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Abstract  

One proposed approach to enabling Trajectory 

Based Operations, and Continuous Descent 

Approaches in congested airspace, is to use 

decision support technology with real-time 

trajectory prediction. A method for defining and 

quantifying models of real-time uncertainty 

estimation for use with such technology has 

been developed previously. A demonstration of 

this methodology for adding real-time 

estimation of altitude error to trajectory 

predictions in the Center/TRACON Automation 

System is provided. The methodology uses 

analysis of actual and predicted CDA 

trajectories obtained from Air Route Traffic 

Control Center operational data and from 

CTAS’s trajectory synthesis process, 

respectively. Altitude error was aggregated over 

the flight sample through the application of 

statistical analysis at discrete altitude 

increments along the predicted descent 

trajectory. The evolution of altitude error mean 

and standard deviation was modeled in 

segments, each represented by an equation that 

best fit the aggregated data. Three segments 

describe the evolution of the standard deviation 

and four the evolution of the mean error. To 

illustrate the method an initial demonstration 

was performed with a limited data set. Given a 

larger set of data the final model could be 

generally applicable in generating an 

uncertainty model to support decision support 

technology in the performance of new arrival 

procedures such as CDA in congested airspace. 

1  Introduction  

Current arrival operations typically require 

aircraft to level off at a number of altitudes 

during their approach to the destination airport. 

Although these procedures are easily managed 

by Air-Traffic Control (ATC), they result in 

higher-than-optimal fuel consumption and 

larger-than-necessary environmental impact. 

The Continuous Descent Approach procedure 

from en route airspace through the terminal area 

allows near-idle engine power operations during 

descent to the runway, increasing overall fuel 

efficiency and reducing noise and emissions. 

Safe and efficient CDA operations is one of the 

objectives for both the Next Generation Air 

Transportation System (NextGen) [1], 

envisioned by the Federal Aviation Agency 

(FAA), and for the Single European Sky Air 

Traffic Management Research (SESAR) [2] 

concept proposed by EUROCONTROL.  

Although CDA operations are 

environmentally friendly and save fuel, they are 

more challenging than current operations for air 

traffic controllers because of the challenge in 

predicting relative aircraft spacing between 

aircraft performing near-idle descents, not to 

mention any crossing traffic. As a result it is 

unlikely that CDA operations will be supported 

in congested airspace without the utilization of 

controller-based Decision Support Tool (DST) 

technology. The En Route Descent Advisor 

(EDA) [3], a component of the 

Center/TRACON Automation System (CTAS), 

provides controllers with speed, altitude and 

path stretching advisories that have the potential 

to enable CDA operations to be performed in 

congested airspace under time-based metering 

[4]. Advisories are evaluated by conflict 

detection (CD) and resolution algorithms 

applied to modify the trajectories to ensure that 

they maintain sufficient aircraft spacing. 
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Trajectory prediction accuracy is key in that it 

drives the overall performance of the controller 

advisories. EDA uses a Flight Management 

System (FMS)-quality trajectory predictor (TP). 

The accuracy of the TP’s nominal predicted 

trajectories has been evaluated during multiple 

field tests [5-7]. The results demonstrated the 

capability of the TP and highlighted the fact that 

some level of trajectory prediction uncertainty is 

intrinsic to the trajectory prediction process. 

Predicted trajectories are based on models of 

aircraft performance, forecasts of 

meteorological conditions, estimates of aircraft 

weight, clearances issued by controllers, and 

inferred pilot intent. All these models can 

include inaccuracies and approximations that, 

even if limited, cannot be completely eliminated 

or neglected. 

 The CTAS CD algorithms include a 

probabilistic uncertainty model [8],[9] for 

predictions of trajectories, including trajectories 

suitable for CDA operations. An appropriately 

quantified set of parameters, applied to this 

model of uncertainty in real time, could help 

EDA provide effective support for CDA 

operations in congested airspace. 

 A methodology to quantify the parameters 

of real-time uncertainty models was previously 

created by extending and applying prediction 

accuracy analysis techniques to uncertainty 

estimation modeling [10]. The objective of the 

research documented in this paper was to 

demonstrate how this methodology can be used 

to quantify the CTAS probabilistic uncertainty 

model for CDA operations and to validate the 

assumptions of the model for that purpose. This 

demonstration used a small, existing data set 

collected from other research efforts on CDA 

operations.   

The following sections of this paper first 

summarize the CTAS probabilistic uncertainty 

model and the origins and nature of the data set 

used in the demonstration of uncertainty 

estimation. The quantification methodology is 

then applied to a small data set to estimate some 

parameters of the vertical dimension of 

uncertainty (altitude error) in CTAS trajectory 

predictions. This is followed by discussions of 

the validation of the model’s assumptions and of 

the conclusions of the research effort. 

2 CTAS Analytic Probabilistic Approach  

The analytic probabilistic approach used in 

CTAS for real-time uncertainty estimation was 

developed by Paielli and Erzberger [8,9,11]. It 

models trajectory prediction error at any given 

time as a Gaussian distribution of possible 

actual positions of the aircraft around the 

predicted position at that time. Based on that 

model, the CTAS conflict detection algorithm 

computes an analytical solution for the 

probability that a conflict between the predicted 

trajectories of the two aircraft will actually 

occur. The CTAS probabilistic uncertainty 

model assumes the prediction error for each 

aircraft can be parameterized independently in 

the along-path, cross-track, and vertical 

dimensions; in three dimensions, the 

distribution can be said to have an ellipsoidal 

shape.  

Another assumption of the model is that, in 

the vicinity of a conflict, the standard deviation
1
 

of the prediction error distributions’ is 

approximately constant for the cross-track and 

altitude errors and linearly increasing for the 

along-track error. Although the original 

probabilistic uncertainty model starts from these 

preliminary assumptions they are not required 

by the conflict detection algorithm [9]. This 

paper focuses only on quantifying the 

uncertainty model in the vertical dimension. 

Therefore the basic assumptions that need to be 

validated during the quantification process are: 

 The altitude error is approximately 

normally distributed 

 The mean altitude error is small  

 The standard deviation of the altitude 

error is nearly a linear function of time 

3  CDA Data  

Continuous Descent Approaches by definition 

require aircraft to descend to the destination 

(TRACON arrival meter fix or runway), without 

significant intermediate altitude level-offs, 

where possible. In some CDA definitions the 

maximum level flight phase allowed is 2.5 

                                                 
1 Although in the references the model refers to the root 

mean square error, because the analysis assumes zero 

mean error, the root mean square error and the standard 

deviation are the same. 
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nautical miles [12]. The quantification of the 

CTAS uncertainty model used data from three 

different NASA and FAA CDA field tests: 

 Oceanic Tailored Arrivals (OTA) into San 

Francisco Airport performed by NASA 

Ames and the FAA (August 2006 and 

January 2007) [4]; ten flights, all Boeing 

777 

 CDAs into Dallas by NASA Ames North 

Texas (NTX) Facility (February 2008) [13]; 

three flights, two B757 and one B737 

 CDAs into Miami Airport by the FAA (May 

2008) [14]; six flights, three B777 and three 

B747 

Although the CDA operations were performed 

at different airports and collected during 

different tests, the trajectories analyzed had 

similar cruise and final altitudes. The cruise 

altitudes were between 35,000 and 40,000 feet; 

the final altitudes were 16,000 feet for the 

Miami data and 11,000 feet for all other flights. 

The final altitude of each trajectory analyzed 

was at the meter fix on the TRACON boundary.  

The data exchanged between ground and air 

during the three flight tests was also 

comparable. In the OTA field trial, atmospheric 

characteristics, speed and clearance information 

were exchanged in real time. In the other two 

trials, the procedures were developed a priori; 

only a “descend via” clearance was issued by 

the controllers. In all three trials, each aircraft’s 

FMS calculated the Top of Descent (TOD) 

location without regard to the speed and altitude 

restrictions shared between ground and air. 

These characteristics suggest that the three data 

sets can be combined into a single sample 

representing a common procedure, which is 

characterized by a common level of TP 

uncertainty.  

4  Preliminary Visualization 

To visualize the variation in TP prediction 

uncertainty during a CDA, actual and predicted 

trajectories were plotted versus time for all 

flights. Visualizing the difference between 

actual and predicted trajectories provides insight 

into the evolution of prediction error and helps 

to identify the analyses required to quantify the 

uncertainty model. The CTAS probabilistic 

uncertainty model assumes an evolution of 

prediction error with time; therefore visualizing 

actual (observed) and predicted trajectories on 

 

Figure 1 CDA vertical profiles, Dallas field test 
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the same time scale (i.e., temporal correlation
2
 

[15]) was a logical starting point. This type of 

plot is useful to visually identify where the TP is 

more or less accurate and to identify where 

along the predicted trajectory the variation in 

prediction error changes behavior. 

From Figure 1  it is observed that the three 

flights analyzed in the Dallas data descended 

earlier than the CTAS predicted TOD time. As a 

consequence, there were large negative altitude 

errors (actual altitude below predicted altitude) 

near the predicted TOD time. During the 

descent, the actual flight paths were shallower 

than the predicted paths, gradually decreasing 

the error towards the meter fix in two cases and 

actually reversing the error sign (actual altitude 

above predicted altitude) in the third. This same 

general behavior was also observed in the field 

tests performed by NASA Ames between 1992 

and 1995 [5-7]; in those tests the FMS-equipped 

aircraft (some B737, B757, and A320) had a 

negative altitude error at predicted TOD as 

observed in the Dallas flights. 

                                                 
2 The actual and predicted trajectories were temporally 

correlated at the first state predicted by CTAS which 

represents the x axis’ zero in Figure 1 and Figure 2. 

The opposite behavior can be observed for 

the CDAs into Miami (Figure 2), where the 

aircraft all descend after the predicted TOD 

time. This substantial difference in the error at 

predicted TOD could be caused by the different 

aircraft performance models in the CTAS TP. 

The B777 in two different flight tests (OTA and 

Miami) has the same behavior, being late at the 

predicted TOD. This significant difference in 

prediction error behavior could indicate the 

need for a separate uncertainty model for the 

B777 or possibly an adjustment to the CTAS TP 

for this aircraft type. The analysis described in 

this paper, the first application of the 

methodology, assumes the same uncertainty 

model for each aircraft type in the sample, 

including the B777. Grouping all the flights in 

one sample was the most rational choice having 

only a limited number of flights to analyze. The 

identification of both general and specific flight 

prediction error behaviors was one of the 

objectives of this preliminary visualization 

approach. An additional benefit of this step was 

the identification of this unique (possibly 

erroneous) behavior of the B777 predicted 

trajectories.  

 

Figure 2: CDA vertical profiles, Miami field test 
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From the preliminary visualization it is 

clear that significant altitude errors occurred at 

the predicted TOD for almost all of the flights; 

previous studies indicated this same behavior 

[4,7]. To compare the prediction errors across 

the flight sample, a spatial correlation approach 

was employed. In general, a correlation 

approach defines which actual state (from the 

actual trajectory) is correlated with which 

predicted state during a prediction accuracy 

analysis [10]. Different types of correlation 

approaches are useful for different analysis 

purposes. For the purpose of this preliminary 

analysis, the observed event at a point was 

paired with the nearest point on the predicted 

trajectory, measured according to the lateral 

distance between the points. These two points 

were then considered to occur at the same 

along-path distance, defined as the distance 

along the predicted path from some 

predetermined reference point to the predicted 

point.
3 An additional complexity existed 

because the predicted path distance from TOD 

to meter fix varied greatly among the flights in 

the data set. To deal with this issue, the flights 

were first spatially correlated relative to the 

predicted TOD, and then to the meter fix, and 

the altitude errors for each of these correlations 

were plotted as a function of the along-path 

distance relative to the correlated point as 

shown in Figure 3. In these plots the 

independent variable is: 

 

s = distance (nmi) along the 

predicted path, relative to the 

reference point 

 

The reference point identified with the 

zero in the abscissa (along path distance) 

represents, respectively, the predicted TOD and 

meter fix locations in the upper and lower plots 

of Figure 3. For locations along the predicted 

path before the reference point, s is negative. 

When the meter fix is the reference point, s is 

negative for all points plotted on the graph. The 

predicted and observed altitudes are then 

defined as functions of along-path distance: 

                                                 
3 See reference [10] for additional details of spatial 

correlation. 

         = predicted altitude (feet) 

as a function of along-

path distance s 
        = observed altitude (feet) 

as a function of along-

path distance s 
 

The dependent variable in Figure 3 then is the 

altitude error,  , defined as: 

 

                       

 

With this approach the common error 

trends around predicted TOD and meter fix 

were visible independent of the varying cruise 

and meter fix altitudes.  From the plots in Figure 

3 it is clear that the different data sets presented 

different evolutions of the altitude error over the 

predicted CDA trajectory. 

To quantify the uncertainty model in the 

vertical dimension it was necessary to calculate 

the altitude error’s standard deviation evolution 

over the CDA trajectory. The standard deviation 

represents the scatter of the altitude error, but 

not its sign; in fact the sign of the error was not 

relevant to identify error growth rate segments. 

From Figure 3, three different segments of the 

error variation rate were identified, i.e. an initial 

steep increase after the TOD, caused by the 

aircraft being late or early at TOD. A following 

decrease with a moderate slope, associated with 

the descent phase with no noticeable difference 

between the Mach and CAS segments. And a 

final steep decrease rate, related to the level-off 

deceleration segment predicted by CTAS 

between BOD and the meter fix. The length of 

these three segments needed to be quantified by 

aggregating the standard deviation of the error 

across all trajectories. The CTAS model was 

quantified, and the preliminary assumptions 

were then investigated as described in Section 6. 
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5 Assembling the Data for Analysis 

The descent length across the flights in the 

sample was not homogenous; the altitude 

difference between the TOD and the meter fix in 

fact ranged from 20,000 to 28,000 feet, as 

shown in Figure 4.  

 

 

Figure 4 Distribution of the altitude difference 

between TOD and meter fix over the sample of flights 

Ideally, analysis of the data would result in 

a model of uncertainty that would apply to 

descents with a wide variety of altitudes at TOD 

and meter fix. A sufficiently large set of 

trajectories with sufficient variation in these 

altitudes is desirable to support that analysis. In 

the data available for the effort described here, 

however, almost all the flights had altitude 

differences in a relatively narrow range (24,000 

to 28,000 feet), and each trajectory’s altitude 

difference depended largely on which field test 

produced the trajectory, suggesting that this 

variable would be correlated with other 

confounding variables.  

For the purpose of demonstrating an 

analysis, therefore, the impact of the altitude 

difference was not investigated; instead, the data 

were artificially mapped to predicted trajectories 

that all descended from 38,000 feet at TOD to 

11,000 feet at the meter fix, a difference of 

27,000 feet (where the majority of the actual 

data were clustered). 

In this specific treatment of the data, the 

top 10,000 feet of each predicted trajectory 

(from the TOD to a point predicted 10,000 feet 

below TOD) were mapped to the altitude range 

from 28,000 to 38,000 feet. The bottom 10,000 

feet (from a point predicted 10,000 feet above 

the meter fix, down to the meter fix) were 

mapped to the altitude range from 11,000 feet to 

21,000 feet. For each trajectory whose altitude 

difference was at least 24,000 feet, the central 

4,000 feet of the predicted trajectory were 

mapped to the center of the new altitude range, 

22,500 to 26,500 feet. Visual inspection of the 

middle 4,000 or more feet of each flight’s 

 

 

Figure 3: Altitude error spatially correlated at predicted TOD and meter fix 
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trajectories, both predicted and actual altitudes 

plotted against along-path distance, was 

performed to confirm that this altitude range 

captured the middle segment’s error behavior
4
 

(Figure 5).  

If there had been flights with descent 

length of less than 20,000 feet they would have 

contributed only to the top and bottom part of 

the model. The total descent length would have 

been divided in two; half of the data points 

would have been mapped to the segment below 

TOD and half to the segment below BOD.    

6    Model Parameter Quantification 

After grossly identifying the segments of the 

uncertainty model (section 4), the next step of 

the analysis was to quantify the evolution of the 

mean and standard deviation of the altitude error 

along the descent trajectory for each segment. 

Therefore, an approach was needed to aggregate 

each flight’s altitude error along its predicted 

trajectory over the complete sample of flights to 

calculate the model’s required error statistics. 

For the portion of each predicted trajectory 

between the TOD and the BOD, a hybrid 

spatial-altitude correlation was used. For this 

                                                 
4 This visual inspection assured that the data points left 

out (at 21,500, 22,000, 27,000, or 27,500 feet) didn’t 

present any anomalous altitude error behavior. 

correlation method, predicted altitude was used 

as an independent variable: 

 

                                 

 

Two dependent variables were defined as 

functions of the predicted altitude: 

 

         = Along–path distance 
(nmiles) at which the 
aircraft was predicted 
to reach the altitude 

hpred 

        = observed altitude 
(feet) as a function of 
along-path distance s 

 

The altitude error   , was then calculated as: 

 

                               

 

This technique uses spatial correlation to 

measure any single altitude error along a 

predicted trajectory, but because it selects the 

events (i.e., along path locations at which to 

calculate the altitude error) by predicted 

altitude, it allows aggregating the errors from 

multiple flights at the same predicted altitudes.  

The spatially correlated altitude error of 

each flight was calculated at defined predicted 

 

Figure 5: Flights with different middle segment 
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altitude steps in 500 ft increments within the 

available data. 

One more complication was that the CTAS 

predicted trajectories included a bottom of 

descent (BOD) location, where the aircraft 

leveled off briefly to decelerate to a speed 

constraint at the meter fix. This level-off 

represents a slight discontinuity in CDA 

trajectory; it also prevents the use of altitude as 

an independent variable, since the entire 

segment is at one altitude. To cover the error 

evolutions between the BOD and the meter fix, 

the altitude error statistics were therefore 

calculated at three additional along-path 

distances: BOD, meter fix, and the point half-

way between them. In order to analyze 

prediction error along this segment, we let: 

 

                                    

 

                               

           

 

Then the altitude error,     along this segment is 

defined by: 

 

                       

 

                                  
 

In order to aggregate these errors over multiple 

trajectories, we define the along-path distance as 

a linear function of a dimensionless variable, , 

such that 

 

          

 

                      

 

         

 

In this way we are able to plot all predicted 

level-off segments over a common range of the 

variable  from 1 to 0. 

From this data, the altitude error mean and 

standard deviation over the entire flight data set 

were calculated at each of these predicted 

altitudes and distances. For each flight, the 

altitude error were calculated at TOD (38,000 

feet), at twenty consecutive points below the 

TOD altitude (down to 28,000 feet predicted 

altitude), nine points in the range from 26,500 

down to 22,500 feet predicted altitude, twenty 

consecutive points above the BOD altitude 

(predicted altitudes 21,000 feet and below), and 

three between the BOD and the meter fix, for a 

total of fifty-three data points. 

7 Model Representation 

With the approach described in section 6 a 

sequence of altitude and spatial (between the 

TOD and meter fix) events along the entire 

CDA trajectory were defined. The altitude error 

mean and standard deviation across the flights 

were then calculated over each of these adapted 

data points. This aggregated data, except for the 

data for the level-off segment, were plotted 

against their predicted altitudes, as shown in 

Figure 6.   

 

 

Figure 6: Altitude error standard deviation evolution 

The data for the level-off segment were plotted 

against the dimensionless variable  over the 

range 1 to 0, as shown in Figure 7. 
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Figure 7: Altitude error standard deviation between 

BOD and the meter fix 

8 Defining the Transitions between Model 

Segments  

The analytic probabilistic approach in CTAS 

requires the quantification of the evolution 

(growth or decay rate) of the error standard 

deviation. To calculate these rates, the altitude 

error standard deviation at each altitude and 

spatial event was first plotted versus decreasing 

altitude from the predicted TOD for a reference 

altitude length of 27,000 feet to the predicted 

BOD (Figure 6). This altitude length, as 

mentioned before, was arbitrarily chosen to 

adapt the analysis to the data set; most of the 

altitude differences (TOD to meter fix) were in 

fact clustered around 27,000 feet (Figure 4). 

From Figure 6 it is possible to see how the 

altitude error standard deviation rapidly grows 

after the predicted TOD to almost 2,500 feet in 

less than 10,000 feet of descent; this result is 

significant, because it is almost two and a half 

times the minimum vertical separation. The 

standard deviation value then begins to decay 

slowly to the predicted BOD and then with a 

very steep rate to the meter fix as shown in 

Figure 7. From these plots it was possible to 

quantify, with an acceptable level of confidence, 

the three different segment rates grossly 

identified in the preliminary steps of the 

analysis (Section 4). 

To complete the definition of the 

uncertainty model, the best mathematical 

representation for the three trends in standard 

deviation needed to be quantified. This was 

done by fitting a curve to this data using an 

exhaustive search algorithm implemented in 

MATLAB®. The algorithm determined, for all 

the possible combinations of initial and final 

data points in Figure 6, the value of the 

correlation coefficient between the actual 

standard deviation data and the regressed model. 

The search was based only on linear and 

quadratic regression curves.   The correlation 

coefficient was defined as the Pearson’s product 

moment correlation coefficient between STD 

(the standard deviation values) and REG (the 

data point of the regression analysis curve): 

 

  
                                  

   

                     
                      

    

 

   

where          and           are the sample means of 

the observed (standard deviation values) and 

Segment Altitude Range 

STD 
Initial 
Value 

(ft) 

STD 
Final 
Value 

(ft) 

Evolution Equation (x = 
altitude in feet)* 

Grow
th/D
ecay 

Correlation 
coefficient with 
observed data 

1  O → O -8k 1147 2477 
               

            
G 0.996 

2 TOD-8k→BO  2481 1366 
              

           
D 0.987 

3 BO →Meter fix 1201 788           * D 1 

Table 1: Altitude error standard deviation model segment’s detailed values 

*The x in the third equation is relative to the reference scale axis in Figure 9  
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model data (the regression analysis curve data 

points), respectively [16]. The regression curves 

with the highest correlation coefficients were 

then chosen to represent the model of the 

observed data. The choice between a linear or a 

quadratic function to represent the data was 

based on the correlation coefficients. The linear 

fit was chosen if its correlation was greater than 

or equal to 0.95; if not, the quadratic fit was 

chosen instead. In this way a high correlation 

between the observed data and the model was 

achieved.   

9 Final Model  

The final standard deviation model is presented 

in Table 1 and plotted with the data from Figure 

6 and Figure 7 in Figure 8 and Figure 9. The 

dependent variable y in Table 1 is the altitude 

error standard deviation in feet; the independent 

variable x is altitude in feet for the first two 

equations and is relative to the reference scale in 

Figure 9 for the third equation. The high 

correlation values from the exhaustive search 

algorithm confirmed the use of three segments, 

as identified in the initial steps of the analysis. 

The first model segment describes the 

initial error growth after the predicted TOD
5
; at 

the end of the segment the altitude error 

standard deviation reaches almost 2,500 feet. 

The second segment starts 8,000 feet below 

TOD, when the error standard deviation starts to 

decrease, and ends at the predicted BOD where 

the altitude error standard deviation is 1,366 

feet. From BOD to the meter fix, the decay rate 

is faster reaching a final value of less than 800 

feet (Figure 9). The prediction error rapidly 

decreases as the prediction approaches the meter 

fix since the aircraft’s FMS is attempting to 

achieve the meter fix altitude constraint. 

 

                                                 
5 The altitude error before TOD, present only for the three 

Dallas flights is not captured in these plots.  

 

Figure 8: Altitude error standard deviation final 

model 

With this model, the evolution of the 

altitude error standard deviation was completely 

characterized. For each segment, the model 

defines the initial and final values and an 

equation that describes the evolution (growth or 

decay) of the altitude error standard deviation 

(Table 1). The initial value of one segment 

doesn’t have to be the same as the final value of 

the previous, as happens between segments two 

and three. These are just parameters that can be 

input independently in the CD algorithm [9]. 

In order to complete the quantification of 

the CTAS analytic probabilistic model, the 

evolution of the mean altitude error needed to 

be characterized and quantified along the CDA 

trajectory. This was necessary because from the 

data analyzed (e.g., Figure 3), the model 

assumption of zero mean error was clearly not 

valid.  

 

 

Figure 9: Altitude error standard deviation final 

model for the third segment 

To properly validate this assumption of the 

model a larger sample of flights would have 

been needed. Nonetheless a framework on how 
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the validation would have been approached will 

be briefly discussed. The aggregation of the 

flight sample over altitude steps provided the 

data points to calculate the statistics necessary 

for the validation of the basic model 

assumptions of zero mean and normal 

distribution of the altitude error. 

Plotting the error distributions at each 

altitude step into histograms (Figure 10) shows 

how neither assumption is valid at least for the 

limited flight sample analyzed. For larger 

samples, a hypothetical normal distribution can 

be overlaid on the histogram to judge its quality 

of fit, or the data can be graphed on a normal 

probability plot (in which data would fall along 

a straight line if their actual distribution were 

normal) [17] in order to test the validity of the 

normal-distribution assumption. 

 

 

Figure 10: Altitude error histogram example 

The model of the mean altitude error was 

then calculated using the same techniques as for 

the standard deviation model, producing the 

model in Figure 11 and Figure 12. The mean 

altitude error model consists of four segments 

(Table 2). Because most of the flights 

descended before the predicted TOD, the initial 

mean value is negative. Then, as can be 

generally seen in the plots from Figure 3, the 

mean altitude error grows rapidly, eventually 

reaching a maximum value of almost 1,900 feet 

(first segment in Figure 11). It then shrinks to a 

1,090 feet (second segment), ramps up to 1,100 

(segment 3) and then shrinks to the final value 

of less than 160 feet at the meter fix (Figure 12). 

With the mean error model the 

characterization of the altitude error evolution 

over the sample of flights analyzed was 

complete. The CTAS uncertainty estimation 

model was completely defined for the data set. 

For each predicted altitude and along-path 

distance between TOD and meter fix, using the 

correlation approach explained in section 6, the 

expected error magnitude (mean) and scatter 

(standard deviation) can be calculated from the 

provided mathematical equations.  

 

Segment Altitude Range 

Mean 
Initial 
Value 

(ft) 

Mean 
Final 
Value 

(ft) 

Evolution Equation 
(x = altitude in feet)* 

Growth/Decay 

Correlation 
coefficient 

with 
observed 

data 

1 
 O →  

TOD-4.5k 
-460 1788 

               
              

G 0.999 

2 
TOD-4  k→ 

BOD+1k 
1768 1091 

               
           

D 0.992 

3 BO   k→ BO  1100 1103 
               

            
G 1 

4 BO →Meter fix 1100 158            * D 0.999 

Table 2: Mean altitude error model segment’s detailed values 

*The x in the fourth equation is relative to the reference scale axis in Figure 12. 
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Figure 11: Mean altitude error final model 

A plot of the final uncertainty model is 

presented in Figure 13. The mean and standard 

deviation values are plotted at each altitude step 

(converted to a predicted along path distance) 

and along-path distance event between the 

predicted TOD and meter fix on a representative 

(actual flight’s) predicted CDA trajectory. The 

mean value in the plot was added to the 

reference predicted trajectory along the CDA. 

The (spatially correlated) actual trajectory for 

this flight is also plotted. 

 

 

Figure 12: Mean altitude error final model for the 

fourth segment 

The model of uncertainty was quantified as 

a function of the decreasing altitude from the 

TOD because the approach used to aggregate 

the flights in the sample was based on spatial 

correlation at significant points along the 

descent trajectory (TOD, BOD, and meter fix). 

There is a one-to-one correlation between the 

predicted altitude and the predicted time of any 

point in the predicted trajectory that can be used 

to directly convert the model from altitude-

based/along-path distance-based to time-based. 

Though straightforward, this would be required 

to implement the model in CTAS.  

9 Discussion and Lesson Learned 

A demonstration of using trajectory prediction 

accuracy techniques to define and quantify the 

parameters of a real-time uncertainty estimation 

model has been provided. By using actual 

prediction errors calculated from sampled flight 

data, the methodology enables capturing the 

cumulative effect of multiple prediction error 

sources, both known and unknown, within the 

resultant uncertainty model. Since the 

magnitude and evolution of prediction error 

typically varies along the nominal prediction, 

the methodology also accommodates the 

identification of an appropriate number of 

uncertainty model segments, each with its own 

parameters, as well as when to transition 

between these segments. 

If proper flight sampling of the target 

environment is achieved, the quantified 

uncertainty model can be added to a TP to 

support the operations of its DST in the 

presence of prediction uncertainty. Although not 

intended to directly improve the TP itself, the 

addition of the uncertainty model, through the 

implementation of the system equations, can 

improve the overall performance of the DST.  

The demonstrated application of the 

methodology to quantify the CTAS analytic 

probabilistic model for CDA operations 

illustrates one such DST application where 

proper handling of prediction uncertainty is 

likely to be a key enabling element. Another 

example is the sizing of the prediction 

uncertainty bounds of the Autonomous 

Operation Planner (AOP) [18], an airborne DST 

developed by NASA Langley Research Center 

to perform distributed separation assurance 

simulation experiments. The details of the AOP 

example are provided in reference [10]. 

Although demonstrated for specific uncertainty 

models, the methodology is general and can be 

used to instantiate a wide range of TP 

uncertainty models. 

The CDA data used to quantify the CTAS 

analytic probabilistic model was sufficient to 

illustrate many of the strengths of the 

methodology, but it also pointed out some of the 
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issues that arise without a sufficient sample size. 

For example, due to the small sample size, it 

was not possible to validate that the prediction 

errors were normally distributed. Another 

example was the lack of enough data to properly 

handle the multiple descent altitude ranges. This 

issue influenced the choice to use a 

representative 27,000 feet CDA trajectory that 

makes the model very specific. These data 

limitations were caused by the necessity of 

using data collected from other CDA projects. 

10  Conclusions and Future Work 

The CTAS probabilistic uncertainty model for 

CDA operations was quantified using a 

methodology created previously. The 

assumptions of the model were also validated 

applying prediction accuracy analysis 

techniques to a small sample of flight collected 

from other research efforts on CDA operations.   

The application of this methodology to a 

larger sample of flights would be a natural 

continuation of this work. Analyzing more 

flights would give a wider scatter of descent 

trajectories with different descent lengths. The 

model therefore could be validated, with an 

independent sample, and generalized, or 

multiple models could be created if different 

aircraft would show significantly different 

behaviors.  

Once a general model is obtained, how to 

implement the system equations calculated with 

the methodology into a DST could be an area of 

future research. Exploring how beneficial the 

uncertainty model could be on the DST 

operational performance.    

Another possible extension of the work 

presented in this paper could be the 

quantification of the uncertainty model for the 

other two dimensions (cross- and along-track) 

of the TP error. Analyzing the along-track error 

would probably be more interesting than the 

cross-track, because the along-track error is 

strongly influenced by speed and wind errors 

that are usually significant sources of TP 

inaccuracy. 

 

Figure 13: Uncertainty model final results visualization  
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