitch motion in Eqg. (15) in addition to
another yaw motion documented in Ref. [29]
are examples of the SDOF second order flight
systems. The generalized equations of motion of
such systems are

X=V

V=@ X — 260,V + KogoX? + Ky o XV + KppoV (34)

Ko+ KyggXU +Kgy VU + Ky ,U°



Parameter k.mn is the corresponding coefficient
to the term x'v™u"and I, m, n =0,1,2. Note that
the linear terms have been re- symbollzed by -
2¢wn instead of kojo and - w7 instead of kygo.. This
re-symbolization is for the purpose of keeping
the discussion in the sense of undamped natural
frequency w, and damping ratio ¢ from the
linear theory. The variational method is now
applied to Eq. (34) to develop the kernels. The
method assumes that the input is ou where a is
any arbitrary constant. The state position x and
state rate v can then be expressed as a sum of
infinite terms.
X=oX +o’X, +a’X, +

o (35)
V=aV, +aV, +a’Vv, +
By equating «' coefficient, a set of pseudo
differential equations is generated:

IR b E
A - a)s - 2w, | v, Koos
R IR ol
= +
v, - a)r? - 20w, ||V, k200X12
0 0 0
" Ky10%:Vy " KoaoVs " Ky XU (36)
e
+ +
Ko1\pU KopoUl?
I o)
= + cee
Vs - a’r? — 28w, | Vq

The solutlon of the first linear pseudo subsystem
[x, vi]" for a zero initial condition is then
computed as

t
X, = @je“’(“’) sin(w, (t - 7))u(z)dr
d

@y %

— Ko jev sin(a,(t—)- ol 3D
1- é’ 0

l\)

¢ =c0s"(¢)
where o = dw, denot system’s damping
factor and @, =w,/1-¢?* is the damped

natural frequency

For the second pseudo subsystem [x v2]
the solution of x, is sought as a sum of six
components

X, = X3 4+ X+ xJ+ x5+ x) 4+ x! (38)
where X3, x3, x2¥, x2",and xI' are

quadratic state, bilinear state-rate, quadratic rate,
bilinear state-input, bilinear rate-input, and
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quadratic input component respectively. The
second pseudo state space is then rewritten as

X, 0 1 X, 0|,
1=l + X;
Vs, -~y —2w, ||V, K200

‘ . |

Bqs
0 X,V { 0 }vz { 0 }x u
+ + +
_kllO_ t kOZO ' I(101 ' (39)
Bbsr qu Bbsi

0] v,u { 0 }uz
+ +
_k011_ ' k002
Bpri B..
Substituting the convolution solutions of x; and
v; from Eq. (37) into Eqg. (39), the convolution
solutions of the six components of x, are

derived as [29-31]:
tt

Xz = _[_[ hgs(t —7,1-1, )U(Tl)u(fz )drldfz
00

Kao0Kgo1
2a)d
{M 1 Cos(a)d (71 -7, ))+ M, Cos(a)d (Tl +7, ))

+M, Sin(a)d (Tl +7, ))}

h(r,.7,)= e e x (40)

tt
x5 Ijhbsrt 7,,t =7, (7, u(z, )dz,dz,
00

hbsr( 7, 2 kllOkOZOl

2 1- é’z
{Mlcos(a)d (71 - Tz)+ ?’)‘*‘ M, Cos(a)d (71 + Tz)_ ¢’)
+M, Sin(a)d (71 + 72)_ (/7)}

e e x (41)

tt
Xy = th t—7,,t—7, u(z, (e, )dr,dz,
00

2
k020k001

ar = e x
h; (Qv%)‘We e (42)
{M, cos(@, (z, - 7,))+ M, cos(@, (z, + 7,)— 2¢)
+M,sin(w, (7, +7,)—20)}

tt
x5 = ”.hhs' t—7,,t—7, u(z, u(z, )dz,dz,
00

si k k —o max(7y,7; 4
IR e “3)
{sin(w, min(z,, 7, ))sin(w, max(z,, 7, )— @, min(z,,z,))}

tt
X2 = [ [ - 24, - 7, (e, (e Mz, de,
00

h;)ri(,rlY z_2): - k011k0012 g omx(rr) o (44)
20441-¢

{sin(e, min(z,, 7, ))sin(w, max(z,,7,) - @, min(z,,7,)- @)}



t

t
Xgi ZI h;i(t—‘rl,t—TZ)U(Tl)U(TZ)dTldTZ
o *‘7(71) (45)

hy' (7, 7,)= koozj)
4

Sin(wd (@ ))5 (Tl -7 )
where

Ml(‘[lvz'z): (1_42){1+ ¢

o min(zy,7;)

1-¢2

sin(w, min(z,,z,) - (ﬂ)}

_ 2 o min(ry,7,)
M,(z,,7,) = (1 25 ){14—9\/? sin(a, min(rl,rz)—(p)}

_ 3(1—42) 9_84/2,35"“”(1'1:72) i i — @

1— 2 eamin(rl,rz) .
M,(z,7,) = 2 2 d {1_ ‘ cos(e, min(z,, 7,) - ¢)

B g’(;/];—séj){l_ \/9 ;84;2 egmin(n,rz)cos(?,a)d min(z—llrz)— (ﬁ)}

and cos(@)=¢/4/9-8¢7 . The authors provided
a full derivation to the expressions of Eqgs. (40-

45) in Ref. [29-3129].

The overall second kernel is a sum of the six
components quadratic stateh,®, bilinear state-
rate h)*", quadratic rate hJ", bilinear state-input
h2®, bilinear rate-input h)", and quadratic input
hy'. The resultant second Kernel along with the
first kernel represents an approximate Volterra-
based model for the second order SDOF system.

K= [yt - O(eHic

X (46)

O —

t
th(t -7,t- Tz)u(fl)u(rz)drldrz

0

h, =h% + h* + hd" + h* + h)" + hY

The Volterra-based model presents the system
as two analytical kernels. The analytical
expressions of these kernels are used to
understand each kernel characteristic as a
function of system parameters for the second
order SDOF system.

The first kernel h; is an exponential
sinusoidal function with a gain Kko1/wg
frequency wq , and a damping factor o. If the
damping factor is less than zero, then the system
lacks the damping required to stabilize the
response for any excitation. Thus, the positive
exponential power shapes a divergent kernel.
When taking the damping factor off (null
damping factor), the remaining sine term keeps
the kernel shape as an oscillatory one. In the
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case of positive damping factor o > 0, it is better
to parameterize the kernel by the damping ratio
{ = olw, . If the damping ratio is more than or
equal to unity, then the sine term diminishes and
the resultant first kernel is a sum of two
exponential terms, which is the case in the first
order system. These two exponential terms
become equal at = 1. For less than unity
damping ratio 0 < { < 1, the generic shape of
the first kernel is shown in Figure 6. In this case
(0 < ¢ < 1), the kernel starts at zero and
oscillates around zero. The amplitude of such
oscillation decreases with time, where the loci
of minimum and maximum points are located
along the envelope functions hymax and hymin.

s ()= ()= -2 a7)
Wy Wy

The maximum points occur at times

(2nm+¢)lwq, while the minimum points occur at

times ((2n+1)z+¢)/wq, Where n = 0,1,2,... The

kernel h; settles down inside a 2% band around

zero at time

Tll<s — LOOZ) ~ i (48)

o 1(r)|’K

1
pram yam
Wy Wa
tis)

Figure 6 Second order system first kernel in the case of 0 < ¢ <1

The second kernel has six components:
hs®, hy*", hi" ;' )" and hj'. Each component
is a two dimensional surface in z; and z,. In the
case of negative damping factor o, all the
surfaces have zero edges heading upwards to
infinity as ©» and 7, go to infinity. These
divergent surfaces have a sinusoidal waveform
with a frequency wgq in the case of -1 < (<0
(oscillatory  divergent).  This  sinusoidal
waveform diminishes when ¢ < -1 (non-
oscillatory divergent). All surfaces become a
constant amplitude two-dimensional sinusoidal
surface in the case of zero damping ratio =0
(oscillatory). No parametric studies are given to
the unstable or critically stable cases, since
these cases have a divergent response, which
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does not require to be characterized. Thus, the
characterization is sought for a stable behavior
for the design and control purposes. If the
damping ratio is more than unity { > 1 (hon-
oscillatory convergent), all the surfaces turn to a
sum of two exponential functions and the
analysis of the first order system in Section IV
can then be used. In the case of 0 < (< 1
(oscillatory convergent), which is the frequent
case of the aircraft low order motions, all the
surfaces have a two-dimensional damped
sinusoidal waveform. One example is given in
Figures 7-11 at { = 0.1 and w, = 2 rad/s. The
quadratic input component , as a special case, is
an impulsive surface over the diagonal line ;=
7, having the same shape as the first kernel but
with a gain of Kgpo/wqg.

“‘:hgs(‘i o) (kzonkﬁm)
o

6
56 8 w0

Figure 7 Second order system quadratic state kernel at {=0.1and
wn = 2 rad/s

(- gty e G kyag)

Figure 8 Second order system bilinear state-rate kernel at £ =0.1
and w, = 2 rad/s

/'kﬂ2ﬂ 'ﬁlﬂ‘
o
&

2
d’

20- A0 ey )

6
] o 1

Figure 9 Second order system quadratic rate kernel at {=0.1 and
wn =2 rad/s
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Figure 10 Second order system bilinear state-input kernel at = 0.1
and w, = 2 rad/s

Ry {2‘112hgri((1 oy Kyeko0)

&
o &

10 10
Figure 11 Second order system bilinear rate-input kernel at {=0.1
and w, =2 rad/s

In order to characterize each surface in the
case of 0 < ¢ < 1, the diagonal waveform
h)(z,z), where j = {qgs, bsr, qr, bri}, is
considered, while the diagonal waveform of
h*(,0.5z) is considered. Thus, the diagonal
line of hY*(z,z)has a zero waveform. Figures
12-16 show the generic shapes of these diagonal
waveforms. All the diagonal histories start at
zero value and oscillate by a frequency wyg
generating a set of minimum and maximum
value at times listed in Table 1.

Table 1 The times of maximum and minimum values of the second
kernel’s components, where n=0, 1, 2, ...

Time of minimm  Time of maximum
Nonlinsar componant valuas () wvalues (5]

Chaadratic stat component g’a‘i?: (L 1') (Inx) s ((In+l)x)ess
Bilinsar statz-ratz component h]bs.’[ T, 1') (Enx+dp)3ias (Bnr-4¢)/3ia,;
Quadratic rate componsnt h-‘?, [f= f) (Inx)as {(2n+)x)ms
Bilinzar state-input componant h;?:l(f05f| (Inx)es ((2n+)a)/ws
Bilin=ar ratz-input componsnt h;?"il (fz 1') (2nx+ @)les ((2nt1)x~ ¢)las

Although all the diagonal waveforms settle at zero by
time t = oo , the equivalent oscillation shapes to reach
this zero value are not the same. Both quadratic state
hd*(z,z)in Figure 12 and quadratic rate h{"(z,7) in
Figure 14 do not symmetrically oscillate around the zero
value. The mean oscillation shapes of h%*(z,7) and
hgr(r, r) are similar to the one in Figure 4 (the quadratic
state diagonal kernel of the first order system). The mean
oscillation shape is sought here as the average of the
maximum and minimum points’ loci. If the average of



these loci is constant, as in the case of first kernel, the
oscillation shape is then symmetrical. The two
components hd*(z,z) and hd"(z,z) have the same
mathematical structure as listed in Eq. (40) and Eq. (42)
except the phase shift —p in the two arguments. This
phase shift warps the diagonal lines of hgr(r, r) from
the diagonal lines of hgs(r, r) (as an example, see Figure
7and Figure 9). Because of this phase shift, there is one
non-periodic maximum point in the case of hgr(r,r),
which appears at time 4¢/3n (see Figure 14). On the
other hand, the diagonal waveform of the bilinear state-
input component hgs'(r,O.Sr)in Figure 15 has a mean
oscillation shape similar to the bilinear state-input
diagonal waveform in

Figure 5. Both the diagonal forms of the bilinear state-
rate hY*"(z,7)in Figure 13 and bilinear rate-input
hb”(r r) in Figure 16 symmetrically oscillate around
zero.

)

1

-
ve
B

2
00

28 (. 1)y

4
g
_—

'~’1=|
EER
sl

Figure 12 Second order system quadratlc state diagonal kernel in
the case of 0< (<1
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Figure 13 Second order system bilinear state-rate diagonal kernel
inthe case of 0<¢{<1
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Figure 14 Second order system quadratic rate diagonal kernel in the
caseof 0<{¢<1
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Figure 15 Second order system bilinear state-input diagonal kernel
inthecaseof 0<¢{<1
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Figure 16 Second order system bilinear rate-input diagonal kernel
inthecaseof 0<¢{<1

The loci of the maximum and minimum
points are developed by substituting their
equivalent times in Egs. (40-44), which leads to

s Kooke 2 -
hes  — 2(;(; 001 §)(e ot _ n-ot )

2min
d
2
hex =k2L|§°°1w1(§ Yoot +e ) (49)
d
2-¢2)3-2¢2)
(o-827)
KoooKe
ho = Xo20%01 “20t _ ot
2min 2(1_ 4’2) a)dz V/G(é,)(e e )
KyooKe
hor = 020K001 gz/e(g“)(e’z"‘+e"" )
201-¢%) o} (50)

‘//e(g)zl_gz +
@W){( - >24

(r,0.5’[) — k101k001 gt

2

20 (51)
(7,057)=0

W1(§)=

hb5|

2 max

hb5|

2 min
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bsr — k110k0201 —20t —ot
h2max = 2 3 {V/Z(é/)e +y/3(§)e }
231~ w;

bsr - |(110k($01 —20t —ot
thin = 2 3 {‘//4(41)6 + WS(g)e }
21-2 ]

ir=ct-) L0
cof %) 0=

s)" oar) 3
vi)=i-¢* {gsin(g’j - ;sm@” - cbj }
91__84;4 sin[?j
AGE 51_‘8?2) c(0-8¢7)+(3-4¢%)eos(110/3)
—4c -7 Sin(lltp/3)}
‘//5(5)2\/]?

X

(52)

N |-

—
S~

{sin(4p/3)—2¢ sin(7¢/3)

N

+

sin(¢/3+¢)}

9-8¢7

i K,y K
her (7,7)= —ouons
oo (7:7) ]

i -k, .k
bri _ 0117001 —ot
h2min (T’ T)_ €

20,1- ¢

e—ot

(53)

where hj . and h) _are the loci of minimum
and maximum values of the diagonal signals,
where j = {gs, bsr, gr, bsi, bri}. The amplitude
of these maximum and minimum loci yields to a
zero value at time 7 tends to infinity. If a 2%
vicinity is considered as a tolerance to
approximate steady state of each second
kernel’s component, the required time to be
inside this vicinity of each component is given
in Table2. These 2% vicinities are considered
from the normalized gain of each component.
The settling times in Table2 are estimators to
the settling times of the total surface of each
component.

The developed analytical kernels in Sections
IV and V predict the behavior of the system for
any arbitrary input. For the first term in the
solution x;, the single convolution integral sums
up the contributions from past inputs weighted
by the first kernel’s behavior across this past
time span. Both first kernel of the first order
system in Figure 2 and of the second order
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system in Figure 6 show that more recent inputs
are more heavily counted than inputs in the
distant past. The second term in the solution x,
is determined in a similar way across a double
convolution integral involving: the three
components in the case of the first order system
and six components in the case of the second
order system. Each nonlinear component
simultaneously counts the input signal at two
different times 7; and 7,. The next two Sections
focus on the step response as a more specific
case in qualifying the nonlinear dynamic
behavior.

Table2The settling time of the diagonal second kernel’s Components

Settlmg time (5)

[ 2

1
o |-1+1- 008/ u(c] |
[
|

Nonlmear component

Quadratic state component A% (7,7 =

2v,(¢) '}
—w (0 )+ k() 0080, (2) |
[ 2 ]

cy P |
Bilinear state-rate component /. (7.7 ) T, =—In4
- (=3

Quadratic rae component 2¥ (7,7) =

Bilinear state-input component 25 (r,057) T =

i —n(0.02/1- 7))

Bilinear rate-nput component 45" (7, 7) :
ks p

5 First order system step response

The response to a step input is selected herein as
the baseline to characterize the system behavior
of the first order SDOF. Using Eqg. (32) to
compute the step response of each component
individually, the system overall step response is
then sought as:
X = X + X+ x0T+ x7
X2
2
X, = ﬂ(ea‘t —1), X3 = Ak (ea‘ —1)
a a
a2 (54)
_ AKoiKa0
a3

qs
X2

(eza‘ — 2ate™ —1)

2
ngi _ A l;ozlkll (1_eat +ate"“)
In Eqg. (54), A is the step input amplitude. The
four terms xi,x¥, x>, and x¥are the
contributions of the linear, quadratic, and
bilinear components in the system behavior.
Assembling these components together presents
the overall response. To show each component’s
effect on the overall behavior, the generic shape
of each term is individually visualized as shown
in Figure 17 and Figure 18 in the case of a < 0.
Both linear and quadratic input components
have the same mathematical structure except for
the steady gain as shown in Figure 17. Although
the normalized state quadratic and bilinear
components have different mathematical
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structure, both yield the same generic shape as
shown in Figure 18 but with different
parameters.

All responses start at zero and head upward.
The initial slope of the normalized linear and
input bilinear terms is tan(¢) = a, while both the
normalized state quadratic and bilinear terms
have a zero initial slope. This observation
indicates that both state quadratic and bilinear
terms have no influence on the initial rate in
which the system behaves for any input
excitation. The initial rate x(0) is a function of
the ratio between the linear coefficient ko; and
the quadratic input coefficient ko, in addition to
the input amplitude A. For example, if input
quadratic coefficient kg, has a negative sign and
the coefficient ko; has a positive sign, the total
initial rate is then less than the expected one
from the linear analysis and there may be an
undershoot phenomena that appears in the case
when the input quadratic coefficient ko, is more
dominant or at a high input amplitude A.

Both the state quadratic and bilinear
responses have a noticeable lag. The duration of
lag in the state quadratic term is longer than in
the case of the bilinear term, but its transient
rise is steeper. Thus, the quadratic kernel has
zero edges and the bilinear kernel has non-zero
edges. Referring to these two lags as 4 and ",
if 2% is considered as the required threshold to
leave the vicinity of such a lag, then these two
lags are approximately found to be 0.45/|a] and
0.2/|a. Note that the quadratic and bilinear step
responses include a ramp function multiplied by
an exponential function, which sets hurdles in
computing their lag times analytically; a reason
for which numerical fitting is considered. These
time lags are the instances at which a deviation
between linear and nonlinear simulation starts to
be significant in the case of a zero input
quadratic  coefficient, which is frequently
observed in aircraft applications.

The deviation between linear and nonlinear
responses can be positive or negative depending
on the difference in signs between the linear
coefficient and both the x%and X
coefficients. This deviation widens due to an
increase in the slopes of the state quadratic and
bilinear terms, after the two terms exit from
their lag vicinity. This increasing slope reaches
a maximum at time <%= 1.6/|a] and *'= 1/|a|
for x5 and x; respectively, which are computed
using numerical fitting. After reaching these
maximum slopes, a rapid decrease in each
term’s rate leads to an offset difference between
the linear and nonlinear responses. Sequentially,
each term settles to its steady gain at equivalent
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settling times r,,= «X'= 4/|a| in the case of the
linear and input quadratic terms, %= 6.6/|a| in
the case of the state quadratic term, and 7' =
5.8/|a] in the case of the bilinear term. The
overall response settles at

— AkOl + A2k021k20 + Aszlkll + AZkOZ

IO .

The time for reaching this steady value
depends on the ratio between the coefficients of
each term and the input amplitude. For example,
if the system has only a state quadratic
nonlinearity and this term has a negative sign,
which means negative xJ°, the settling time in
this case is less than the linear settling time,
since the system settles before the steady value
of the linear term. Such observation reveals that
nonlinearity sometimes may improve the system
behavior.

The resultant analytical Volterra-based
model for the first order SDOF system
illuminates many of the nonlinearities usually
observed in experimental and numerical results
such as the amplitude-dependency response, or
how the system becomes non-homogenous with
increasing input amplitude. Hence, changing the
amplitude not only changes the steady value of
the output, but also changes the shape through
which the system reaches this steady value.
Also, the linear coefficient a not only controls
the stability of the system, but also controls the
system nonlinearity strength. For example, in
the case of a highly damped system, if the
system is weakly nonlinear or the nonlinear
terms are neglected compared to the linear
terms, the system then behaves close to a linear
one. On the other hand, if the system lacks
sufficient damping, the nonlinearity cannot be
neglected even though the nonlinear terms are
small. Thus, the low stability gain a increases
the significance of the second order quadratic
state kernel and instability arises possibly before
the condition a = 0.

1

(55)

SS

lalx, (AN, or  falxYeraz,
.

] ]
tfs) T.O0T,

Figure 17 First order system linear or quadratic input response to
step input (a < 0)
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Figure 18 First order system quadratic state or bilinear state-input
response to step input (a < 0)

6 Second order system step response

Recall Eg. (46) and assume a step input with
amplitude A excites the system, the approximate
step response of this nonlinear system is then

X=X+ X+ X0 X8 +x0P + x  x

(56)
where
koAl €
X = " {1 Jl_?sm(a)dn(p)} (57)
qs k0201k200A2
Xg® = 0oL 200
{ — & [amtcos(,t+p)-2(3-2¢)sin(w,t + )
sh-¢ Y
o (58)

—sin(w,t +3p)-

1 . A
W sin(e,t —2(p—(p):l+ 4(1_42)
sin(2w,t + 29 + ¢):|}

{2+ ! sin(2w,t +3(p)7;
1-¢? J1-¢7o-8c?

XbsT = k0201k110A2 e
’ o) 20-c2)"(0-8c?)
{[16;(1742)3’2 ~(9-8¢ Yot ] cos(a,t)+ [3-2¢2 Jsin(w,t) (59)

[(3—442 )c0s(2a,t + @)+ 41— ¢ 2 sin(2e,t + )+ £ (9822 )]

2 2
k001k020A
4o o,

{e“‘ [2 sin(p)+sin(2w,t +¢)- \/Q}Tf sin(2a,t+ (/3)] (60)

1 - .
W sin(2w,t - (p)}

qr _
X, =

+e“[Zsin(a}dt—go)—sin(a)dt+(p)—

kkA

bsi 001101
X2

4
wn

| (61)

—ot
¢ - [csin(@,t)+ 20— ¢ 2 )sin(w, t+p)- o, tcos(a, t+ )|
2(1—;2)3 2
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bri _ komkonewt i _
X! == 3 {sin(wyt)—teo, cos(w,t)} (62)

i KoooA? et
X3 = p {1 ﬁsm(wdtﬂp)} (63)
Assembling the linear term x; along with the

nonlinear components  x°, x2*", x3", x2*', x2",

and x;' is the overall system response to a step
input. Each term has different influences on the
overall behavior. Figures 19-24 show the
generic shape of the each individual component
in the case of 0 < { < 1. As in the case of the
first order system, both linear and quadratic
input terms have the same generic shape with
different gain; k001A/ w? in the case of linear
term and kOOZAzla) in the case of quadratic
input component.

All responses start at zero with a zero rates
(initial conditions), and head upward or
downward depending on their _equi |valent 5|gns
The nonlinear components X3°, x>, x5", x;*, and

xy"have noticeable initial time lags. If a 2%
tolerance is considered to define these lag
vicinities, the equivalent time lags are computed
as
o _156-005 ., 1335-0.05

rl rl

o o
;0974 -0.02 ;i 0.33¢-0.02
TﬁS' — é’o- , Z_Elrl — éla (64)

o _ 0380003

=

where rﬂs,rﬂ“,rﬁ,r, EE' and z"are the time
lags for x3°,x>*", x3", x;*, and xg” respectively.
Note because of the expressions complexity of
these nonlinear components, a fitting technique
is employed to find approximate expressions for
the equivalent time lags as listed in Eq. (64).
The 2% is defined bé’ thg steady value of each
term in the case of X, X, and x®*', while the
2% is defined by the maximum value in the case
of x;'and x". The linear term and the quadratic
input component do not have such time lags.
Both start immediately to rise to their steady
value. This observation is consistent with the
one in the first order system case, which
emphasizes that any noticeable change in the
initial slope, from that given by linear model, is
traced back to the quadratic input nonlinearity.
Also, the time lags are the instances at which a
deviation between linear and nonlinear
simulation starts to be significant in the case of
a zero quadratic input coefficient.

Leaving the 2% vicinities, all responses
oscillate around their equivalent steady values.
All terms oscillate with the same frequency wqg
generating a set of maximum and minimum
points. Both quadratic state x;°and bilinear
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state-input  x)*'components  achieve their
minimum and maximum values at the same
times, which are (4n+5n/2/wg and
(4n+3)n/2/wq respectively, where n = 0,1,2,...
The rest of other components consistent with the
linear term have minimum and maximum values
at times (2n+3)n/wq and 2(n+1)n/wq, Where n =
0,1,2,... Based on these results, both quadratic
state x;°and bilinear state-input components
produce a phase shift in the observed peaks
especially after the linear behavior settles down.
As shown in Figure 22, the quadratic rate
component does not symmetrically oscillate
around zero, which means that the total
response  experiences a  non-symmetric
oscillatory response in the presence of a
significant quadratic rate nonlinearity.

The loci of the maximum and minimum
points are achieved by substituting their
equivalent time values in the original
expressions. The expression of these loci is
given in Refs. [29-31], which are omitted from
the current version. These loci are good
estimators for the settling time of each
component. For the linear term and quadratic
input component, the response settling time
based on their equivalent loci isz), =z =4/ .
The settling time of the quadratic rate
component is

o 1 2
7 =—In
o |=1+,1+0.08/y,(¢)
64 -9¢° +4¢"
Wg(g): ( 5 )
0-8?) |
For the rest of components xJ°,x5*, x>, and
x;", a fitting technique is to compute the
settling times as
6.802 8.2 +9.0

(65)

as _

rs

o
o~ 0.23¢2 -0.54¢ +6.8
, 0 (66)
o TAC” —8.30+82
rs o

o —2.20% =270 +74

rs

O

The resultant settling times of these
components have more damping sensitivity than
the linear term. The overall settling time
depends on how the ratio between the
coefficients, undamped natural frequency, and
damping ratio. If the system has low frequency,
the nonlinearity of the system starts to be
significant even if the system has low nonlinear
coefficients, but the influence of this frequency
on the settling time is the same as in the linear
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case. On the other hand, the damping ratio {
does not change the ratio between the linear and
nonlinear terms, but changes the overall settling
time. In addition, the sign ratio between the
coefficients plays an important role in the
settling time. Negative nonlinear coefficients
may lead to improve the settling time or make it
longer.

The bilinear state-rate, quadratic rate, and
bilinear rate-input components oscillate around
a zero value. This observation indicates that the
bilinear position-rate and quadratic rate
components have no influence on the overall
response’s steady value. Thus, for a stable case
¢ > 0, when the total system behavior starts to
settle down, its rate settles at zero (v = vi+ vot...
~ 0) and theses components diminish. Linear,
quadratic state, bilinear state-input, and
quadratic input components, on the other hand,
oscillate around non-zero values, which means
that they have influences on the steady value for
the step input case. Using this assembly, the
estimated overall steady value g is

KoorA  KooKoooA?  KooKiolA® KogpA?
Xssz 00]2. + 007 2((3)0 + 007" 121 + 0;)52 (67)

a)n a)ﬂ a)ﬂ n

This steady value depends on the system
parameters as well as the input amplitude.
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Figure 19 Second order system linear or quadratic input response
to step input (0<¢<1)
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Figure 20 Second order system quadratic state response to step
input (0<¢<1)
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Figure 21 Second order system bilinear state-rate response to step
input (0<{<1)
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Figure 22 Second order system quadratic rate response to step
input (0<¢<1)
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Figure 23 Second order system bilinear state-input response to step
input (0<¢<1)
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Figure 24 Second order system bilinear rate-input response to step
input (0<¢<1)

7 Low order motion examples

In this Section, numerical examples of surge
and pitch motions are presented to show the
capability of the developed Volterra-based
model to wunderstand and predict aircraft
behavior. For each motion, the trim values of
the total nonlinear aircraft model are computed
at certain operating conditions. These conditions
are selected to represent the behavior of the
aircraft near the boundaries of the flight
envelope. The low order flight systems are then
extracted from the overall model. These low
order systems still have the aerodynamic-
propulsive coefficients represented by look-up
tables. After that, the finite difference technique
generates both first and second order stability
and control derivatives around the previously
considered  operating  conditions.  These
derivatives are passed to linear-based and
Volterra-based models, while the look-up tables
are used for the nonlinear simulation.

In the surge motion example, consider the
aircraft flies levelly at an altitude H, = 10 kft
with a constant total velocity V, = 300 ft/s. The
required angle of attack and elevator deflection
to lift the aircraft and balance the pitching
moment are a, = 15.85 deg and de = -11.07
deg, while the required thrust is generated by
adjusting the throttle deflection to Jw = 28%.
These state and input values are computed using
the trim subroutine of F-16 full model in a
rectilinear motion. Recall equation (13) and use
the finite difference to calculate the derivatives
at this flight condition, the equivalent surge
equation of motion is

AV =—0.0285AV +13.44A5, — 4.57 x10° AV ?
200200

a=k k k
10 01 20 68
+4.06 x10° AVAS,, (68)

k11
In Eq. (68), the quadratic throttle deflection is
zero (ko2 = 0). Thus, in F-16 engine model, the
thrust is linearly related to the throttle
deflection.

The surge motion’s first kernel is an
exponential function starts at kos = 13.44 and
heads downward with an angle ¢ = arctan(a) =
1.6 deg reaching zero at time infinity. The
required time to settle this first kernel inside a
2% band is 7. =4/|al=140.4s (see Eq. (37) ).
The surge motion’s second kernel has two
components: quadratic velocity component h,®
and bilinear velocity-throttle component h>*'.
The linear term a (kip = -0.0285 1/s) has a
relatively low value indicating that the quadratic
componenth;*is more dominant than the
bilinear component h*' according to Eq. (35).
Thus, the quadratic component is proportional
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to k,kZ/a = 0.29 ft/s/rad?, while the bilinear
component is proportional to kjiko; = 0.0273
ft/s/rad>. This fact makes the shape of the
second kernel look close to the quadratic state
kernel shape in Figure 4. The second kernels’
components settle at about the same time:
¥ =¢2'= 140.4 s, which means that the total
second kernel has the same settling time.
Adding the two components together leads to
the overall shape of the second kernel as shown
in Figure 25 . The diagonal shape of the total
second kernel starts at h,(0,0) = ky1kop = 0.0273
keeps heading downward to reach a minimum
value hmin=-0.0594 at time 7 =:%=07/|a|
=24.5s. After reaching this minimum value,
the diagonal line heads upward again to settle at
zero by time infinity. The developed first and
second kernels of the surge motion can be then
used to predict the system behavior to any
throttle deflection.

Dylecy) (s

200

[E] 50
T a0 100
0 5 6

Figure 25 Surge motion second kernel at H, = 10kft and V, = 300 ft/s

Consider the step response more specifically,
using the results of the developed step response
in Section VI, the lag time of each nonlinear
component is 7% = 0.45/|a] = 15 s and ¢ =
0.2/|a] = 7 's. The linear term has a settling time
4/la] = 140.4 s, while the two nonlinear
components have settlmg times ¥ = 6.6/]a =
231.6 s and ' = 5.8/|a] = 203. 5 s. Since the
quadratic state component x,° has a negative
value and it is more dominant than the bilinear
componentx>®, the overall settling time is
expected to be less than the linear one
depending on the input amplitude. At a low
amplitude input, the settling time is almost the
linear settling time 140 s, while at a high
amplitude input, the settling time is less than
140 s. In other words, increasing the input’s
amplitude reduces the settling time. Recall Eq.
(55), the steady value as a function of input’s
amplitude is AV, =471.6A5, —289.5A5; ft/s.

For example, assume an input excitation Ad,
=15%. Figure 26 shows the response of each

Ashraf Omran and Brett Newman

nonlinear component.  Assembling the two
nonlinear components along with the linear term
provide the overall estimated response as shown
in Figure 27. Both nonlinear and linear
responses start with the same slope or velocity
(quadratic state and bilinear terms do not change
the initial rate due to time lag). Attimet=15s,
the linear model deviates from the nonlinear
one. This deviation time is the quadratic time
Ia(]g The linear-based model has a steady value

near — 371ft/s, while the Volterra-based model
has a steady value V)™ =364.3 ft/s. The
nonlinear simulation has a steady value 365 ft/s.
This result shows how the quadratic component
has a significant influence on the steady value.
The quadratic component in this model
represents the second derivative of the X-axis
total force with velocity, which is the drag and
thrust variation with the velocity squared. The
required time to achieve the steady values in the
case of the linear is 7™ =4/|a|=140s. In case
of Volterra model, by recalling Eq. (54) and
equating by 2% from the steadx value, the
estimated settling time is then 7/°"™ =114s.
The nonlinear simulation has a total settling
time 118 s, which is much less than the linear
settling time because of the negative sign of the
quadratic position component.
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Figure 26 Surge motion nonlinear step response components for Ady,
=15%
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Figure 27 Surge motion step response for Ady, = 15%
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The second example represents the pitch
motion at an altitude H, = 40 kft and total
velocity V, = 530 ft/s. For a rectilinear motion,
the computed trimming variables are 6, = a, =
15.6 deg, 0e = -2.6 deg, and o = 98.8%.
Using the finite difference technique, the
reduced pitch equations of motion, equivalent to
Eq. (15), are

A6 = Aq
AG =—0.79A0-0.36Aq—3.15A6, +1.05A6°
—— —— — —
k100 ko1o koo1 K200 (69)

+0.16A0Aq +0.29A0A5,— 0.0014A 57

In Eqg. (69), the quadratic rate coefficient kopo =
0 and the bilinear rate-input coefficient ko1 = 0.
Thus, both plunge force and pitch moment
coefficients are linear related to the pitch rate g
with a zero correlation to the elevator deflection
de. The pitch motion model has a damping ratio
¢ = 0.2, damping factor ¢ = 0.18 1/s, undamped
natural frequency w, = 0.89 rad/s, and damped
natural frequency wq = 0.87 rad/s. The first
kernel starts at zero with a negative slope and
keeps oscillating zero with a frequency wqg =
0.87 rad/s. The amplitude of this oscillation
decreases with time and settles inside a 2% band
of the gain |koo1/ wn| = 3.45 attime z,, =4/|c|=
22.2 s. The second kernel has four components.
Based on Eqgs. (40-45), the influence of each
component on the total second kernel, from
highest to lowest, is: quadratic state component
hg* (with a weight k,, k2,/ 2w = 6.86), bilinear
state-rate co t h> (with a weight
kllok§01/2a)j:;1—§2 = 1.18), bilinear state-
input  component  h'(with a  weight
Kio:Koor / 2002 = -0.59), and quadratic input
componenthy (with a weight k., /@, =
0.0016). Altzhough the nonlinear coefficients in
Eq. (69) are in the same range, the analysis
based on Volterra model shows that some
nonlinearities dominate the others because of
the operating frequency and damping ratio. The
contribution of the quadratic input term is
almost zero and can be removed from the
model. Since the quadratic state component has
the highest weight with a big difference
compared to the other components, the total
second kernel is expected to be close in shape to
the quadratic state componenth®. Figure 28
shows the total second kernel. The individual
settling time of each component isz2*= 19.47 s,
rP'=19.34 s, and 2 =73 = 22.23 s. Since
the quadratic state component is dominant, the
expected overall settling time is roughly close to
T~ 19.47 s.
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Figure 28 Pitch motion second kernel at H, = 40 kft and V, = 530 ft/s

The developed first and second kernels of the
pitch motion provide the seeking structural to
predict and understand the system behavior to
any input. The step response analysis in Section
VI is now recalled and used. The step response
of each component can be specified by the
following characteristics:

! Time lags of each component in Eq. (64) as
3= 141s, ¢2Pr=1.22s, 2= 0.98 s, and
z‘ﬂi =0s.

2 Settling times in Eq. (66) as 7% = 41.9 s, 70Pr
=37.1s, 2'=37.9s,and 7%= 22.25s.

3 Steady values in Eq. (67) asg® = 22.06 AS?
rad, 02" = 0As? rad, o= -1.44 As? rad, and

qi =

-0.0017 As? rad, where Ade is in rad.

The linear response, on the other hand, has a
settling time 7! = 22.2 s and a steady value g/,
= -3.98 AJ, rad. As a test case, the response of
each nonlinear component is shown in Figure 29
for an input of Ade = 0.75 deg. fFigure 30
shows the result of assembling the linear term to
the nonlinear components in a comparison with
the linear response, while the nonlinear
simulation is the benchmark. The three
responses (Linear, VVolterra, and Nonlinear) start
at zero heading downward. The linear model
deviates from both the nonlinear simulation and
Volterra-based model at t = 1.5 s (almost equals
toz7°), when the nonlinear components start to
be energetic.

There is a difference in the times of the peak
overshoot and undershoot between linear and
nonlinear simulation. Based on Volterra model,
this difference in times traces back to x2* and
x5 components, which head At = 7/2/wg = 1.8
s from the linear simulation. However, the x2*
component does not really contribute in such a
time difference as well as x%component
because of its low strength. Volterra model
consistently with the nonlinear simulation
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provides the times of the first three overshoot
peaks at: 6.76s, 13.67s, and 20.47 s. The linear
model, on the other hand, provides these times
at: 7.22s, 14.43s, and 21.64s. It is clear how the
time difference propagates with time to reach a
phase shift 90 deg by the third cycle. The
equivalent percentage maximum overshoots at
these times are: [7.5% 3.2% 1.5%] based on the
linear model and [8.0% 3.9% 2.1%] based on
the Volterra model, which is the same as the
nonlinear simulation. The differences in
estimating the maximum overshoot values and
their equivalent times emphasize that developed
analytical models based on Volterra theory
provides a better tool in predicting the transient
response of the aircraft especially for tracking
applications when these differences are a matter
of concern. The developed analytical Volterra
model not only proves the capability to render
the transient response but also the steady
response as @' = 12.79 deg compared to
ore" = 12.6 deg from the linear model with an
error 7%. The estimated settling time to reach
this value is t!"*" =19.4s and t!"™" = 24.6s.
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Figure 29 Pitch motion nonlinear step response components for Ad.
=0.75 deg
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8 Conclusion

A procedure to analytically assemble the
constituents of the dynamic response of simple
low order nonlinear systems based on multi-
dimensional convolution expansion theory has
been offered. The procedure provides closed-
form expressions for the convolution integral
kernels, which in turn lead to expressions for the
time response for a step input. The explicit
nature of the relational expressions allow cause-
and-effect insights between nonlinearities
present in the state space model and
corresponding response traits. The procedure
facilitates system prediction before employing
computer simulation and/or system analysis
after computer simulation. At this point in time,
the procedure has only been developed for first
and second order single degree of freedom
systems. Expanding this framework to multi-
axis motions is of future interest. Application to
single state and dual state uni-axis aircraft
motion exposed the source of differences
between nonlinear and linear responses,
specifically initial departure time, maximum
and steady offsets, differences in settling times,
and oscillation frequency and phasing shifts
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