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Abstract

In this paper, an approach to monitor the state
of an aircraft’s control surfaces employing a
simulation-based filtering algorithm is presented.
The implementation of such an algorithm and
the application of an existing dynamic model for
this purpose is outlined in this paper. While it
is straightforward to estimate the coupled effects
of a damaged control surface actuator and a de-
graded control surface itself, the attribution of a
fault to its actual source (actuator or control sur-
face) is not possible without a modification of
the standard particle filtering process. Simula-
tions have shown that the estimation performance
can be substantially enhanced by the integration
of an adaptive filtering step, enabling the simul-
taneous, instantaneous observation of a coupled
control surface and actuator fault.

1 Nomenclature

1.1 Abbreviations

AoA Angle of attack
DLR Deutsches Zentrum für Luft- und

Raumfahrt, German Aerospace Center
EKF Extended Kalman Filter
FDI Fault Detection and Isolation
FOD Foreign Object Damage
FTC Fault-tolerant control

PDF Probability Density Function
SIR Sampling Importance Resampling
SMC Sequential Monte-Carlo Method
coeff. coefficient

1.2 Variables

Cl Rolling moment coefficient
Cl0 Aerodynamic bias parameter
Cl(.) Nondimensional rolling moment

derivatives
Clξ Rolling moment coeff. due to aileron deflection
Clζ Rolling moment coeff. due to rudder deflection
Cn Yawing moment coefficient
Cn0 Aerodynamic bias parameter
Cn(.) Nondimensional yawing moment

derivatives
Cnξ Yawing moment coeff.

due to aileron deflection
Cnζ Yawing moment coeff.

due to rudder deflection
V True airspeed
Wk Process noise covariance matrix
m Mean
num Number of particles
q Pitch rate
r Yaw rate
s Half of wing span
t Continuous time
u⃗k System input vector
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v⃗k Measurement noise vector
w⃗k Process noise vector
wpi

(.) Particle weights
x⃗k System state vector
x⃗ i

k Particle vector of system state
y⃗k System output vector
z⃗k Measurement vector
Ξ⃗k Variable system parameter vector
α Angle of attack
β Sideslip angle
ζ Rudder deflection
ξ Aileron deflection
ξcom Commanded aileron deflection
ξe Normalized aileron control surface efficiency
ξi

e Particle vector of normalized aileron
control surface efficiency

ξe f f Effective aileron deflection
ξi

e f f Particle vector of effective aileron deflection
ξ∆ Offset to commanded aileron deflection
ξi

∆
Particle vector of aileron deflection offset

σ Standard deviation

1.3 Indices

i Particle index
k Discrete time variable
m Measured

2 Introduction

With the increasing complexity inherent to mod-
ern technical systems it becomes more and more
important to be able to monitor the health of com-
ponents and subsystems in order to prevent fail-
ures of parts or modules from resulting in mal-
functioning of the whole system. This holds es-
pecially true for systems that are required to meet
the highest safety standards such as modern air-
craft. A common approach to determine the state
of an aircraft’s vital components such as control
surfaces is to attach sensors to the relevant con-
trol assemblies and directly measure the surface
deflection. This, however, can cover only a lim-
ited range of possible failure scenarios as it will

effectively monitor the state of the surface actu-
ators; damage to the control surfaces themselves
as well as to the airframe cannot be detected by
deflection sensors.

An alternate approach, that has gained in-
creasing interest in both research and industry
in recent years, addressing the problem of moni-
toring vital components is to analyze the system
dynamics of the aircraft, employing a dynamic
model of the aircraft’s motion to estimate the
states of the relevant parts and systems such as
actuators and control surfaces, comparing these
estimated states to the commanded or expected
states and declaring a fault in case the deviation
of expected, nominal condition system states and
estimated system states exceeds a certain, pre-
defined threshold. This approach, which can be
employed utilizing the existing sensor infrastruc-
ture, is known as Analytical Fault Detection (fig-
ure 1).

Fig. 1 Analytical Fault Detection using observers

The information gathered using this tech-
nique can be used to inform the operator (in this
case, the pilot) about the change in system state
and behaviour to increase situational awareness
as well as to adapt control laws automatically in
order to keep the system operational and safe, a
concept which forms an important part of fault-
tolerant control (FTC).

The critical task in analytical fault detection
is to estimate the non-measurable system states
and parameters, which can be challenging as
there are other effects from external disturbances
such as turbulence, that heavily influence aircraft
dynamics. In addition, the influence of differ-
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ent faults can be coupled, making it difficult to
correctly identify the source of the fault. The
coupling of fault effects often results from the
dependence of measurements on a system state
and its interdepending parameter, requiring si-
multaneous state and parameter estimation tech-
niques to correctly attribute the fault effects to
the actual source. This paper addresses the de-
tection and identification of these types of cou-
pled faults, employing a simulation-based ob-
server approach, widely known as the particle fil-
ter.

Several observer concepts have been applied
to the domain of fault detection in aicraft sys-
tems. These comprise algorithms such as the Ex-
tended Kalman Filter (EKF) [1], H∞ observation
techniques [2], Fourier analyis [3] and multiple-
model estimation algorithms [4]. A common
method to simultaneously estimate states and pa-
rameters is to use a bank of dynamic models with
varying parameters and apply different methods
to select the most suitable model. The approach
chosen in this paper is similar to the multiple-
model concept, however the varying parameters
are dynamically generated according to a dynam-
ically adapted probability density function. This
variation in parameters results in a non-Gaussian
distribution of process noise, which encourages
the application of particle filters due to the ability
to handle arbitrary noise distributions.

3 Faults in Aircraft Systems

Taking the definition of [5], a fault occuring in
a dynamical system is a deviation of the sys-
tem structure or the system parameters from the
nominal case, which results in the deviation of
the plant’s input/output characteristics from its
designed or specified ones, hence changing the
performance of the closed-loop system and even-
tually resulting in a failure, the loss of the sys-
tem function. The effects of faults are similar to
the influence of disturbances or model uncertain-
ties, with the main difference being that the lat-
ter influence is known to exist and therefore is
considered during the design of the system con-
troller, whereas faults are more severe changes,

whose effects on the plant behaviour cannot be
suppressed by the nominal system controller.

3.1 Fault types

Faults can be categorized according to the af-
fected components and to the kind of effects that
a faulty dynamic system exhibits. Figure 2 de-
picts possible types of faults that a dynamic sys-
tem can be exposed to; additionally, the corre-
sponding aircraft systems are given as reference.
Faults can influence actuators, the plant or sen-
sors, the effects on the system dynamics can be
additive or multiplicative (or both). In the case
of additive faults, the system states are directly
affected, which can be represented by additional
unknown inputs to the system. Multiplicative
faults occur when the system’s structure is af-
fected, resulting in a deviation of the system pa-
rameters from the nominal case.

Fig. 2 Examples for different fault types relevant
to aircraft systems

Actuator faults In the case of actuator faults,
the plant properties are unchanged, whereas the
control input to the plant is modified or even un-
available. For aircraft systems this means that
the deflection of control surfaces or thrust do not
match the commanded values. This type of fault
is prevalently modelled as an additive fault.
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Plant faults Deviations of a system’s dynamic
input/output characteristics from the nominal
case are considered as plant faults. This type
of fault results (for aircraft systems) from struc-
tural damage to the aircraft control surfaces or
other parts of the airframe, which changes the pa-
rameters of the dynamic model. For this reason,
plant faults are mostly modelled as multiplicative
faults.

Sensor faults The class of sensor faults is
mostly relevant to closed-loop systems. The
open-loop system’s dynamic behaviour remains
unchanged, whereas the sensor readings exhibit
considerable errors. Both additive (bias) or mul-
tiplicative faults can occur in the context of sen-
sor faults.

Faults that occur while processing data in
avionic components are beyond the scope of this
paper, as these type of faults cannot be accounted
for by observer concepts based on dynamic mod-
els.

3.2 Coupled effects of disjunct fault sources

In the case of aircraft accidents or incidents that
were caused by physical degradation of aircraft
components, the damage to the affected com-
ponents frequently results in multiple different
faults. This holds especially true for the case
of foreign object damage (FOD), which mostly
results in structural damage to the airframe, but
which can also affect flight controls when con-
trol surfaces are hit by debris. Therefore, from
a system dynamics point of view, FOD can si-
multaneously result in additive and multiplica-
tive faults. While it seems obvious that FOD is
an issue mainly for military applications, several
reports suggest that FOD to the flight controls
resulted in a substantial amount of civil aircraft
losses [6].

The impact of a simultaneous damage to an
actuator and the corresponding control surface
on the aircraft’s motion is coupled, which en-
hances the challenge to identify the location and
the severity of the fault. This coupling can be
seen from the equations of moment coefficients

(1),(2), shown here only for the lateral aircraft
motion and neglecting the influence of secondary
control surfaces, ground effect and landing gear.
The following explanations apply to a fixed-wing
aircraft and will assume an aileron fault, affecting
both actuator and control surface.

Cl = Cl0 + Cl ∑

+ (Clξ +Clξαα)ξ + Clζζ
(1)

The influence of additional rolling and yaw-
ing moment derivatives not relevant to the expla-
nations is summarized as Cl ∑ and Cn∑.

Cn = Cn0 + Cn∑

+ Cnξξ + Cnζζ
(2)

An actuator fault will result in a deviation
of the aileron deflection ξ from its commanded
value ξcom, while a control surface degradation
will result in a deviation of Clξ, Clξα, Cnξ from
their corresponding nominal values. It is evident
that for the estimation of either the actuator state
or the associated moment coefficient, the value
of the corresponding state or parameter has to be
known. Numerous approaches to system identi-
fication in the domain of aircraft modelling exist,
e.g. as presented in [7]. However, it is gener-
ally assumed that the system states are properly
determined, for example by appropriate measure-
ment equipment and pre-processing of flight test
data. These approaches can identify system pa-
rameters with high accuracy, whereas for FDI the
timely availability of on-line state and parameter
estimates has priority over estimation accuracy.

Contributions from other domains for the si-
multaneous estimation of system parameters and
states are available, such as employing methods
like joint Kalman filtering [8], but these methods
require complementary data sources, a prerequi-
site that usually is not fulfilled.

4 Filtering Algorithm

4.1 Particle filtering

Particle filtering is an observer concept that has
found widespread use in several engineering ap-
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plications since it was first presented at the begin-
ning of the 1990s [9]. Shortly after its introduc-
tion, different modifications under designations
such as bootstrap filter, SIR-filter or the con-
densation algorithm [10] have emerged. These
methods follow an identical approach and are
commonly referred to as Sequential Monte-Carlo
methods (SMC). Particle filters employ a classi-
cal two-step approach for state estimation; based
on the non-linear, time-discrete model (3)

x⃗k = f (⃗xk−1, u⃗k−1)+ w⃗k
y⃗k = h(⃗xk, u⃗k)+ v⃗k

(3)

a set of state samples or particles x⃗ i
k−1 is prop-

agated to time step k. The samples are gener-
ated with respect to the probability density func-
tion (PDF) of w⃗k. In the following estimation
step, particle weights wpi

(.) are derived by com-
paring measurements z⃗k with the propagated par-
ticle output ˜⃗y = h(⃗x i

k, u⃗k). An additional resam-
pling step is required to prevent the degeneration
of samples, which, in practical terms, means that
after a number of propagation/estimation steps a
single particle accumulates most of the impor-
tance weight. This has the effect that most of
the other particles do not contribute to the estima-
tion process. To prevent the problem of degener-
ation, particles are drawn from the current parti-
cle set with probabilities proportional to their cur-
rent weight and are assigned equal weights. This
approach is one of many, but the most common
method for resampling.

The main advantage of SMC methods over
the EKF is that by means of sampling the system
state’s PDF using a set of particles, no assump-
tions regarding the nature of the applicable PDFs
have to be satisfied.

4.2 Fault modelling

As outlined in section 3.2, estimating the state of
actuators and control surfaces basically requires
simultaneous state and parameter estimation of
the aircraft model. For this reason, the model as
of (3) has to be rewritten to account for the vary-
ing system parameters Ξ⃗ (4).

x⃗k = f (⃗xk−1, Ξ⃗k−1, u⃗k−1)+ w⃗k
y⃗k = h(⃗xk, u⃗k)+ v⃗k

(4)

A common approach for estimating these
varying parameters is to enhance the dynamic
model [11]; this is not feasible for the application
of particle filters as it would require a substan-
tial amount of particles, thus slowing down the
estimation process considerably. For this reason,
an alternative approach was chosen which does
not require to estimate the full aircraft state vec-
tor. Instead, only fault states are estimated by the
particle filter, whereas the required aircraft states
are measured. The fault influence is modelled
as an offset ξ∆ to the commanded aileron deflec-
tion ξcom and as a factor ξe representing the nor-
malized control surface efficiency. By employing
these definitions, an effective aileron deflection
ξe f f is defined as:

ξe f f = ξe(ξcom +ξ∆), ξe = [0..1] (5)

Offset ξ∆ and normalized control surface ef-
ficiency ξe form the observer state vector x⃗e.

x⃗e =

[
ξ∆

ξe

]
(6)

During the propagation step of the particle fil-
ter the unaltered dynamic aircraft model is used,
with the actuator state ξ replaced by the effective
actuator state ξe f f . The set of particles of size
num is generated by first generating a process
noise sample w⃗ i

k using a Gaussian PDF N (m,σ2)
with mean m and variance σ2 (7).

w⃗i
k ∼ N (⃗0,Wk) i = 1..num (7)

The samples are added to the current values
of ξ∆ and ξe, generating the particle samples x⃗ i

k
which are propagated to the next time step by the
dynamic aircraft model.

A standard SIR filter algorithm as presented
in [12] was chosen for processing of particles
with the number of particles set to 50. Simula-
tions with varying numbers of particles were run,
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showing that additional particles result in slightly
enhanced estimation performance while substan-
tially increasing computational requirements.

As the normalized aileron efficiency ξe is un-
observable without an excitation of control sur-
faces, a band-limited noise signal is added to the
commanded aileron deflection. The standard de-
viation of the excitation signal was chosen to be
0.5∘; the low-pass filter was designed with a cut-
off frequency of 1.5 Hz. The continuous appli-
cation of this noise signal is considered to be im-
practical for real applications and should be ac-
tivated only in case an indication of a potential
failure condition exists. A potential condition
for activating this signal can be the crossing of
a threshold of the dynamically calculated process
noise covariance matrix Wk as shown in section
4.3.

The properties of the aircraft model used
during the simulations are shown in table 1.
Simulations of the algorithm described above

Table 1 Simulation parameters
Aircraft Type Twin-Engine Jet Transport
Aircraft Mass 18500 kg
VTAS 160 kts
Altitude 4900 m
Configuration clean

were obtained and are depicted as figures 3 - 6.
At simulation time t = 1s an actuator fault oc-
curs, resulting in an offset to the commanded
aileron deflection of ξ∆ = −10∘; at simulation
time t = 3s the control surface efficiency is re-
duced to ξe = 0.5. The resulting roll angle φ is
depicted in figure 3. The aileron offset (t = 1s)
has the effect of a strong decrease of the aircraft’s
roll angle, which is reduced at the instance when
the aileron efficiency drops to ξe = 0.5 (t = 3s).

Simulations were generated for different pro-
cess noise covariance matrices Wk; the initial
value W0 (8) of the process noise covariance ma-
trix has already been used in a related work [13].

W0 =

[
0.012rad2 0

0 0.12

]
(8)

Fig. 3 Roll angle φ resulting from ξ∆ =−10∘ at
t = 1s and ξe = 0.5 at t = 3s

Figure 4 depicts the real, effective aileron off-
set ξ∆ and four aileron offset estimates using the
standard SIR filter algorithm with different static
values for Wk. For Wk < W0 the convergence
speed of the filter is very low. Using the refer-
ence covariance matrix W0 results in an bias er-
ror, whereas values greater than W0 exhibit sub-
stantial noise and estimation bias of the estimated
ξ∆.

Fig. 4 Estimation of aileron offset with different
static process noise covariance matrices Wk

The estimation bias is even better visible in
the estimation results for the normalized aileron
efficiency ξe (figure 5). Smaller values than W0

6



SIMULATION-BASED FILTERING APPROACH FOR IN-FLIGHT MONITORING OF CONTROL
SURFACES

result in slow convergence speed, while larger
ones yield a large bias.

Fig. 5 Estimation of aileron loss of efficiency
with different static process noise covariance ma-
trices Wk

Further evaluation of the results shows that
for appropriate values of the process noise co-
variance matrix Wk the combined actuator offset
/ control surface efficiency ξ∆ ⋅ ξe (figure 6) can
be observed, whereas the attribution of the fault
to the corresponding source appears to be ques-
tionable. Considering the influence of the pro-
cess noise covariance during the different phases
of the fault scenario it can be concluded that static
covariance values result either in a slow conver-
gence or even divergence of the estimation solu-
tion or in an unacceptably high estimation error.

4.3 Dynamic adaptation of covariance ma-
trix

As outlined in section 4.2, particle samples are
generated by generating samples of the process
noise PDF. Therefore, the values of the process
noise covariance matrix have an impact on the
size of the explored state space. As a fault results
in a considerable change of system states and /
or parameters due to the deviation from nominal
conditions, using assumptions of process noise
optimized for nominal case conditions has the ef-
fect that state hypotheses close to the new, faulty
system state will never be considered. On the

Fig. 6 Estimation of combined aileron offset /
loss of efficiency with static process noise covari-
ance matrix Wk

other hand, using assumptions of process noise
optimized for faulty conditions results in high es-
timation variance due to the anticipated estima-
tion uncertainty.

For this reason, an approach for adapting the
process noise covariance matrix Wk has been im-
plemented. The average error of each system
state is calculated by adding the differences be-
tween each of the propagated state particles and
the actual measurements. This average error cor-
responds to the current estimation accuracy and is
used to re-initialize the process noise covariance
matrix Wk. In the case of an aileron-related fault
the process noise covariance for ξ∆ is generated
from the average error between measured roll an-
gle φm and propagated roll angle particle set φi

and for ξe from the average error between mea-
sured roll rate pm and propagated roll rate particle
set pi (9),(10).

Wk(1,1) =
1

num

num

∑
i=1

√
(φm −φi)2 (9)

Wk(2,2) =
1

num

num

∑
i=1

√
(pm − pi)2 (10)

The complete algorithm including dynamic
adaptation of the covariance matrix is shown in
Listing 1.
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Listing 1 Algorithm for estimating ξ∆ and ξe

I n i t i a l i z e a i r c r a f t model
I n i t i a l i z e W0
ξ∆ = 0.0
ξe = 1.0
k = 0
s t a r t :
Add band−l i m i t e d n o i s e t o i n p u t ξcom
For each p a r t i c l e draw

random numbers ∼ N (⃗0,Wk)
Add random numbers t o ξ∆ and ξe

x⃗ i
e = x⃗e + w⃗i

k
C a l c u l a t e ξi

e f f = ξi
e(ξcom +ξi

∆
)

P r o p a g a t e sys tem s t a t e :
x⃗ i

k+1 = f (⃗x i
k,ξ

i
e f f )

k=k+1
C a l c u l a t e new Wk
C a l c u l a t e p a r t i c l e w e i g h t s

wpi
(.) = f (⃗zk, x⃗ i

k)

C a l c u l a t e c u r r e n t ξ∆ and ξe :
ξ∆ = 1

num ∑
num
i=1 wpi

ξ∆
⋅ξi

∆

ξe =
1

num ∑
num
i=1 wpi

ξe ⋅ξ
i
e

Resample p a r t i c l e s
Jump t o s t a r t

The simulation results of the modified es-
timation algorithm employing a dynamically
adapted process noise covariance matrix Wk are
shown in figures 7 and 8. The results show a suf-
ficient match between real and estimated actua-
tor state and control surface efficiency. Although
the estimated efficiency (figure 8) fluctuates up to
10% of the nominal efficiency, it is expected that
a compensating feedback controller or a human
pilot is sufficiently robust to handle this inaccu-
racy. In addition, it is envisioned that the estima-
tion variance of ξe can be further reduced by the
application of more adequate excitation signals.
It should also be noted that the settling time is
around one second, which should be sufficiently
low to enable a fault-tolerant controller to apply
adequate countermeasures.

Figure 9 depicts the adaptation of the covari-
ance matrix Wk to the systems’s failure condition
for the aileron offset state ξ∆. In times (t = 1s,
t = 3s) of high deviation of expected from mea-

Fig. 7 Estimation of aileron offset ξ∆ using dy-
namic process noise matrix

Fig. 8 Estimation of aileron efficiency ξe using
dynamic process noise matrix

sured system state the covariance is raised, thus
increasing the explored state space. As soon as
the filter algorithm has adjusted the estimated
fault states to the real states, the covariance is
reduced, resulting in less noise of the state and
parameter estimates.

5 Summary

In this paper an approach for simultaneous esti-
mation of system states and parameters with the
application to fault detection in an aircraft’s pri-
mary flight controls was presented. The applica-
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Fig. 9 Adaptation of process noise covariance
matrix entry Wk(1,1) (for ξ∆)

bility of Sequential Monte-Carlo methods for this
purpose has been verified. The ability of SMC
methods to estimate arbitrary PDFs offers an ad-
ditional method for the simultaneous estimation
of states and parameters, since for systems that
are subject to varying parameters the assumption
of Gaussian PDF cannot be maintained. Addi-
tionally, it has been shown that the dynamic adap-
tation of the assumptions regarding the process
noise covariance can substantially improve esti-
mation performance.

Further work in this field focuses on inves-
tigations on the automatic generation of signals
for actuating control surfaces to enhance control
surface efficiency estimation performance. In ad-
dition, the validation in flight tests is envisioned.
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