
A NEW HYBRID DYNAMIC PROGRAMMING APPROACH IN
PERFORMANCE OPTIMIZATION OF AN AEROSPACE PLANE

Teruaki Hanaoka
*Department of Management, Atomi University, 1-9-6 Nakano, Niiza-shi, Saitama 352-8501,

Japan

Keywords: Aerospace plane, Performance optimization, Energy-state approximation, Dynamic
programming

Abstract

A parallel hybrid dynamic programming ap-
proach for trajectory optimization is proposed.
The application of this approach is exempli-
fied by ascent trajectory optimization for an
aerospace plane. The proposed algorithm is
based on the combined utilization with the for-
ward dynamic programming and the branch-and-
bound method, and makes possible to obtain rou-
tinely and robustly numerical solutions to achieve
the minimum-fuel ascent to Low-Earth-Orbit un-
der complicated constraints. The lower bound of
cost function required in this algorithm imple-
mentation is calculated by the energy-state ap-
proximation which is very effective in producing
considerable reductions in computation require-
ments of the hybrid algorithm as well as storage
requirements. An application to the preliminary
design of aerospace planes are included.

1 INTRODUCTION

These days, many concepts concerning fu-
ture space planes have been proposed: fully
reusable concepts of the National Aerospace
Plane(NASP) proposed by USA, of HOTOL by
UK, and of Sanger by West Germany, and par-
tially reusable concepts of HERMES by ESA,
and of HOPE by JAPAN. A single-stage hyper-
sonic aerospace plane using air-breathing engines
is expected for more economical delivery of pay-
loads into Low-Earth-Orbit. The advantages of

such a vehicle are the operational flexibility of
horizontal takeoff, the operational simplicity of
a single stage, and the propellant mass reduc-
tion by using air-breathing engines. In these sit-
uations, suitable methods to compute routinely
and robustly optimal atmospheric trajectories of
vehicles containing from the subsonic to hyper-
sonic flights for the purposes of preliminary de-
sign and performance estimation of the aerospace
plane are greatly desired. The amount of diffi-
culty and expense experienced in calculating op-
timal flight trajectories depends primarily upon
the complexity of the dynamic model used to de-
scribe the aerospace plane, the existence of tabu-
lar functions on aerodynamic characteristics and
propulsion models.

Various techniques have been developed to
overcome these difficulties(Ardema, 1976 [2];
Brysonet al., 1962 [4]; Kelley, 1973 [10]. The
solution obtained by singular perturbation meth-
ods is in a good agreement with that obtained
by established methods, but this method has a
serious limitation which may be that the gen-
eral characteristics of system behavior must be
known a priori (Ardema [2]). An approach using
the minimum principle has a computational dif-
ficulties such that guessing the missing bound-
ary conditions at the initial points on the two-
point boundary-value problems. On the other
hand, dynamic programming(Bellman [3]) is a
very powerful method for problems having var-
ious nonlinearities and nondifferentiability con-
taining tabular functions in the system equations,
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but its direct applications are confronted with the
difficulty of well known Bellman’s the "curse of
dimensionality problems". Alekseev and Vodos
(1976 [1]), and Morin and Marsten (1976 [11])
used the branch-and-bound technique to elimi-
nate unpromising state in discrete dynamic pro-
gramming. Hanaoka and Tanabe (1982 [6]) ap-
plied the branch-and-bound combined with for-
ward dynamic programming to the reduction of
computational requirements in optimal control
problems.

This paper considers an alternative dy-
namic programming approach for applications to
aerospace planes. Our idea to overcome this dif-
ficulty is to make dynamic programming algo-
rithm with a procedure to reject the state space
which can not be contained in a part of the op-
timal trajectory by a combined use with a more
simple method than dynamic programming. To
doing this, the method to utilize the simple solu-
tion of the energy-state approximation (Brysonet
al., 1969 [5]; Rutowski, 1954 [12]) is indicated in
this paper.

The proposed extended Hybrid Dynamic Pro-
gramming(for a short, HDP) algorithm consists
of three sub-algorithms which are the basic sub-
algorithm(Hanaoka, 1994 [8]), the iterative sub-
algorithm(Hanaoka, 1989 [7]) and a newly in-
troduced parallel sub-algorithm. The basic sub-
algorithm basically consists of interactions sim-
ilar to Darwinian evolution through the cycles
of selection, multiplication and mutation in the
quantized state space, and generates a rough
global optimal solution. Here, the selection pro-
cess corresponds to the "preference order cal-
culation with blocks" in this algorithm, and the
multiplication process containing the mutation
process corresponds to the "repetitive generation
of trajectory groups by using regularly and ran-
domly quantized controls". The iterative sub-
algorithm which contains the most important idea
successively improves not only optimal solutions
but also accuracy of lower bound of cost func-
tion which gives a great influence upon the num-
ber of the computations as well as the com-
putation regions in the hybrid algorithm. The
parallel sub-algorithm is used for a guarantee

to obtain the global optimal solution. In those
algorithms, the "block" plays a very important
role. A theoretical evidence of the hybrid algo-
rithm is based on the forward dynamic program-
ming(Hanaoka, 1982 [6]), The hybrid algorithm
requires the lower bound used in the first com-
putation of the basic sub-algorithm. Our idea for
this requirement is to utilize a simple solution of
the energy-state approximation performance op-
timization approach(Brysonet al.,1969 [5]; Ru-
towski, 1954 [12]) which often leads to unreal-
istic discontinuities in velocity and altitude and
a poor solution, but can be used sufficiently as
the lower bound of our hybrid algorithm. In
Hanaoka(1994 [8]), the basic hybrid algorithm
with the use of the energy-state approximation
was applied effectively to performance optimiza-
tion of a supersonic aircraft. In this paper, the
extended hybrid algorithm with the energy-state
approximation is applied to the minimum-fuel as-
cent trajectory generation of an aerospace plane.

2 DYNAMICS OF AEROSPACE PLANE

2.1 Equations of Motion

Assuming a spherical, nonrotating Earth and
gravitational field with g = µ/r2, the two-
dimensional point mass equations of motion for
aerospace plane is described as

v̇ =
T(h,v,φ)cosα−D(h,v,α)

m

− µsinγ
r2 (1)

γ̇ =
T(h,v,φ)sinα+L(h,v,α)

mv

+
(v

r
− µ

vr2

)
cosγ (2)

ṙ = vsinγ (3)

θ̇ =
vcosγ

r
(4)

ṁ=−T(h,v,φ)
g0Isp

(5)

where state variables are the radius from the cen-
ter of the Earthr, velocity v, flight-path an-
gle γ, polar angleθ and total massm, and
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control variables are angle of attackα and
engine fuel-equivalence ratioφ. T(h,v,φ) is
thrust, Isp is specific impulse of the propul-
sion system, D(h,v,α) = CD(α,M)ρ(h)v2S/2
is drag, L(h,v,α) = CL(α,M)ρ(h)v2S/2 is lift,
CD(α,M) = CD0(M) + η(M)CLα(M)α2 is drag
coefficient andCL(α,M) = CLα(M)α is lift coef-
ficient, ρ(h) is air density,S is aerodynamic ref-
erence area,µ is gravitational constant,M = v/a
is Mach number,a = a(h) is speed of sound,
and whereT,CD0,CLα,η andρ are given as tab-
ular functions. Fig.1 shows a nomenclature com-
monly used for this model.

2.2 Vehicle Modeling

The model of the aerospace plane used in this pa-
per is based on (Shaughnessy,et al., 1990 [13])
with some modifications by us. The gross takeoff
weight is 136,080kg. It is a winged-cone config-
uration with a reference area ofS= 335m2 and
an overall length of 61m. The thrust of the air-
breathing propulsion system is given by

T(h,v,φ) = CTq (6)

whereq is dynamic pressure, andCT is thrust co-
efficient.CT = CT(M,q,φ) andIsp = Isp(M,q,φ)
are given by tabular functions. Engine throttling
is controlled byφ.The model of the atmosphere
given by tabular functions is based on Japanese
Standard Atmosphere (Japanese Industrial Stan-
dards Committee,1990 [9]).

3 MINIMUM-FUEL ASCENT

3.1 Initial and Terminal Conditions

Assume the horizontal take-off condition and the
terminal condition are specified as follows:

h(t0) = 0 h(t f ) = 80km
M(t0) = Mach0.5 M(t f ) = Mach24.0
γ(t0) = 0 γ(t f ) = free.
θ(t0) = 0

m(t0) = 13,876kg.sec2

m
(7)

Fig. 1 Nomenclature used in aerospace planes.

3.2 State and Control Constraints

Two of the most important constraints which
should be imposed on trajectories are

q =
1
2

ρv2≤ qmax (8)

Q = K
√

ρv3≤Qmax (9)

where K is a constant. Eqs. (8) and (9) are con-
straints on dynamic pressureq and heating rateQ
at a specified point of the vehicle, respectively.

3.3 Performance Index

Since this study is concerned with minimum-fuel
ascent to orbit, the obvious performance index to
be minimized is the fuel consumption.

J =
Z t f

t0
−ṁdt=

Z t f

t0
|ṁ|dt (10)

where t0 and t f are the starting and arriving
times, respectively. Then the aerospace plane tra-
jectory optimization problem(Original Problem)
is to fined the sequence of the optimal control
{α∗(t) andφ∗(t), t = [t0, t f ]} such thatJ of (10)
is minimized subject to Eqs.(1-9).
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4 EXTENDED HYBRID APPROACH

For a simplification, vector form is used here-
after. Since most continuous-time systems can
be treated as discrete-time systems under suitable
assumptions, the present problem described as

Minimize

J =
N−1

∑
i=0

Li(xk,uk) (11)

Subject to

xk+1 = gk(xk,uk) (12)

x0 = c0, xN ∈ΩF (13)

wherexk ∈ Xk ⊂ Rn anduk ∈ Uk ⊂ Rm. Xk and
Uk are the sets of admissible states and controls
at stagek(k = 0, ...,N), respectively. On the ap-
plication to minimum-fuel ascent problems of an
aerospace plane ,xk = (vk,γk, rk,θk,mk)′, uk =
(αk,φk)′ andLk =

R tk+1
tk |ṁ|dt are defined.Lk is

the cost per single stage.gk is the state transition
function described by Eqs.(1)-(5).

4.1 Basic Sub-Algorithm

A procedure for quantizing a dynamic program-
ming algorithm defined only for the state space
generated by the algorithm is considered in order
to utilize the concept that a deterministic problem
is equivalent to finding a shortest path from the
initial node of the graph to the destination node.

4.1.1 Forward Dynamic Programming and
Quantization Procedures

The state spaceXk of the problem having n-
dimensional state vectorxk is quantized into
reasonable subspacesXk1,Xk2, ..,Xknk such that
Xk =

Snk
i=1Xki,(k = 1, ..,N). Each subspace is

called "block". The next, the set of admissi-
ble trajectories from the initial pointx0 such
as {X◦k } =

Sk
i=0X◦i is generated by applying

quantized controluk repeatedly at each stage
k. Here, X◦k is defined recursively such as
X◦0= {x0},X◦k+1 = {xk+1 | xk+1 = gk(xk,uk),xk ∈

X◦k ,uk ∈U(xk)}(k = 0, ...,N−1). This set{X◦k }
has structures of a tree emanating from the initial
point. For only block where the trajectory from
the initial point exists, its own only representative
pointxki ∈ Xki is defined as follows:

fk(xki) = min
xk
{T(xk) | xk ∈ Xki}

(i = 1, ...,nk, k = 0, ...,N) (14)

where T(xk) is the cost from the initial point,
which is given recurrently as

T(x0) = 0(i = 1, ...,nk,k = 1, ...,N)
T(xk) = fk−1(xk−1i)+Lk−1(xk−1i ,uk−1)

xk = gk−1(xk−1i ,uk−1) (15)

Thus, the representative pointxki for each block
has the minimum cost from the initial point to the
arrival point within the block. Then the forward
dynamic programming algorithm defined on the
finite representative pointsX◦k is constructed as

f0(x01) = 0
fk+1(xk+1i) = minxki,uk{ fk(xki)
+Lk(xki,uk) | xki ∈ X◦k ,uk ∈U(xki)}

xk+1i = gk(xki,uk) (i = 1, ...nk)

where fk(xk) is the forward minimum cost func-
tion. In this algorithm, the computation is pro-
ceed forward from the initial pointx0 using quan-
tized controlsuk stagewise, step by step, and ter-
minated at the time which one of trajectories gen-
erated is arrived first at the terminal point. Then
the optimal solution is obtained with the optimal
cost of f ∗0,N = minxN{ fN(xN) | xN ∈ΩF}.

The preference order calculation is to eval-
uate first the most optimal-like trajectory which
has the smallest value ofT(xk). Any trajectory
arrives the second or the more later at the block
can be rejected. This fact produces considerable
reductions in computation requirements.

4.1.2 Bounding Operation and Clearance

To obtain more reductions in the computation re-
quirements of the hybrid algorithm, the branch-
and-bound technique is used [1, 11, 6]. As is well
known, the statexk can be eliminated if

fk(xk)+Mk(xk) > I , k = 0, ..,N (16)
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where I is an upper bound of the final optimal
cost f ∗0,N andMk(xk) is a lower bound of the back-
ward minimum cost functionJk(xk). The condi-
tions to be satisfied for those bounds are given by

Mk(xk) ≤ min
uk,uk+1,...,uN−1

{
N−1

∑
i=k

Li(xi ,ui)}

= Jk(xk), xk ∈ Xk

I ≥ f ∗0,N (17)

So, the size of reductions of the computation re-
quirements as well as the computation regions
depends entirely on estimated accuracy of both
I andMk(xk). Defining∆a and∆bk such as

∆a = I − f ∗0,N, ∆bk = Jk(xk)−Mk(xk) (18)

where∆a and∆bk are considered as the strength
of the upper and the lower bound. The size of the
reduction depends on the value of the sum of∆a
and∆bk rather than separate∆a and∆bk. Here,
the sum∆ε(∆ε = ∆a+∆bk) is called a clearance.
Then the condition of the clearance to obtain the
global optimal solution is given by

∆ε = ∆a+∆bk ≥ 0 (19)

Thus, the most desirable value of∆ε is ∆ε = 0.

4.2 Iterative Sub-Algorithm

To strengthen the bounding operation using
Eq.(16) and to make more reductions of the
number of the computations, the iterative sub-
algorithm is considered. This algorithm improves
successively not only lower and upper bounds but
also a accuracy of the optimal solutions because
state and control variables are quantized more
finely, little by little in proportion to iteration pro-
gresses.

4.2.1 Calculation of Bounds

The upper boundI i and the lower bound
Mi

k(xk)(xk ∈ Xk) at the ith iteration can be de-
termined from values of the previous total cost
f∗i−1

0,N and the partial cost on the optimal trajec-
tory as

I i = f ∗i−1
0,N (i = 2,3, ...) (20)

Mi
k(xk) = Ji−1

k (x∗i−1
k )

=
N−1

∑
l=k

Ll (x∗i−1
l ,u∗i−1

l ) (21)

wherex∗i−1
l andα∗i−1

l are the state and the con-
trol on the previous optimal trajectory.I i gives
a good upper bound.Mi

k is a very tight lower
bound in the neighboring states of the optimal
trajectory. However the global optimal solution is
not always obtained because for the states which
are distant tolerably from that trajectory the lower
bound condition(21) is not always satisfied. In
the next section the method to obtain the global
solution is considered.

4.3 Parallel Sub-Algorithm

The parallel sub-algorithm is used to obtain a
global solution under the condition∆ε ≥ 0. If
∆ε < 0, then the lower boundMi

k(xk) (21) is mod-
ified downward as

Mi
k(xk) = Ji−1

k (x∗i−1
k )−|∆ ∼

εmin | (22)

where∆
∼
εmin is the estimated minimum value of

∆ε(< 0). If ∆ε≥ 0, ∆
∼
εmin= 0 is used. However,

for problems with multi-modal cost function, a
big |∆ ∼

εmin | may be required in order to satisfy
∆ε ≥ 0 over the domain of the problem consid-
ered, but it will cause an increase of the computa-
tion requirements. Parallel sub-algorithm is used
to avoid this demerit. To apply this algorithm, the
first the group of the tentative optimal trajectories
is generated under a coarse quantization block us-
ing the basic sub-algorithm. This group will con-
tain the global and the local optimal trajectories.
The cost on those trajectories is used as the ini-
tial conditions to start the parallel sub-algorithm.
That is, for individual local solutions the iterative
sub-algorithms are applied separately in parallel
with a smaller|∆ ∼

εmin |, and the most optimal tra-
jectory among those improved local solutions is
selected as the global optimal solution.

5 LOWER BOUND BY ENERGY-ASCENT

The energy-state approximation is used to obtain
a solution of the relaxed problem to the original
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problem which can be used as the lower bound
required in the hybrid algorithm. The relaxed
problem is designed to be easier to solve than
the original problem. In the energy-state approx-
imation, the total energy per unit massE of an
aerospace plane is regarded as a state variable.

E =
1
2g

v2 +h. (23)

The time rate of change of energyE is obtained
by differentiating (23) using (1),(3) andh = r −
Re to eliminatev̇ andḣ

Ė =
v(T(h,v,φ)cosα−D(h,v,α))

m

−2µhvsinγ
r3 (24)

Dividing (24) into (5), and expressingh in terms
of E andv using (23), then the equation

−dm=
T(E,v,φ)
g0Ispf1

dE (25)

is obtained wheref1 is given by

f1≡ Ė =
v(T(E,v,φ)cosα−D(E,v,α))

m

−2µhvsinγ
r3 (26)

To minimize fuel-consumption to ascend to a
given altitude and velocity using the energy-state
approximation, it is clear thatIspg0 f1/T(E,v,φ)
must be maximized with respect tov for a given
E. To obtain the lower bound of (25), the sec-
ond term in the right-hand side of (26) can be
taken off if γ ≥ 0. The assumption ofγ ≥ 0 is
reasonable because in usual minimum-fuel ascent
of aerospace planes with dynamic pressure con-
straints, the optimal trajectory is active on its con-
straint. This meansγ≥ 0 with monotone increase
of the ascent trajectories. Besides the dragD is
modified as

D(E,v,α)

=
1
2
(CD0(M)+η(M)CLα(M)α2)ρ(h)v2S

≥ 1
2
CD0(E,v)ρ(E,v)v2S= D′(E,v) (27)

whereα = 0 is used andM is expressed in terms
of E andv. Then, it is easy to show the relation

T cosα−D≤ T−D′. (28)

Besides to obtain the lower bound strictly, the
lower bound of massmb is used which is equal
or less than the total mass of an aerospace plane
excepting fuel and a fuel-equivalence ratio of
φ′=unity is used which corresponds to maximum
fuel efficiency. Thus the relaxed problem under
those modifications is given as

Minimize JM =
Z Ef

E0

T(E,v,φ′)
Ispg0 f1

dE (29)

≤
Z t f

t0
−ṁdt

It is clear that the value of the cost function ob-
tained by (29) is always less than that of the
original problem(1)-(10). Hereafter, the method
with those modifications is called the modified
energy-state approximation. To minimize fuel-
consumption to ascend to a given altitude and
velocity using the modified energy-state approx-
imation, it is clear thatIspg0 f1/T(E,v,φ′) with
respect tov for a givenE should be maximized.
This operation gives us the absolute minimum
value of the fuel-consumption to ascend an en-
ergy section of two adjacent stages. There-
fore, the lower boundMk(xk) can be obtained
as the sum of the individual absolute minimum
value through the passage region on flights of the
aerospace plane, and obtained by very reduced
computational efforts.

6 OPTIMAL SOLUTIONS

First, the lower bound solution of the present
minimum-fuel ascent problem was computed
under the constraint of dynamic pressureq =
9,766kg/km2(2,000psf) by the modified energy-
state approximation which was used in the first
computation of the iterative sub-algorithm. The
computation time is less than 1 second on a
computer with speed of 100 MIPS. The trajec-
tory of this solution, which goes along with
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the constraint curve of dynamic pressureq =
9,766kg/km2 completely. However it should be
indicated that the lower bound solution underq=
12,207kg/km2(2,500psf) in the same problem
goes over slightly this constraint curve at the only
neighborhood of the energy contour containing
the target point. The next, to apply the hybrid
algorithm more effectively to the current prob-
lem, the independent variable is changed fromt
to E. Each state variable ofh (instead ofr),v,
γ andm is quantized into 64, 32, 32 and 8 lev-
els per each admissible region, respectively. A
stage variableE is divided into 20 levels and la-
beled them as stagesk andEk. A control variable
α is quantized into 13 levels for its admissible
range at the first computation and a fuel equiva-
lence ratioφ of unity is used which is considered
as almost optimal for the active constraint onq.
This quantization requires cost function evalua-
tions over1× 108 times if the conventional dy-
namic programming is used. The upper bound of
the optimal solution required in the first compu-
tation of the hybrid algorithm can be estimated
easily by the feasible solution obtained under the
very rough quantization level with a use of the
same lower bound solution. All the transitions of
the states are computed by using numerical inte-
gration of the fourth-order Runge-Kutta method
under single precision with a step size of(EN−
E0)/400. An angle of attack history at the section
Ek≤ E≤ Ek+1 is approximated by a straight line
such asαk(E) = α(α∗k,αk+1,E)(αk+1 ∈U,Ek ≤
E≤Ek+1) whereα∗k is the optimal control at rep-
resentative points in the blocks at the stagek.

In Fig.2 is shown the optimal trajectory ob-
tained after the first computation(i = 1) by the
Hybrid Dynamic Programming(HDP) algorithm.
It can be seen that the trajectory undulates up and
down over the constraintq. This means that a
coarsely quantized controlαk cause a big undu-
lation of trajectories but the hybrid algorithm is
completely stable on computations. The region
of crowded trajectories shown in Fig.3 designates
the state space for which cost function is evalu-
ated by the hybrid algorithm. This region is con-
siderably reduced as compared with the whole
definition region of problems considered. The

convergence was effectively achieved after 8 iter-
ations as shown in Fig 4. The computation time
to obtain an optimal solution is about 300 sec-
onds on the same computer. In Fig.5 is shown the
converged optimal trajectory which goes along
the constraintq and does not undulate almost. In
Fig.6 are shown the histories of the state and the
control variables on this fuel-optimal solution.
The number of cost function evaluations required
per iteration is less than 1/2,000 of that by the
conventional dynamic programming. The size of
the state space (that is, the number of blocks)
for which cost function is evaluated is less than
1/1,000 of that by the conventional dynamic pro-
gramming.

Fig. 2 Optimal ascent history by the basic sub-
algorithm(i=1).

7 CONCLUSIONS

The hybrid algorithm based on the combined uti-
lization of the forward dynamic programming
and branch-and-bound method is properly inter-
preted, and is quite adequate for performance op-
timization of aerospace planes under the com-
plexity of the dynamic model and complicated
constraints. This hybrid algorithm gives us a
unifying approach for obtaining routinely and
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Fig. 3 State space for which cost function was
evaluated by the hybrid algorithm.

robustly numerical solutions of the complicated
high-dimensional optimization problems under
various performance criteria such as minimum-
fuel ascent and minimum time-to-climb. The
lower bound required in this hybrid algorithm can
be obtained easily by the energy-state approxi-
mation with some modifications by us, which re-
duces computational efforts considerably.
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