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Abstract  

In this paper, a procedure to develop an 
analytical two-term truncated Volterra series 
for the low order flight subsystems is presented. 
The resultant models are given in the form of 
first and second kernels. A parametric study of 
the influence of each linear and nonlinear term 
on kernel structures is investigated. A step input 
is then employed to quantify and qualify the 
nonlinear response characteristics. Uniaxial 
surge and pitch motions are presented as 
examples of the low order flight dynamic 
systems. The proposed analytical Volterra-
based model offers an efficient nonlinear 
preliminary design tool in qualifying the 
aircraft responses before computer simulation is 
invoked or available. 

1 Introduction 

Constructing an analytical model describing 
nonlinear aircraft dynamic behavior has been 
investigated using various approximation 
techniques. Three common approaches appear 
in the literature to predict nonlinear phenomena: 
bifurcation approach, describing function 
approach, and perturbation expansion approach. 
Bifurcation analysis has been applied to many 
nonlinear phenomena such as wing rock [1-5], 
spin entry [6-7], and pilot-induced oscillation 
[8]. Describing function analysis has been used 
mostly to generate limit cycle behavior in many 
flight dynamic models as reported in Refs. [8-
12]. Since perturbation expansion analysis 
breaks down quickly in time or in parameter 
strength. One example is given in Ref. [13].  
Although all these techniques show potential to 
understand and analyze nonlinear behavior of 
aircraft, these methods sometimes do not 
provide a precise cause-and-effect result, do not 
address transient behavior, or do not cover a 
sufficient range of time and/or parameter 
variation.  

Volterra theory has emerged as a popular 
nonlinear modeling technique, primarily 
because of the underlying analytical framework 
and its extension of the impulse response 
concept from linear theory. Volterra theory 
dates back to 1887 with the first encompassing 
publication appearing in 1927 and later in 1958 
[14-15]. An early use of this theory was made 
by Wiener and subsequent research was 
conducted at the Massachusetts Institute of 
Technology in the area of filtering and 
electronic circuits [16-18]. Few applications of 
the Volterra methodology to flight mechanics 
appear in the literature. References [19-20] are 
two notable exceptions. In these efforts, 
modeling the longitudinal dynamics of a high 
performance aircraft in limit cycling conditions 
has been explored via the Volterra approach. In 
Ref. [20], a differential form of a reduced third 
order Volterra series was considered. The 
approach proved the ability to capture the limit 
cycle. This work was extended in Ref. [19] to a 
global approach. An interesting application of 
Volterra theory in flight mechanics is presented 
in Ref. [21] to analytically define nonlinear 
flying quality metrics. However, most of these 
trials date back to the 1980s and early 1990s. 
Recently, in Refs. [22-23], the authors bring 
back the utilization of Volterra theory to flight 
mechanics through a global piecewise approach. 
This approach facilitates the use of Volterra 
theory in a piecewise fashion for strong 
nonlinearity. Continuing this effort of utilizing 
Volterra theory in flight mechanics research, a 
new trial to use the theory in analytically 
predicting nonlinear behavior is investigated 
herein. 

This paper presents an analytical framework 
to predict the nonlinear behavior of the first and 
second order SDOF flight subsystems. Section 2 
shows that the essence of aircraft nonlinear 
behavior in multi-axis motion can be rendered 
with simple first order and second order single 
degree of freedom (SDOF) submodels. In 
Sections 4, the outline of developing a closed 
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form solution based on Volterra theory is briefly 
discussed. Sections 4-5 provide generalized 
closed form solutions to the first and second 
order SDOF systems previously developed in 
Section 2. More specifically, the nonlinear step 
response of the low order systems is 
investigated in Section 6-7 to qualify and 
quantify these low order subsystems behavior. 
In Section 8, numerical examples are presented 
to assess the proposed Volterra-based models. 
The work is finally concluded in Section 9. 

2 Low order uniaxial flight subsystems   

This section shows how the full order aircraft 
dynamic model can be represented as a set of 
low order flight dynamic subsystems while 
preserving the link to the more general model. 
The two low order system examples: surge and 
pitch motions, are offered herein as 
demonstrations. Each example represents a 
SDOF uniaxial motion. Reference [24] contains 
a frequently cited full order dynamic model of a 
high performance aircraft. This model is 
considered under many assumptions: the aircraft 
is a rigid body with six degrees of freedom 
(6DOF) except for an internal constant spinning 
engine rotor, the aircraft mass is constant, the 
aircraft body is symmetric about the XZ plane, 
the atmosphere is stationary, and the earth is flat 
with constant gravity. Based on those 
assumptions the nonlinear equations of motion, 
derived from Newtonian mechanics, are 
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The aerodynamic and engine data used in 
the aircraft model have been developed by a test 
at NASA Langley Research Center in 1979 as 
listed in Ref. [24]. This test was conducted in 
low-speed wind tunnel facilities. The model 
data represents the total aerodynamic 
coefficients (

TTTTTT NMLZYX CCCCCC ,,,,, ) as 
function of angle of attack α, sideslip angle β, 
elevator deflection δe, aileron deflection δa, and 

rudder deflection δr as look-up tables. However, 
the model is computationally expensive. In Ref. 
[25], a simplified model of the aerodynamic 
coefficients is represented. The new model has 
the capability to reduce the computational cost 
with an acceptable accuracy, but the simplicity 
of this model restricts the angle of attack range 
to -10

o
 /+45

o
 and the sideslip angle range to -

30
o
/+30

o
. The equivalent aerodynamic tables of 

this model are given in Ref. [25]. All tabular 
data are valid only for the limits on the angle of 
attack, sideslip angle, and control surfaces (|δe| < 
25, | δa| < 25, and | δr | < 25). The maximum 
thrust (T) of the afterburner turbofan engine 
model is given as a function of altitude H, Mach 
number M, and throttle deflection δth. The 
numerical values of the engine model are given 
in Refs. [24-25].  

The dominant behavior of a conventional 
aircraft can be fairly well described by a 
symmetric motion (longitudinal) and an 
asymmetric motion (lateral-directional), if the 
engine angular momentum He is assumed zero. 
In the case of symmetric longitudinal flight, the 
lateral-directional variables are exactly zero due 
to airplane symmetry about the XZ plane. Using 
the stability axes and the relations w = V sin(α), 
u = V cos(α), and V

2 
= u

2 
+ w

2
, one can replace 

the surge u and heave w equations by  the total 
velocity V and the angle of attack α  equations.  
A reduced nonlinear longitudinal model can 
then describe the aircraft motion as 
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 If an autopilot is assumed to hold the 
altitude to a constant value Ho and the flight 
path angle γo = θo - αo at zero value, then the 
total velocity variation is given as 
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where αo and eo
  are the trimmed angle of 

attack and  elevator deflection, which are 
determined by the specified parameter vector ̂  
= [Ho  Vo]

T
. Equation (12) represents a first 

order SDOF system for total velocity with the 
throttle deflection as the input. The perturbation 
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form of Eq. (12) is given by introducing the 
derivatives of the function f as 
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The two perturbed quantities ΔV and Δδth, not 
necessarily small, are measured from the 
nominal values defined at the operating 
condition. Since the aerodynamic and engine 
models of the aircraft are given in the form of 
look-up tables, a finite difference technique is 
the proper choice to compute the derivatives 
appearing in Eq. (13).  
 Another example of a longitudinal low 
order flight subsystem is the nonlinear pitching 
motion. In this pitching motion, the total 
velocity is assumed constant in magnitude (V = 
Vo) and direction (γ = γo = 0, θ = α). The pitch 
motion is then described by a second order 
SDOF subsystem as 
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The parameter vector ̂  is introduced through q . 
Expanding the nonlinear function f around the 
nominal point, defined by ̂ , leads to  
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The perturbed quantities Δθ, Δq and Δδe are 
defined from the nominal value determined by 
the operating condition ̂  = [Ho  Vo]

T
. 

 The two uniaxial flight examples of surge 
and pitch motions represent the aircraft behavior 
as a SDOF first or second order system. In Ref. 
[29], the authors developed another two 
equivalent examples for the lateral motion. The 
nonlinearity herein appears in the high order 
aerodynamic and propulsive derivatives with 
respect to the input and state signals. The linear 
theory offers an analytical solution for such low 
order systems, which counts the first order 
derivatives only. When the aircraft operates at 
unusual attitudes, the first order derivatives are 
insufficient to render the behavior. Volterra 
theory is used herein as a nonlinear approximate 
technique to develop an analytical solution in 
order to count these high order derivatives for 
the first and second order SDOF systems as 
shown in the next Sections. 

3 Volterra theory   

Many physical systems can be described 
across a set of nonlinear differential and 
algebraic equations between the input signal

mRu , the state signal 
nRx , and the output 

signal pRy . A commonly used representation 
is the nonlinear state space form 
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Vectors nRf   and 
pRg  denote the system 

nonlinearities and 1Rt  is time. Volterra theory 
represents the input-output relation of a 
nonlinear system as an infinite sum of multi-
dimensional convolution integrals [15].  
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In Eq. (17),  kkh  ,...,, 21  denotes the k
th

 order 
Volterra kernel. Volterra kernels are casual 
functions with respect to their argument [15]. 
For developing analytical Volterra kernels from 
the nonlinear differential equation, the 
variational expansion form, also called the 
differential form, is used. Variational method 
was initially developed based on a perturbation 
point of view with the first notable application 
in Ref. [27] and it showed the capability to 
capture the aircraft behavior in many nonlinear 
phenomena in Refs. [19-23] 

Before applying the differential method to 
the low order flight systems in Section 2, the 
outline of the method for a single input case is 
first given to show the mechanism by which the 
analytical kernels can be constructed. The 
method assumes the state vector derivative x  is 
expandable as an infinite power series in terms 
of the state vector 

nRx  and scalar input 
1Ru  around an arbitrary point, defined by 

(xo,uo), as 
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In Eq. (18),   is the Kronecker product. The 
Kronecker product for two matrices P of 
dimension NPMP and Q of dimension NQMQ 
is defined as [15] 
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The resultant matrix QP   is of the size (NP

NQ) (MPMQ). The matrix 
ijK
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i
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defined as 
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Note
00

~
K has a null value. Thus, the expansion 

holds around an equilibrium point ( x = 0). The 
matrix 

ijK
~  represents the derivatives of the 

vector function f(x,u) with respect to x
(i)

 and u
j
 

at point (xo,uo). The input u is generalized to be 
αu(t), where α is any arbitrary constant. In this 
case, the response x(t) can be expanded in terms 
of α as 
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By substituting in Eq. (18) and rearranging 
according to the coefficients of equal α

i 
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…), a set of differential equations is generated 
as  
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Equation (22) represents the system as an 
infinite set of differential equations. Although 
this expansion extends the n-dimensional 
problem to infinite dimension, the original 
nonlinearity of the system is broken down into a 
sequence of pseudo-linear time invariant (PLTI) 
systems, which are solvable. The input of each 
PLTI system is a nonlinear function of all 
previous system states and the input u. Figure 1 
shows the schematic diagram of the method for 
the PLTI systems through the k

th
 term. The first 

PLTI system has a linear transition matrix Φ(t-
t0) based on the square matrix 10

~
K , which is 

excited by input u multiplied the column vector

01K
~ . The state response of this system, x1, in 

closed-form is a convolution integration in 
terms of u and t, which is mapped to the next 
system by a nonlinear function f1(x1,u). This 
sequence is repeated for a certain number k, 
which provides satisfactory results. Note that fi-1 

(x1,x2,…,xi-1,u), where i = 1,2,…,k, 
automatically keeps the order of input u to the 
power i. For example, f1(x1,u) is a sum of u

2
, 

x1u, and 
)2(

1x . By substituting for x1 as a 
convolution integral of u, the bilinear term, x1u, 
and the state quadratic term, )2(

1x , become a 
function of u

2
. Then, x2 is defined as a 

convolution integral of u
2
. In general, this 

condition is not essential to the method, but it is 
necessary to extract the kernels. Thus, each state 
response of the PLTI systems, xi, conceptually 
yields the kernel hi(τ1,.., τi) as described in the 
next two Sections. 

 
Figure 1 Variational expansion method schematic diagram 

3 First order system generalized solution 

The surge motion in Eq. (13) and another roll 
motion presented in Ref. [29] are examples of 
the SDOF first order flight system. The 
generalized equation of motion of such systems 
is  
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where kij is the corresponding coefficient to the 
term x

i
u

j
  and i, j = 0,1,2,3,…. and k00 = 0. Based 

on the global Volterra approach in Refs. [22-
23], a small set of linear and nonlinear terms is 
enough to specify the system characteristics in a 
certain domain. Therefore, the quadratic state, 
bilinear state-input, and quadratic input terms in 
addition to the linear terms in Eq. (23) are 
considered to be sufficient. As a function of 
these terms, the system is  
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Note the linear state term coefficient has been 
re-symbolized by a instead of k10. This re-
symbolization has the purpose to emphasize the 
uniqueness of this term more than others, as 
clearly indicated later in this Section.  

The variational method is now applied to 
develop the Volterra kernels. The state x can be 
then expressed as a  
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The solution of the first differential equation of 
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The solution of x2 is then given as 
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where qibsiqs xxx 222 ,, represent the quadratic state, 
bilinear state-input, and quadratic input 
components of x2.  
 Using the convolution solution of  x1 from  
Eq. (27) and substituting in Eq. (28), the 
quadratic state component qsx2

  and the bilinear 
state-input component bsix2

, are then given as  
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where max(x,y) refers to the maximum values 
between x and y. Note the authors documented 
the  required mathematical  manipulations to 
derive Eqs. (29-30) in Refs. [29-31]. The 
quadratic input component qix2

 yields to the 
standard Volterra form as 
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where δ(τ1-τ2) is the impulse function.  
Adding the quadratic and bilinear 

components to the linear term offers an 
approximate solution of x as 
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(32) 

The resultant approximate solution is given by 
the two kernels h1 and h2. For any arbitrary 
input u(t), one can compute the response x using 
convolution integrals or the pseudo state space 

representation. These kernels are a unique 
signature of the first order SDOF system. To 
understand how the system behavior varies with 
these parameters, their influence on each kernel 
is presented next.  

The first kernel h1 is an exponential function 
with a gain k01 and a power factor a. It is clear 
that this power factor a controls the divergence 
or convergence of the first kernel histories. In 
the case of a > 0, the value of h1 keeps 
increasing with time to be infinite as time tends 
to infinity. This observation concludes that the 
system has a divergent or unstable response for 
any input. If a is null, the first kernel is constant 
with time, which means that the system linear 
response is the input integration. In the case of a 
< 0, at time zero, the value of h1 is k01. This 
value keeps decreasing with time, yielding zero 
at time equal to infinity. Figure 2 shows the 
normalized generic shape of h1 in the case of a 
< 0. The normalized kernel starts at 1 heading 
downward with an angle υ = arctan(a). This 
slope is an indication of the initial or maximum 
speed by which the system responds to any 
arbitrary input. If a 2% value is considered as a 
tolerance for approximate steady state, the 
required time to be inside this zero vicinity is 
labeled here as the linear kernel settling time 

l
ks

. This time is computed as a function of a to be 

 
0 <  afor           

402.0ln

aa

l

ks 




 

(33) 

The second kernel has three components: 
quadratic state kernel 

qsh2 , bilinear state-input 
kernel

bsih2 , and quadratic input kernel
qih2 . Each 

component is a two dimensional surface as a 
function of τ1 and τ2. The quadratic state kernel 

qs
h2  has three exponential terms. The linear 
coefficient a controls the divergence and 
convergence of this surface. In the case of a= 0, 
the surface is defined by 

2

0120kk max(τ1, τ2) using 
l’Hopital’s rule. This maximum operator 
represents two ramp surfaces τ1 and τ2 merged at 
the diagonal line, which implies that if the 
system is critically stable in the linear sense (a = 
0), the state quadratic term has a divergent 
kernel shape (instability).  Such a conclusion is 
not accessible using the linear analysis. When a 
> 0, the surface starts at the zero value heading 
upwards to a divergence referring to unstable 
behavior for any external excitation. If the value 
of a is negative, the surface starts at zero and 
diminishes at infinite time arguments τ1 and τ2. 
The exponential term with the maximum 
operation in the exponent works on directing the 
surface upward and enforcing the surface edges 
to be zero, while the two regular exponential 
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terms of τ1 and τ2 work on heading the surface 
downward. The irregular exponential term 
competes with the two regular terms reaching a 
maximum surface value at τ1 = τ2 = ln(2)/|a|≈ 
0.7/|a|, beyond which this effect diminishes. 
The two standard exponential terms then 
dominate the shape of the surface, yielding zero 
as the two arguments τ1 and τ2 go to infinity. 
One example of this surface is given in Figure 
3, where a = -5 1/s. The overall shape of this 
kernel is determined by its diagonal (τ1 = τ2). 
The normalized general shape of this diagonal is 
shown in Figure 4. The surface has a maximum 
value 0.25 akk /2

0120 at time
qs

km = ln(2)/|a|  ≈ 
0.7/|a|.  The required time by which the surface 
is considered as zero is referred to here as the 
quadratic state kernel’s settling time aqs

ks /4   
The surface of the bilinear state-input kernel 

component 
bsih2  is an exponential function, 

which includes a maximum operator in the 
power. The surface heads to zero (stable or 
convergent) as τ1 and  τ2 tend to infinity in the 
case of a < 0, or head to infinity (unstable or 
divergent) in the case of a > 0. When a = 0, the 
normalized surface is a flat one with a value 0.5. 
Figure 5 shows an example of the bilinear state-
input kernel at a = -5 1/s. The diagonal shape of 
this kernel is the same as the linear first kernel 
in Figure 2 with a different gain of  k01k11/2, but 
with the same initial slope angle υ = arctan(a) 
and the same settling time al

ks

bsi

ks /4 . The 
surface of the quadratic input kernel component 

qih2  is an exponential impulse sheet oriented 
vertically on the diagonal line τ1 = τ2, which has 
the same shape and characteristics of the first 
kernel in Figure 2, but with a gain of k02 instead 
of k01. 

 
Figure 2 First order system first kernel in the case of a < 0 

 
Figure 3 First order system quadratic state second kernel at a = -5 

1/s 

 
Figure 4 first order system quadratic state second diagonal kernel in 

the case of a < 0 

 
Figure 5 First order system bilinear state-input second kernel at a = 

-5 1/s 

4 Second order system generalized solution 

The pitch motion in Eq. (15) in addition to 
another yaw motion documented in Ref. [29] 
are examples of the SDOF second order flight 
systems. The generalized equations of motion of 
such systems are 

2

002011101001

2

020110

2

200

2

   

 2

ukvukxukuk

vkxvkxkvxv

vx

nn










 

(34) 
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Parameter klmn is the corresponding coefficient 
to the term nml uvx and l, m, n = 0,1,2.  Note that 
the linear terms have been re-symbolized by - 
2δωn instead of k010 and 

2
n instead of k100.. This 

re-symbolization is for the purpose of keeping 
the discussion in the sense of undamped natural 
frequency ωn and damping ratio δ from the 
linear theory. The variational method is now 
applied to Eq. (34) to develop the kernels. The 
method assumes that the input is αu  where α is 
any arbitrary constant. The state position x and 
state rate v can then be expressed as a sum of 
infinite terms. 









3

3

2

2

1

3

3

2

2
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vvvv

xxxx
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
 (35) 

By equating α
i
 coefficient, a set of pseudo 

differential equations is generated: 
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 (36) 

The solution of the first linear pseudo subsystem 
[x1 v1]

T
 for a zero initial condition is then 

computed as 

      

      
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 (37) 

where n   denotes the system’s damping 
factor and 21   nd

 is the damped 
natural frequency. 

For the second pseudo subsystem [x2 v2]
T
, 

the solution of x2 is sought as a sum of six 
components 

qibribsiqrbsrqs xxxxxxx 2222222   (38) 

 
where ,,,,, 22222

bribsiqrbsrqs xxxxx and qix2  are 
quadratic state, bilinear state-rate, quadratic rate, 
bilinear state-input, bilinear rate-input, and 

quadratic input component respectively. The 
second pseudo state space is then rewritten as 
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(39) 

Substituting the convolution solutions of x1 and 
v1 from Eq. (37) into Eq. (39), the convolution 
solutions of the six components of x2 are 
derived as [29-31]: 
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and   289/ˆcos   . The authors provided 
a full derivation to the expressions of Eqs. (40-
45) in Ref. [29-3129]. 

The overall second kernel is a sum of the six 
components quadratic state qsh2

, bilinear state-
rate bsrh2

, quadratic rate  qrh2
, bilinear state-input 

bsih2
, bilinear rate-input brih2

, and quadratic input 
qih2

. The resultant second kernel along with the 
first kernel represents an approximate Volterra-
based model for the second order SDOF system. 
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(46) 

 
The Volterra-based model presents the system 
as two analytical kernels. The analytical 
expressions of these kernels are used to 
understand each kernel characteristic as a 
function of system parameters for the second 
order SDOF system.  

The first kernel h1 is an exponential 
sinusoidal function with a gain k001/ωd , 
frequency  ωd , and a damping factor σ. If the 
damping factor is less than zero, then the system 
lacks the damping required to stabilize the 
response for any excitation. Thus, the positive 
exponential power shapes a divergent kernel. 
When taking the damping factor off (null 
damping factor), the remaining sine term keeps 
the kernel shape as an oscillatory one. In the 

case of positive damping factor σ > 0, it is better 
to parameterize the kernel by the damping ratio 
δ = σ/ωn . If the damping ratio is more than or 
equal to unity, then the sine term diminishes and 
the resultant first kernel is a sum of two 
exponential terms, which is the case in the first 
order system. These two exponential terms 
become equal at δ = 1. For less than unity 
damping ratio 0 < δ  < 1, the generic shape of 
the first kernel is shown in Figure 6. In this case 
(0 < δ   < 1), the kernel starts at zero and 
oscillates around zero. The amplitude of such 
oscillation decreases with time, where the loci 
of minimum and maximum points are located 
along the envelope functions h1max and h1min. 

        ,  001
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e
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The maximum points occur at times 
(2nπ+υ)/ωd, while the minimum points occur at 
times ((2n+1)π+υ)/ωd, where n = 0,1,2,… The 
kernel h1 settles down inside a 2% band around 
zero at time 

 
    

402.0ln


 


l

ks
 (48) 

 
Figure 6 Second order system first kernel in the case of 0 < ζ < 1 

The second kernel has six components: 
qibribsiqrbsrqs hhhhhh 222222  and ,,,,, . Each component 

is a two dimensional surface in τ1 and τ2. In the 
case of negative damping factor σ, all the 
surfaces have zero edges heading upwards to 
infinity as τ1 and τ2 go to infinity. These 
divergent surfaces have a sinusoidal waveform 
with a frequency ωd in the case of -1 < δ < 0 
(oscillatory divergent). This sinusoidal 
waveform diminishes when δ   -1 (non-
oscillatory divergent). All surfaces become a 
constant amplitude two-dimensional sinusoidal 
surface in the case of zero damping ratio δ = 0 
(oscillatory). No parametric studies are given to 
the unstable or critically stable cases, since 
these cases have a divergent response, which 
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does not require to be characterized. Thus, the 
characterization is sought for a stable behavior 
for the design and control purposes. If the 
damping ratio is more than unity δ   1 (non-
oscillatory convergent), all the surfaces turn to a 
sum of two exponential functions and the 
analysis of the first order system in Section IV 
can then be used. In the case of 0 < δ < 1 
(oscillatory convergent), which is the frequent 
case of the aircraft low order motions, all the 
surfaces have a two-dimensional damped 
sinusoidal waveform. One example is given in 
Figures 7-11 at δ = 0.1 and ωn = 2 rad/s. The 
quadratic input component , as a special case, is 
an impulsive surface over the diagonal line τ1=  
τ2 having the same shape as the first kernel but 
with a gain of  k002/ωd. 

 

Figure 7 Second order system quadratic state kernel at ζ = 0.1and 

ωn = 2 rad/s 

 
Figure 8 Second order system bilinear state-rate kernel at ζ = 0.1 

and ωn = 2 rad/s 

 

Figure 9 Second order system quadratic rate kernel at ζ = 0.1 and 

ωn = 2 rad/s 

 
Figure 10 Second order system bilinear state-input kernel at ζ = 0.1 

and ωn = 2 rad/s 

 
Figure 11 Second order system bilinear rate-input kernel at ζ = 0.1 

and ωn = 2 rad/s 

 
 In order to characterize each surface in the 
case of 0 < δ < 1, the diagonal waveform

  ,2

jh , where j = {qs, bsr, qr, bri}, is 
considered, while the diagonal waveform of 

  5.0,2

bsih  is considered. Thus, the diagonal 
line of   ,2

bsih has a zero waveform. Figures 
12-16 show the generic shapes of these diagonal 
waveforms. All the diagonal histories start at 
zero value and oscillate by a frequency ωd 
generating a set of minimum and maximum 
value at times listed in Table 1. 

Table 1 The times of maximum and minimum values of the second 

kernel’s components, where n = 0, 1, 2, … 

 

Although all the diagonal waveforms settle at zero by 

time t =   , the equivalent oscillation shapes to reach 

this zero value are not the same. Both quadratic state 

  ,2

qsh in Figure 12 and quadratic rate   ,2

qrh  in 

Figure 14 do not symmetrically oscillate around the zero 

value. The mean oscillation shapes of   ,2

qsh  and 

  ,2

qrh  are similar to the one in Figure 4 (the quadratic 

state diagonal kernel of the first order system). The mean 

oscillation shape is sought here as the average of the 

maximum and minimum points’ loci. If the average of 
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these loci is constant, as in the case of first kernel, the 

oscillation shape is then symmetrical. The two 

components   ,2

qsh  and   ,2

qrh  have the same 

mathematical structure as listed in Eq. (40) and Eq. (42) 

except the phase shift –υ in the two arguments. This 

phase shift warps the diagonal lines of   ,2

qrh  from 

the diagonal lines of   ,2

qsh  (as an example, see Figure 

7and Figure 9).  Because of this phase shift, there is one 

non-periodic maximum point in the case of   ,2

qrh , 

which appears at time 4φ/3π (see Figure 14).  On the 

other hand, the diagonal waveform of the bilinear state-

input component   5.0,2

bsih in Figure 15 has a mean 

oscillation shape similar to the bilinear state-input 

diagonal waveform in  

Figure 5. Both the diagonal forms of the bilinear state-

rate   ,2

bsrh in Figure 13 and bilinear rate-input 

  ,2

brih  in Figure 16 symmetrically oscillate around 

zero.    

 
Figure 12 Second order system quadratic state diagonal kernel in 

the case of 0< ζ < 1 

 
Figure 13  Second order system bilinear state-rate diagonal kernel 

in the case of 0< ζ < 1 

 
Figure 14 Second order system quadratic rate diagonal kernel in the 

case of 0 < ζ < 1 

 
Figure 15  Second order system bilinear state-input diagonal kernel 

in the case of 0 < ζ < 1 

 

Figure 16 Second order system bilinear rate-input diagonal kernel 

in the case of 0 < ζ < 1 

 
The loci of the maximum and minimum 

points are developed by substituting their 
equivalent times in Eqs. (40-44), which leads to 
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where jh min2 and jh max2

 are the loci of minimum 
and maximum values of the diagonal signals, 
where j = {qs, bsr, qr, bsi, bri}.  The amplitude 
of these maximum and minimum loci yields to a 
zero value at time τ tends to infinity.  If a 2% 
vicinity is considered as a tolerance to 
approximate steady state of each second 
kernel’s component, the required time to be 
inside this vicinity of each component is given 
in Table2. These 2% vicinities are considered 
from the normalized gain of each component. 
The settling times in Table2 are estimators to 
the settling times of the total surface of each 
component.   

The developed analytical kernels in Sections 
IV and V predict the behavior of the system for 
any arbitrary input. For the first term in the 
solution x1, the single convolution integral sums 
up the contributions from past inputs weighted 
by the first kernel’s behavior across this past 
time span. Both first kernel of the first order 
system in Figure 2 and of the second order 

system in Figure 6 show that more recent inputs 
are more heavily counted than inputs in the 
distant past. The second term in the solution x2 
is determined in a similar way across a double 
convolution integral involving: the three 
components in the case of the first order system 
and six components in the case of the second 
order system. Each nonlinear component 
simultaneously counts the input signal at two 
different times τ1 and τ2. The next two Sections 
focus on the step response as a more specific 
case in qualifying the nonlinear dynamic 
behavior. 

Table2The settling time of the diagonal second kernel’s Components 

 

5 First order system step response 

The response to a step input is selected herein as 
the baseline to characterize the system behavior 
of the first order SDOF. Using Eq. (32) to 
compute the step response of each component 
individually, the system overall step response is 
then sought as: 
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(54) 

In Eq. (54), A is the step input amplitude. The 
four terms x1,

qsx2 , bsix2 , and qix2 are the 
contributions of the linear, quadratic, and 
bilinear components in the system behavior. 
Assembling these components together presents 
the overall response. To show each component’s 
effect on the overall behavior, the generic shape 
of each term is individually visualized as shown 
in Figure 17 and Figure 18  in the case of a < 0. 
Both linear and quadratic input components 
have the same mathematical structure except for 
the steady gain as shown in Figure 17. Although 
the normalized state quadratic and bilinear 
components have different mathematical 
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structure, both yield the same generic shape as 
shown in Figure 18 but with different 
parameters. 

All responses start at zero and head upward. 
The initial slope of the normalized linear and 
input bilinear terms is tan(υ) = a, while both the 
normalized state quadratic and bilinear terms 
have a zero initial slope. This observation 
indicates that both state quadratic and bilinear 
terms have no influence on the initial rate in 
which the system behaves for any input 
excitation. The initial rate  0x  is a function of 
the ratio between the linear coefficient k01 and 
the quadratic input coefficient k02 in addition to 
the input amplitude A. For example, if input 
quadratic coefficient k02 has a negative sign and 
the coefficient k01 has a positive sign, the total 
initial rate is then less than the expected one 
from the linear analysis and there may be an 
undershoot phenomena that appears in the case 
when the input quadratic coefficient k02 is more 
dominant or at a high input amplitude A.  

Both the state quadratic and bilinear 
responses have a noticeable lag. The duration of 
lag in the state quadratic term is longer than in 
the case of the bilinear term, but its transient 
rise is steeper. Thus, the quadratic kernel has 
zero edges and the bilinear kernel has non-zero 
edges. Referring to these two lags as qs

rl and bsi

rl , 
if  2% is considered  as the required threshold to 
leave the vicinity of such a lag, then these two 
lags are approximately found to be 0.45/|a| and 
0.2/|a|. Note that the quadratic and bilinear step 
responses include a ramp function multiplied by 
an exponential function, which sets hurdles in 
computing their lag times analytically; a reason 
for which numerical fitting is considered. These 
time lags are the instances at which a deviation 
between linear and nonlinear simulation starts to 
be significant in the case of a zero input 
quadratic coefficient, which is frequently 
observed in aircraft applications. 

The deviation between linear and nonlinear 
responses can be positive or negative depending 
on the difference in signs between the linear 
coefficient and both the qs

x2 and bsix2  
coefficients. This deviation widens due to an 
increase in the slopes of the state quadratic and 
bilinear terms, after the two terms exit from 
their lag vicinity. This increasing slope reaches 
a maximum at time qs

rm = 1.6/|a| and bsi

rm = 1/|a| 
for qs

x2  and bx
2
respectively, which are computed 

using numerical fitting. After reaching these 
maximum slopes, a rapid decrease in each 
term’s rate leads to an offset difference between 
the linear and nonlinear responses. Sequentially, 
each term settles to its steady gain at equivalent 

settling times l
rs = qi

rs = 4/|a| in the case of the 
linear and input quadratic terms, qs

rs = 6.6/|a| in 
the case of the state quadratic term, and bsi

rs  = 
5.8/|a| in the case of the bilinear term. The 
overall response settles at  

a
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02
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2

2

20

2

01

2

01   (55) 

The time for reaching this steady value 
depends on the ratio between the coefficients of 
each term and the input amplitude. For example, 
if the system has only a state quadratic 
nonlinearity and this term has a negative sign, 
which means negative qs

x2 , the settling time in 
this case is less than the linear settling time, 
since the system settles before the steady value 
of the linear term. Such observation reveals that 
nonlinearity sometimes may improve the system 
behavior. 

The resultant analytical Volterra-based 
model for the first order SDOF system 
illuminates many of the nonlinearities usually 
observed in experimental and numerical results 
such as the amplitude-dependency response, or 
how the system becomes non-homogenous with 
increasing input amplitude. Hence, changing the 
amplitude not only changes the steady value of 
the output, but also changes the shape through 
which the system reaches this steady value. 
Also, the linear coefficient a not only controls 
the stability of the system, but also controls the 
system nonlinearity strength. For example, in 
the case of a highly damped system, if the 
system is weakly nonlinear or the nonlinear 
terms are neglected compared to the linear 
terms, the system then behaves close to a linear 
one.  On the other hand, if the system lacks 
sufficient damping, the nonlinearity cannot be 
neglected even though the nonlinear terms are 
small. Thus, the low stability gain a increases 
the significance of the second order quadratic 
state kernel and instability arises possibly before 
the condition a = 0.  

 

Figure 17 First order system linear or quadratic input response to 

step input (a < 0) 
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Figure 18 First order system quadratic state or bilinear state-input 

response to step input (a < 0) 

6 Second order system step response 

Recall Eq. (46) and assume a step input with 
amplitude A excites the system, the approximate 
step response of this nonlinear system is then 
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Assembling the linear term x1 along with the 
nonlinear components ,,,,, 22222

bribsiqrbsrqs xxxxx  
and qix2  is the overall system response to a step 
input. Each term has different influences on the 
overall behavior. Figures 19-24 show the 
generic shape of the each individual component 
in the case of 0 < ζ < 1. As in the case of the 
first order system, both linear and quadratic 
input terms have the same generic shape with 
different gain; 2

001 / nAk   in the case of linear 
term and 22

002 / nAk   in the case of quadratic 
input component.  

All responses start at zero with a zero rates 
(initial conditions), and head upward or 
downward depending on their equivalent signs. 
The nonlinear components ,,,, 2222

bsiqrbsrqs xxxx and 
brix2 have noticeable initial time lags. If a 2% 

tolerance is considered to define these lag 
vicinities, the equivalent time lags are computed 
as 
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(64) 

where ,,,, bsi

rl

qr

rl

bsr

rl

qs

rl  and bri

rl are the time 
lags for ,,,, 2222

bsiqrbsrqs xxxx and brix2  respectively. 
Note because of the expressions complexity of 
these nonlinear components, a fitting technique 
is employed to find approximate expressions for 
the equivalent time lags as listed in Eq. (64). 
The 2% is defined by the steady value of each 
term in the case of ,, bsr

rl

qs

rl xx  and bsi

rlx , while the 
2% is defined by the maximum value in the case 
of qr

rlx and bri

rlx . The linear term and the quadratic 
input component do not have such time lags. 
Both start immediately to rise to their steady 
value. This observation is consistent with the 
one in the first order system case, which 
emphasizes that any noticeable change in the 
initial slope, from that given by linear model, is 
traced back to the quadratic input nonlinearity. 
Also, the time lags are the instances at which a 
deviation between linear and nonlinear 
simulation starts to be significant in the case of 
a zero quadratic input coefficient. 

Leaving the 2% vicinities, all responses 
oscillate around their equivalent steady values. 
All terms oscillate with the same frequency ωd 
generating a set of maximum and minimum 
points. Both quadratic state qsx2 and bilinear 
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state-input bsix2
components achieve their 

minimum and maximum values at the same 
times, which are (4n+5)π/2/ωd and  
(4n+3)π/2/ωd  respectively, where n = 0,1,2,… 
The rest of other components consistent with the 
linear term have minimum and maximum values 
at times (2n+3)π/ωd and 2(n+1)π/ωd, where n = 
0,1,2,… Based on these results, both quadratic 
state qsx2

and bilinear state-input components 
produce a phase shift in the observed peaks 
especially after the linear behavior settles down. 
As shown in Figure 22, the quadratic rate 
component does not symmetrically oscillate 
around zero, which means that the total 
response experiences a non-symmetric 
oscillatory response in the presence of a 
significant quadratic rate nonlinearity. 

The loci of the maximum and minimum 
points are achieved by substituting their 
equivalent time values in the original 
expressions. The expression of these loci is 
given in Refs. [29-31], which are omitted from 
the current version. These loci are good 
estimators for the settling time of each 
component. For the linear term and quadratic 
input component, the response settling time 
based on their equivalent loci is  4 qi

rs

l

rs . 
The settling time of the quadratic rate 
component is 

 
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 
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(65) 

For the rest of components ,,, 222

bsibsrqs xxx  and
brix2 , a fitting technique is to compute the 

settling times as 
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(66) 

The resultant settling times of these 
components have more damping sensitivity than 
the linear term. The overall settling time 
depends on how the ratio between the 
coefficients, undamped natural frequency, and 
damping ratio. If the system has low frequency, 
the nonlinearity of the system starts to be 
significant even if the system has low nonlinear 
coefficients, but the influence of this frequency 
on the settling time is the same as in the linear 

case. On the other hand, the damping ratio δ 
does not change the ratio between the linear and 
nonlinear terms, but changes the overall settling 
time. In addition, the sign ratio between the 
coefficients plays an important role in the 
settling time. Negative nonlinear coefficients 
may lead to improve the settling time or make it 
longer.  

The bilinear state-rate, quadratic rate, and 
bilinear rate-input components oscillate around 
a zero value. This observation indicates that the 
bilinear position-rate and quadratic rate 
components have no influence on the overall 
response’s steady value. Thus, for a stable case 
δ > 0, when the total system behavior starts to 
settle down, its rate settles at zero (v = v1+ v2+… 
≈ 0) and theses components diminish. Linear, 
quadratic state, bilinear state-input, and 
quadratic input components, on the other hand, 
oscillate around non-zero values, which means 
that they have influences on the steady value for 
the step input case. Using this assembly, the 
estimated overall steady value xss is  

2

2

002

4

2

101001

6

2

200

2

001

2

001

nnnn

ss

AkAkkAkkAk
x


  (67) 

This steady value depends on the system 

parameters as well as the input amplitude.  

 

 

Figure 19  Second order system linear or quadratic input response 

to step input (0 < ζ < 1) 

 

Figure 20 Second order system quadratic state response to step 

input (0 < ζ < 1) 
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Figure 21 Second order system bilinear state-rate response to step 

input (0 < ζ < 1) 

 

Figure 22  Second order system quadratic rate response to step 

input (0 < ζ < 1) 

 

Figure 23 Second order system bilinear state-input response to step 

input (0< ζ < 1) 

 

Figure 24 Second order system bilinear rate-input response to step 

input (0 < ζ < 1) 

 

7 Low order motion examples  

In this Section, numerical examples of surge 
and pitch motions are presented to show the 
capability of the developed Volterra-based 
model to understand and predict aircraft 
behavior. For each motion, the trim values of 
the total nonlinear aircraft model are computed 
at certain operating conditions. These conditions 
are selected to represent the behavior of the 
aircraft near the boundaries of the flight 
envelope. The low order flight systems are then 
extracted from the overall model. These low 
order systems still have the aerodynamic-
propulsive coefficients represented by look-up 
tables. After that, the finite difference technique 
generates both first and second order stability 
and control derivatives around the previously 
considered operating conditions. These 
derivatives are passed to linear-based and 
Volterra-based models, while the look-up tables 
are used for the nonlinear simulation.  

In the surge motion example, consider the 
aircraft flies levelly at an altitude Ho = 10 kft 
with a constant total velocity Vo = 300 ft/s. The 
required angle of attack and elevator deflection 
to lift the aircraft and balance the pitching 
moment are αo = 15.85 deg and δeo = -11.07 
deg, while the required thrust is generated by 
adjusting the throttle deflection to δtho = 28%. 
These state and input values are computed using 
the trim subroutine of F-16 full model in a 
rectilinear motion. Recall equation (13) and use 
the finite difference to calculate the derivatives 
at this flight condition, the equivalent surge 
equation of motion is  

 104.06

104.5744.130.0285
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(68) 

In Eq. (68), the quadratic throttle deflection is 
zero (k02 = 0). Thus, in F-16 engine model, the 
thrust is linearly related to the throttle 
deflection.   

The surge motion’s first kernel is an 
exponential function starts at k01 = 13.44 and 
heads downward with an angle  υ = arctan(a) = 
1.6 deg reaching zero at time infinity. The 
required time to settle this first kernel inside a 
2% band is s 4.140||/4  al

ks  (see Eq. (37) ). 
The surge motion’s second kernel has two 
components:  quadratic velocity component qsh2

and bilinear velocity-throttle component bsih2
. 

The linear term a (k10 = -0.0285 1/s) has a 
relatively low value indicating that the quadratic 
component qsh2

is more dominant than the 
bilinear component bsih2

  according to Eq. (35). 
Thus, the quadratic component is proportional 
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to akk /2

0120
 = 0.29 ft/s/rad

2
, while the bilinear 

component is proportional to k11k01 = 0.0273 
ft/s/rad

2
. This fact makes the shape of the 

second kernel look close to the quadratic state 
kernel shape in Figure 4. The second kernels’ 
components settle at about the same time:

bsi

ks

qs

ks   =  140.4 s, which means that the total 
second kernel has the same settling time. 
Adding the two components together leads to 
the overall shape of the second kernel as shown 
in Figure 25 . The diagonal shape of the total 
second kernel starts at h2(0,0) = k11k01 =  0.0273 
keeps heading downward to reach a minimum 
value hmin=-0.0594 at time

 ||/7.0 aqs

kmkm   
s 5.24 . After reaching this minimum value, 

the diagonal line heads upward again to settle at 
zero by time infinity. The developed first and 
second kernels of the surge motion can be then 
used to predict the system behavior to any 
throttle deflection. 

 

Figure 25 Surge motion second kernel at Ho = 10kft and Vo = 300 ft/s 

Consider the step response more specifically, 
using the results of the developed step response 
in Section VI, the lag time of each nonlinear 
component is qs

rl
 
= 0.45/|a| = 15 s and bsi

rl
 
= 

0.2/|a| = 7 s.  The linear term has a settling time 
4/|a| = 140.4 s, while the two nonlinear 
components have settling times qs

rs
 
 = 6.6/|a| = 

231.6 s and bsi

rs  = 5.8/|a| = 203.5 s. Since the 
quadratic state component qsx2  has a negative 
value and it is more dominant than the bilinear 
component bsix2 , the overall settling time is 
expected to be less than the linear one 
depending on the input amplitude. At a low 
amplitude input, the settling time is almost the 
linear settling time 140 s, while at a high 
amplitude input, the settling time is less than 
140 s. In other words, increasing the input’s 
amplitude reduces the settling time. Recall Eq. 
(55), the steady value as a function of input’s 
amplitude is 25.2896.471 ththssV  

 
ft/s.  

For example, assume an input excitation Δδth 

=15%.  Figure 26 shows the response of each 

nonlinear component.  Assembling the two 
nonlinear components along with the linear term 
provide the overall estimated response as shown 
in Figure 27. Both nonlinear and linear 
responses start with the same slope or velocity 
(quadratic state and bilinear terms do not change 
the initial rate due to time lag). At time t = 15 s, 
the linear model deviates from the nonlinear 
one. This deviation time is the quadratic time 
lag. The linear-based model has a steady value 

371linear

ssV ft/s, while the Volterra-based model 
has a steady value 3.364Volterra ssV  ft/s. The 
nonlinear simulation has a steady value 365 ft/s. 
This result shows how the quadratic component 
has a significant influence on the steady value. 
The quadratic component in this model 
represents the second derivative of the X-axis 
total force with velocity, which is the drag and 
thrust variation with the velocity squared. The 
required time to achieve the steady values in the 
case of the linear is 140||/4linear  ars s. In case 
of Volterra model, by recalling Eq. (54) and 
equating by 2% from the steady value, the 
estimated settling time is then 114Volterra rs s. 
The nonlinear simulation has a total settling 
time 118 s, which is much less than the linear 
settling time because of the negative sign of the 
quadratic position component.  

 

Figure 26 Surge motion nonlinear step response components for Δδth 

= 15% 

 

Figure 27 Surge motion step response for Δδth = 15% 
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The second example represents the pitch 
motion at an altitude Ho = 40 kft and total 
velocity Vo = 530 ft/s. For a rectilinear motion, 
the computed trimming variables are θo = αo = 
15.6 deg,  δeo = -2.6 deg, and  δtho = 98.8%. 
Using the finite difference technique, the 
reduced pitch equations of motion, equivalent to 
Eq. (15), are  



 
2

2

002101110

200001010100

0.001429.016.0

05.115.336.079.0

e

k

e

kk

k

e

kkk

q

qq

q



















 

(69) 

In Eq. (69), the quadratic rate coefficient k020 = 
0 and the bilinear rate-input coefficient k011 = 0. 
Thus, both plunge force and pitch moment 
coefficients are linear related to the pitch rate q 
with a zero correlation to the elevator deflection 
δe. The pitch motion model has a damping ratio 
δ = 0.2, damping factor σ = 0.18 1/s, undamped 
natural frequency ωn = 0.89 rad/s, and damped 
natural frequency ωd = 0.87 rad/s. The first 
kernel starts at zero with a negative slope and 
keeps oscillating zero with a frequency ωd = 
0.87 rad/s. The amplitude of this oscillation 
decreases with time and settles inside a 2% band 
of the gain |k001/ ωn| = 3.45 at time  ||/4  l

ks  
22.2 s. The second kernel has four components. 
Based on Eqs. (40-45), the influence of each 
component on the total second kernel, from 
highest to lowest, is:  quadratic state component 

qsh2
 (with a weight 42

001200 2/ dkk   = 6.86), bilinear 
state-rate component bsrh2

 (with a weight 
232

001110 12/  dkk = 1.18), bilinear state-
input component bsih2

(with a weight 
2

001101 2/ dkk  = -0.59), and quadratic input 
component qih2

 (with a weight 
dk /002

= -
0.0016).  Although the nonlinear coefficients in 
Eq. (69) are in the same range, the analysis 
based on Volterra model shows that some 
nonlinearities dominate the others because of 
the operating frequency and damping ratio. The 
contribution of the quadratic input term is 
almost zero and can be removed from the 
model. Since the quadratic state component has 
the highest weight with a big difference 
compared to the other components, the total 
second kernel is expected to be close in shape to 
the quadratic state component qsh2

.  Figure 28 
shows the total second kernel.  The individual 
settling time of each component is qs

ks = 19.47 s, 
bpr

ks = 19.34 s, and qi

ks

bsi

ks   = 22.23 s. Since 
the quadratic state component is dominant, the 
expected overall settling time is roughly close to 

total

ks ≈ 19.47 s.   

 

Figure 28 Pitch motion second kernel at Ho = 40 kft and Vo = 530 ft/s 

The developed first and second kernels of the 
pitch motion provide the seeking structural to 
predict and understand the system behavior to 
any input. The step response analysis in Section 
VI is now recalled and used. The step response 
of each component can be specified by the 
following characteristics:  

 
1 Time lags of each component in Eq. (64) as 

qs

rl = 1.41 s, bpr

rl = 1.22 s, bsi

rl = 0.98 s, and 
qi

rl = 0 s.  
2 Settling times in Eq. (66) as qs

rs  = 41.9 s, bpr

rs
= 37.1 s, bsi

rs = 37.9 s, and qi

rs =  22.2 s.  
3 Steady values in Eq. (67) as qs

ss  = 22.06 2

e
rad, bpr

ss = 0 2

e  rad, bsi

rs = -1.44 2

e  rad, and 
qi

ss =  
  -0.0017 2

e  rad, where Δδe is in rad. 
 

The linear response, on the other hand, has a 
settling time l

rs =  22.2 s and a steady value l

rs
= -3.98 Δδe rad. As a test case, the response of 
each nonlinear component is shown in Figure 29 
for an input of Δδe = 0.75  deg. fFigure 30 
shows the result of assembling the linear term to 
the nonlinear components in a comparison with 
the linear response, while the nonlinear 
simulation is the benchmark. The three 
responses (Linear, Volterra, and Nonlinear) start 
at zero heading downward. The linear model 
deviates from both the nonlinear simulation and 
Volterra-based model at t ≈ 1.5 s (almost equals 
to qs

rl ), when the nonlinear components start to 
be energetic. 

 There is a difference in the times of the peak 
overshoot and undershoot between linear and 
nonlinear simulation. Based on Volterra model, 
this difference in times traces back to qsx2

 and 
bsix2

 components, which head Δt =  π/2/ωd  = 1.8 
s from the linear simulation.  However, the bsix2

component does not really contribute in such a 
time difference as well as qsx2

component 
because of its low strength. Volterra model 
consistently with the nonlinear simulation 
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provides the times of the first three overshoot 
peaks at: 6.76s, 13.67s, and 20.47 s. The linear 
model, on the other hand, provides these times 
at: 7.22s, 14.43s, and 21.64s. It is clear how the 
time difference propagates with time to reach a 
phase shift 90 deg by the third cycle. The 
equivalent percentage maximum overshoots at 
these times are: [7.5% 3.2% 1.5%] based on the 
linear model and [8.0% 3.9% 2.1%] based on 
the Volterra model, which is the same as the 
nonlinear simulation. The differences in 
estimating the maximum overshoot values and 
their equivalent times emphasize that developed 
analytical models based on Volterra theory 
provides a better tool in predicting the transient 
response of the aircraft especially for tracking 
applications when these differences are a matter 
of concern. The developed analytical Volterra 
model not only proves the capability to render 
the transient response but also the steady 
response as  volterra

ss
 
12.79  deg compared to 

linear

ss  12.6 deg from the linear model with an 
error 7%. The estimated settling time to reach 
this value is 4.19linear

st s and 6.24linear

st s.  

 

Figure 29 Pitch motion nonlinear step response components for Δδe 

= 0.75 deg 

 

fFigure 30 Pitch motion step response for Δδe = 0.75 deg 

8 Conclusion 

A procedure to analytically assemble the 
constituents of the dynamic response of simple 
low order nonlinear systems based on multi-
dimensional convolution expansion theory has 
been offered. The procedure provides closed-
form expressions for the convolution integral 
kernels, which in turn lead to expressions for the 
time response for a step input. The explicit 
nature of the relational expressions allow cause-
and-effect insights between nonlinearities 
present in the state space model and 
corresponding response traits. The procedure 
facilitates system prediction before employing 
computer simulation and/or system analysis 
after computer simulation. At this point in time, 
the procedure has only been developed for first 
and second order single degree of freedom 
systems. Expanding this framework to multi-
axis motions is of future interest. Application to 
single state and dual state uni-axis aircraft 
motion exposed the source of differences 
between nonlinear and linear responses, 
specifically initial departure time, maximum 
and steady offsets, differences in settling times, 
and oscillation frequency and phasing shifts 
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