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Abstract

In response to changing traffic and staffing condi-
tions, supervisors dynamically configure airspace
sectors by assigning them to control positions. A
finite horizon airspace sector configuration prob-
lem models this supervisor decision. The prob-
lem is to select an airspace configuration at each
time step while considering a workload cost, a re-
configuration cost, and a constraint on the num-
ber of control positions at each time step. Three
algorithms for this problem are proposed and
evaluated: a myopic heuristic, an exact dynamic
programming algorithm, and a rollouts approxi-
mate dynamic programming algorithm. On prob-
lem instances from current operations with only
dozens of possible configurations, an exact dy-
namic programming solution gives the optimal
cost value. The rollouts algorithm achieves costs
within 2% of optimal for these instances, on av-
erage. For larger problem instances that are rep-
resentative of future operations and have thou-
sands of possible configurations, excessive com-
putation time prohibits the use of exact dynamic
programming. On such problem instances, the
rollouts algorithm reduces the cost achieved by
the heuristic by more than 15% on average with
an acceptable computation time.

Nomenclature

α Parameter in workload cost
gw(X)

A Adjacency matrix for sectors

w̄(c,T ) Workload threshold in control
position c when the traffic situ-
ation is T

w̄(X) A M× 1 vector in which the ith

component is w̄(ci,T ), ci ∈C
β Parameter in single time step

cost g(Xk,uk,Xk+1)
T̂ Uncertain prediction of future

traffic
ŵ(c, T̂ ) Expected workload level in con-

trol position c when the traffic
prediction is T̂

ˆ̄w(c, T̂ ) Expected workload threshold in
control position c when the traf-
fic prediction is T̂

C Set of all valid configurations
Ci Set of all valid configurations

with i control positions
µheur(X ,d) Heuristic control policy; out-

puts a control action
µk(Xk) Indicates what control action to

take at time step k and state Xk
π Control policy specifying µk for

all time steps of interest
J̃k(Xk) Rollouts approximate optimal

cost-to-go from state Xk at time
step k

w(X) A M× 1 vector in which the ith

component is w(ci,T ), ci ∈C
C A configuration; a set of control

positions
c A control position; a set of sec-

tors
dk Required number of control po-
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sitions at time step k
g(Xk,uk,Xk+1) Single time step cost
gr(Xk,uk,Xk+1) Reconfiguration cost
gw(X) Workload cost
H Number of Monte Carlo simula-

tions
J?

k (Xk) Optimal cost-to-go from state
Xk at time step k

K Final time step
k Time step
L Reduced number of time steps;

L≤ K
M The number of control positions
N Number of sectors
S A set of sectors to be configured
s A sector
T State and flight plan informa-

tion for all aircraft that are cur-
rently in or are planning to fly
through the sectors of interest

uk Control action time step k;
equal to Ck+1

u?
k Optimal action at time step k

w(c,T ) Workload in control position c
when the traffic situation is T

X System state; includes C and T

1 Introduction

In current air traffic management operations,
airspace is partitioned into static volumes called
sectors to facilitate the division of responsibili-
ties between air traffic controller teams. A sec-
tor configuration maps a set of airspace sectors
into a set of control positions such that each sec-
tor is assigned to exactly one control position. A
single team of one to three air traffic controllers
monitors each control position. Supervisors se-
lect configurations so as to 1) assign enough con-
troller teams to busy airspace and 2) avoid work-
load associated with transitions between config-
urations [20]. Current air traffic control oper-
ations require so much memorization that each
controller is only certified to control a set of six
to eight sectors referred to as an “area of special-
ization," such as the area shown in figure 1. The
relatively small number of sectors in each area

mean that there are a relatively small number of
permitted sector configurations in each area.

11
11
1

1

1

1

1
1

1

1
1
1

Fig. 1 The six sectors in Area 7 of Cleveland Air
Route Traffic Control Center.

With planned improvements in automa-
tion and changes in operations proposed by
MITRE [1, 28], Mogford [31–33], and the Fed-
eral Aviation Administration [11], controllers
will be able to control a wider range of sectors.
This will increase the number of possible config-
urations. This increase in configuration options
makes it more likely that an appropriate sequence
of configurations will exist to fit any given traf-
fic and controller resource situation. However, it
will also make the selection of appropriate sec-
tor configurations more challenging for supervi-
sors. Therefore, a tactical decision-support tool
that suggests good sector configurations will aid
supervisors in this context [11].

Several algorithms for configuring sectors
that could be used in such a decision-support
tool have been proposed [4,5,7,9,10,12–19,36].
These algorithms vary in the version of the sector
configuration problem they attempt to solve. One
supports tactical decision-making [9], but the rest
focus on pre-tactical or strategic decisions con-
cerned with staff planning. Some attempt to min-
imize the number of control positions required to
safely manage the traffic [4, 5, 10]. Others set
a required number of control positions at each
time [7] or put an upper bound on the number
of control positions at each time [9, 16, 17, 36].
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These algorithms also vary in how they quan-
tify controller workload. Workload is quantified
using aircraft count [4, 5, 10], inter-control posi-
tion coordination [7], control position through-
put [36], detailed human task load models [9], or
neural networks trained on historical traffic data
and sector configurations [13,15,18,19]. Further-
more, none of the existing algorithms explicitly
consider the uncertainties involved in predictions
of air traffic. Such uncertainties impact predic-
tions of any measure of controller workload.

The workload associated with reconfigura-
tions is treated differently by existing algorithms
for configuring sectors. Several algorithms ig-
nore this reconfiguration workload [4, 5, 9, 10],
but some take steps to control the frequency of
reconfigurations [12, 14, 15, 36]. None specify
an explicit reconfiguration cost that considers the
differing levels of workload induced by different
reconfigurations, even though such differences
exist and have been studied [20, 21, 26, 27].

These algorithms also vary in the solution
methods they utilize to select configurations. The
methods include original heuristics [4,5], integer
programming [10, 36], genetic algorithms [7, 16,
17], brute-force exhaustive search [9], and tree-
search methods like branch-and-bound and the
A? algorithm [12, 14–17].

In this paper, a new formulation of the tactical
sector configuration problem is proposed. This
formulation explicitly considers uncertainties in
predictions of air traffic by using predictions of
future air traffic sampled from an appropriate dis-
tribution. The control actions in this problem are
the sector configurations at each time step over
a finite time horizon. These configurations must
contain a required number of control positions at
each time step. The objective is to minimize the
expected value of a weighted sum of a workload
cost and a reconfiguration cost. Three algorithms
for this problem are proposed and evaluated. One
of these algorithms is a myopic heuristic, another
is an exact dynamic programming algorithm that
can be solved with value iteration, and the third
uses rollouts to generate an approximate dynamic
programming solution.

The rest of this paper is structured as follows.

The new sector configuration problem is speci-
fied in Section 2. The algorithms for this problem
are described in Section 3. In Section 4, the per-
formance of the algorithms is analyzed by apply-
ing them to small problem instances from current
operations and large problem instances from pos-
sible future operations. Section 5 contains con-
clusions and Section 6 contains suggestions for
future work.

2 Problem Specification

The problem is to select an airspace configuration
at each time step while considering a workload
cost, a reconfiguration cost, and a constraint on
the number of control positions at each time step.
The problem specification consists of a system
model and dynamics, problem constraints, and an
objective function.

Let S = {s1,s2, . . . ,sN} be the set of N sectors
to be configured. The matrix A is an adjacency
matrix that specifies which sectors are neighbors.
Element Ai j is 1 if si is adjacent to s j, other-
wise it is 0. A configuration of S is specified by
C = {c1,c2, . . . ,cM}, where M is the number of
control positions. Each control position ci ∈C is
itself a set that contains one or more sectors.

2.1 System Model

The system state at time step k is Xk = (Ck,Tk),
where Ck is the sector configuration at k and Tk
specifies the aircraft traffic situation for the sec-
tors in S at k. Tk contains state and flight plan
information for all aircraft that are currently in or
are planning to fly through the sectors in S. It
contains all the aircraft data available for predict-
ing future traffic situations.

The size of the state space for Ck can be in
the thousands or millions for problems of in-
terest in the future air traffic management sys-
tem. For one such problem studied in Section
4, there are 8,362 valid configurations of 11 sec-
tors. For one current-day problem in the French
airspace, there are around 124,000 valid config-
urations [17]. The size of the state space for Tk
is infinite because aircraft state variables can be
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continuous.
The control at a time step sets the configura-

tion for the next time step: uk = Ck+1. Aircraft
trajectory predictors can be used to predict the
traffic situation at future time steps, but there is
no simple function or stationary statistical distri-
bution that specifies the dynamics of Tk. How-
ever, there are some distributions available that
describe the dynamics of the number of aircraft in
a sector [37]. Rather than explicitly modeling the
dynamics of traffic, these distributions are used
to model the dynamics of the number of aircraft
in each sector, one measure of workload, as will
be discussed in the next two sections.

2.1.1 Workload

There are many functions that attempt to quan-
tify the workload in a control position, given the
control position and the current traffic [6, 22–25,
29, 35]. Let the selected workload function be
specified by w(c,T ). Let w(X) return a |C| × 1
vector in which the ith component is the work-
load for ci ∈C and where X = (C,T ). Uncertain
predictions of future traffic T̂ can also be passed
into the workload function, yielding correspond-
ing predictions of the control position workloads.

There is a workload threshold associated with
each control position. This threshold is not a
hard constraint, but as workload approaches and
exceeds the threshold, operations in the control
position probably become less safe and less effi-
cient. This threshold may depend on character-
istics of the traffic in the sector, such as sector
transit times [38]. Let w̄(c,T ) specify the work-
load threshold for c when the traffic situation is
T , and let w̄(X) be a |C| × 1 vector in which
the ith component is the workload threshold for
ci ∈C. Generally, the workload threshold for a
control position is much smaller than the sum of
the thresholds of the individual sectors that make
up the control position.

2.1.2 Workload Dynamics

Wanke et al. used historical prediction errors to
estimate distributions that describe the dynam-

ics of a measure of workload [37]. This work-
load measure, which is used in the current air
traffic management system, is the peak aircraft
count that occurs in a sector during a 15-minute
time period. Wanke et al. specify a distribution
for future peak aircraft count based on predic-
tion lookahead time, sector type, and properties
of a particular prediction of the future traffic in
the sector (peak predicted number of aircraft in
the sector during the time period and the fraction
of those aircraft that have departed at the time of
the prediction). Unfortunately, there are no pub-
lished joint or conditional distributions capturing
the relationship between peak aircraft count lev-
els over time and in different control positions.

For this research, the 15-minute lookahead
distributions of peak aircraft count derived by
Wanke et al. are used to model the dynamics of
the workload in each sector [37]. Algorithms also
use these distributions when making predictions
about the future, even if the predictions are made
with a lookahead time that is larger than 15 min-
utes. It is assumed that the distributions are in-
dependent across sectors and time steps because
no joint or conditional distributions are available.
The traffic-related distribution parameters (pre-
dicted number of aircraft in the sector and the
fraction of those aircraft that have departed at the
time of the prediction) are computed from his-
torical traffic rather than predicted traffic because
the operational prediction data is not available. A
sample distribution is shown in figure 2.

This approach allows for algorithm perfor-
mance evaluations based not only on the single
sample path of historical traffic but also on other
sample paths that could have occurred. This sort
of evaluation is essential when evaluating any al-
gorithm that claims to be robust to uncertainties.
Predictions that are consistent with the workload
dynamics can be generated by sampling the in-
dependent distributions that govern the system
dynamics, enabling algorithms to accurately and
quickly approximate expected values of future
costs. This approach assumes that samples in
nearby sectors and at nearby times are indepen-
dent. A second assumption is that uncertainties
in predictions are constant with respect to looka-
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Fig. 2 Probability mass function for the 12:45
pm (15-minute lookahead) prediction of the max-
imum number of aircraft in sector ZOB38 in
Cleveland Center between 1:00 pm and 1:15 pm
local time on 22 February 2007.

head time. The impact of these assumptions and
alternative approaches to handling system uncer-
tainties should be evaluated in future research.

2.2 Objective

There are two components of the cost at each
stage: a workload cost gw and a reconfiguration
cost gr. The total cost g is a weighted sum of the
two.

The workload cost penalizes cases where the
w(Xk) exceeds w̄(Xk). This cost function starts
with the amount by which the workload exceeds
the workload threshold in each control position,
multiplies it by the parameter α, squares the re-
sult, and finally sums the results for all the control
positions in Ck:

gw(Xk) = ‖α[w(Xk)− w̄(Xk)]+‖2
2, (1)

where the operators are defined as follows. For
a real input a, [a]+ is 0 if a < 0 and a if a ≥ 0.
When operating on a vector, as in (1), the opera-
tor [·]+ applies separately to each element in the
vector. Also, for a vector a, ‖a‖2

2 is the squared
2-norm of a. Control positions with workload
levels below the threshold are not penalized. Al-
ternative workload cost function formulations are

possible. Airspace sector design and configura-
tion research has pursued objectives like work-
load balance, traffic flow conformance, and low
inter-control position coordination [8,30,34,39];
these could be added to this cost function in fu-
ture work.

The next component is the reconfiguration
cost, which increases as the next configuration
becomes more different from the current con-
figuration. Significant configuration changes in-
duce workload for air traffic control staff as
they transition from one control position to an-
other [20,21,26,27]. This cost specifies the num-
ber of control positions in Ck+1 that were not
present in Ck:

gr(Xk,uk,Xk+1) = |Ck+1 \Ck|, (2)

where \ is the set minus operator. Al-
ternate reconfiguration cost formulations
may be considered. Gianazza et al. use
min{|Ck|, |Ck+1|} − |Ck ∩ Ck+1| as a distance
function in a genetic algorithm [17]. The
authors of this paper have previously used
|Ck \ Ck+1| [20]. These possibilities are inde-
pendent of the traffic situations Tk and Tk+1, but
the reconfiguration workload does depend on
the traffic situation, and more sophisticated cost
functions may consider the traffic in control po-
sitions that are being combined and split to move
from one configuration to the next [21, 26, 27].

The overall single time step cost is simply the
weighted sum of equations (1) and (2):

g(Xk,uk,Xk+1) = gw(Xk)+βgr(Xk,uk,Xk+1).
(3)

It is parameterized by α and β, a nonnegative
weight on the reconfiguration cost. Appropriate
values for α and β are a topic for future research.

The overall problem considered here is a fi-
nite horizon expected total cost problem with the
objective

min
π=(µ0,µ1,...,µK−1)

E

[
K−1

∑
k=0

g(Xk,uk,Xk+1)

∣∣∣∣∣X0

]
, (4)

subject to the system model described in sub-
section 2.1 and the constraints discussed in sub-
section 2.3. For some random variable a and a
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variable it depends on b, E[a|b] denotes the ex-
pected value of a given b. Also, π is a control
policy in which each µk(Xk) indicates what con-
trol action to take at time step k and state Xk.

2.3 Constraints

A valid C must assign each si ∈ S to a control
position:

M[
i=1

ci = S, (5)

where ∪ is the set union operator. A valid C also
cannot assign any si to more than one control po-
sition:

ci∩ c j = /0 ∀ ci,c j ∈C, i 6= j, (6)

where ∩ is the set intersection operator and /0 is
the empty set. These two requirements ensure
that 1≤M≤N. All the si in a valid c must define
a single connected component in the graph spec-
ified by A. This ensures that sectors in the same
control position are adjacent to each other.

Furthermore, certain control positions may
not be allowed for reasons such as a preference
for convexity in the top-view of control positions
or a maximum control position size constraint.
Any valid configuration C contains no disallowed
control position.

The set C contains all valid configurations of
a given set of sectors S. Furthermore, let Ci be
the set of all valid configurations with i control
positions (i.e. |C| = i ∀ C ∈ Ci). It is easy to
see that |C1|= 1 and |CN |= 1, but there may be
many valid configurations when the number of
control positions is between 1 and N. There is a
constraint on the control that specifies the num-
ber of control positions that can be used at each
time step. This constraint is needed because a
certain number of controller teams are available
and should be working at each time step. Let dk
specify the required number of control positions
at k. Therefore, uk ∈ Cdk+1 is a constraint.

3 Algorithms

This section proposes three algorithms that at-
tempt to solve the problem defined in Section 2.

The first is a myopic heuristic that is similar to
the heuristic in Refs. [4,5]. It computes a solution
quickly but makes no guarantees on its optimal-
ity. The next algorithm uses dynamic program-
ming and solves for the optimal costs-to-go with
value iteration. It computes the optimal solution
but is computationally intensive and can be slow
when |C| is large. The final algorithm utilizes
an approximate dynamic programming technique
known as rollouts. It uses the myopic heuris-
tic to approximate the optimal costs-to-go and
is therefore a hybrid of the first two algorithms.
It can guarantee better performance than the my-
opic heuristic and produces a solution faster than
exact dynamic programming.

3.1 Myopic Heuristic

A myopic heuristic algorithm was designed for
this problem. This algorithm is myopic be-
cause when selecting uk it only considers the ex-
pected workload levels in the next time step and
the required number of control positions in the
next time step. The expected workload levels
ŵ(c, T̂k+1) and workload thresholds ˆ̄w(c, T̂k+1)
are approximated with the mean workload from
Monte Carlo simulations of the next time step.

If |Cdk+1| > |Cdk | or ŵ(c, T̂k+1) >
ˆ̄w(c, T̂k+1) for some c ∈ Ck, then cmax =
argmaxc∈Ck

ŵ(c, T̂k+1) is split into two control
positions. If there are multiple ways to split
cmax, the split that leaves the lowest maximum
ŵ(c, T̂k+1) in the two resulting control positions
is selected.

If |Cdk+1 | < |Cdk |, then the algorithm selects
a combination to implement. It searches for an
acceptable combination by starting with cmin =
argminc∈Ck

ŵ(c, T̂k+1). All possible ways to com-
bine cmin with a neighboring c are investigated,
and the combination that results in the control
position with the lowest is implemented, assum-
ing that expected workload is below a threshold.
If no acceptable combination involving cmin is
found, the control position with the next lowest
expected workload is considered until eventually
an acceptable combination is determined. Some
additional logic helps ensure that some combina-
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tion is found so that the constraint uk ∈ Cdk+1 is
not violated.

3.2 Dynamic Programming Solution via
Value Iteration

A fundamental quantity in dynamic program-
ming is the optimal cost-to-go; it is the cost that
would be incurred if optimal actions are taken
from some state onward. The optimal cost-to-go
function here depends on the time step k and is
specified as

J?
k (Xk) = min

µk,...,µK−1
E

[
K−1

∑
j=k

g(X j,u j,X j+1)

∣∣∣∣∣Xk

]
.

(7)
This optimal cost-to-go is approximated with
the average cost from Monte Carlo simulations
constructed from the workload distributions dis-
cussed in sub-section 2.1.2. The expression for
this approximation is

J?
k (Xk)≈ min

µk,...,µK−1

1
H

H

∑
h=1

[
K−1

∑
j=k

g(Xh
j ,u j,Xh

j+1)

]
,

(8)
where Xh

j is the state at time step j in Monte
Carlo simulation h, h = 1,2, . . . ,H. In this finite
time horizon case, the J?

k (Xk) values can be com-
puted with value iteration starting at the final time
step [2].

The optimal action to take at each time step
can then be found with

u?
k ∈ argmin

uk∈Cdk+1

E
[

g(Xk,uk,Xk+1)+ J?
k+1(Xk+1)

∣∣Xk
]
.

(9)
Again, the expected value here is approximated
with Monte Carlo simulations.

3.3 Rollouts Approximate Dynamic Pro-
gramming Solution

Rollouts is a technique for approximating the op-
timal cost-to-go [2]. The approximate optimal
cost-to-go is then used in equation (9) to select
an action at each time step. The idea is to ap-
proximate the optimal cost-to-go at each possi-
ble next state with the cost-to-go that would be

incurred if a heuristic were used for the remain-
der of the time horizon. This approach is closely
related to policy iteration, a technique that can
be used to solve for the optimal costs-to-go [2].
Rollouts is guaranteed to lead to better cost re-
sults than are achieved by the raw heuristic that
it uses. The approximations of the optimal cost-
to-go are computed as needed during algorithm
execution, which is appropriate for this problem
because the state space is infinite. These approx-
imations can make use of the latest traffic situa-
tion data, so this approach will be even more ap-
propriate for more sophisticated versions of the
sector configuration problem in which new traf-
fic information enables more accurate predictions
of future traffic and therefore future costs.

More precisely, let µheur(Xk,dk+1) be a
heuristic control policy such as the myopic
heuristic suggested in sub-section 3.1. The opti-
mal cost-to-go is approximated by assuming that
this heuristic policy is used for the remainder of
the time horizon:

J?
k (Xk)≈E

[
K−1

∑
j=k

g(X j,µheur(X j,d j+1),X j+1)

∣∣∣∣∣Xk

]
.

(10)
As with the dynamic programming solution via
value iteration, the expected value is approxi-
mated with the average of H Monte Carlo sim-
ulations. The rollouts algorithm computes its ap-
proximate optimal cost-to-go according to

J̃k(Xk)=
1
H

H

∑
h=1

[
K−1

∑
j=k

g(Xh
j ,µheur(Xh

j ,d j+1),Xh
j+1)

]
.

(11)

Three techniques are used to speed up the
computation of the approximate optimal cost-to-
go in equation (11). The first is to compute the
cost-to-go incurred by the heuristic for some L
time steps, rather than all the way until the end
of the problem time horizon. This will hinder
the performance of the algorithm because there
may be a reason to select a control action that is
not revealed until beyond the next L time steps.
The second technique is to stop computing the
approximate optimal cost-to-go for a configura-
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tion when the approximation already exceeds the
smallest approximate optimal cost-to-go found so
far. This technique will not adversely affect the
algorithm’s cost performance. The third method
for speeding up computation is to reduce the
number of Monte Carlo simulations used to ap-
proximate the expected value. Such Monte Carlo
simulations are computationally cheap to pro-
duce using the workload distributions assumed
for each sector at each time step (see sub-section
2.1.2), so this method is probably not helpful
for this version of the sector configuration prob-
lem. However, some Monte Carlo simulations
and workload metrics are computationally expen-
sive to produce, so this method could become im-
portant in future work.

4 Quantitative Analysis of the Algorithms

4.1 Small Problem Instances from Current
Operations

Areas of specialization typically contain six to
eight sectors, and they make convenient small
problem instances for studying the performance
of the three proposed algorithms. They are also
interesting problem instances to consider because
historical sector configuration data is available,
so the performance of the algorithm-generated
configurations can be compared with the perfor-
mance of the historical configurations. Finally,
differences between the historical configurations
and those selected by the algorithms can help re-
veal problems with the algorithms [20]. A de-
tailed comparison of this type is an opportunity
for future research.

For these experiments, historical air traffic
data from three Thursdays in February of 2007
and the eight areas of specialization in Cleveland
Air Route Traffic Control Center were used to
construct 19 different problem instances. Fig-
ure 1 shows the sectors in one such area. Each
of the eight areas considered for these problems
contains six or seven sectors. The valid config-
urations for each day were limited to those that
use control positions from the historical sector
configurations on that day. Also, the number of

required control positions at each time step was
set to the number in the historical data. There
were between 12 and 24 possible configurations
for each problem instance. The number of con-
figurations with the required number of control
positions at each time step ranged between one
and nine but averaged only about three.

Each problem instance ran from 3:45 am to
10:45 pm local time. The time steps were 15
minutes long, but the algorithms did not usually
change airspace configurations every 15 minutes
due to the reconfiguration cost. For each of the
19 instances, 10,000 Monte Carlo runs were cre-
ated to help determine how each algorithm would
do under a variety of possible workload sam-
ple paths based on the recorded traffic sample
path. These runs were generated using the in-
dependent distributions discussed in sub-section
2.1.2. The dynamic programming algorithm used
a different set of 10,000 Monte Carlo simulations
to compute expected values, while the heuristic
and rollouts algorithms used only 100 such sim-
ulations in an attempt to increase their compu-
tational speed. The rollouts algorithm approx-
imated the optimal cost-to-go by running the
heuristic for four hours rather than for the entire
remainder of the problem. Finally, workload was
specified as the maximum number of aircraft in a
control position during the time step divided by a
control position-specific upper bound called the
Monitor Alert Parameter (MAP) so that all work-
loads ranged between zero and about one. For
some control positions, published MAP values
are available in the Future ATM Concepts Eval-
uation Tool [3]. If no published value was avail-
able, the MAP value was set to the largest of the
MAP values of the sectors in the control position.
The workload threshold returned by w̄(c,T ) was
set to 0.9 for all control positions and traffic sit-
uations. In the single stage cost function, the α

parameter was set to 10 and the β parameter was
set to 1. This means that the workload cost of
the workload equaling the threshold in a control
position for one time step is equal to the recon-
figuration cost of one new control position. Table
1 contains a summary of the parameters used for
these analyses.
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Table 1 Problem and Algorithm Parameters for Small Operational Problem Instances
Parameter Value
Problem start time 3:45 am Eastern Time
Problem end time 10:45 pm Eastern Time
Time step duration 15 minutes
K 75
L 16
H for dynamic programming 10,000
H for heuristic and rollouts 100
w(c,T ) maximum aircraft count during time step

monitor alert parameter
w̄(c,T ) 0.9
α 10
β 1

Table 2 Cost and Computation Time Results for Small Operational Problem Instances
Approach Fraction of Optimal Cost (g) Mean Compute Time

Min Mean Max per Time Step [seconds]
Dynamic Programming 1.000 1.000 1.000 0.095
Historical 1.000 1.217 2.174 −
Heuristic 1.000 1.165 2.100 0.012
Rollouts 1.000 1.014 1.159 0.065

Table 2 summarizes the cost and computation
time results for the Monte Carlo runs of these 19
problem instances. The dynamic programming
approach computes the optimal solution to the
problems, assuming that it uses enough Monte
Carlo simulations to accurately approximate ex-
pected values. The costs incurred by the other
approaches are expressed as a fraction of the op-
timal cost found by dynamic programming. Fig-
ure 3 graphically portrays the information in Ta-
ble 2. Note that the compute time per time step
is set to zero for the operational configurations
because the actual compute time in operations is
not known. The historical sector configurations
perform relatively well on these small problems.
On at least one problem instance they achieve the
optimal cost, and on average the cost from the
historical configurations is within about 22% of
optimal. However, on one problem instance the
historical sector configurations led to a cost that
was more than double the optimal cost. The per-

formance of the heuristic is similar to that of the
historical configurations, but slightly better. The
rollouts algorithm achieves a cost that is within
2% of optimal on average and never more than
16% from optimal on these 19 problem instances.

The dynamic programming algorithm took
about a tenth of a second per time step to select
a configuration. It benefitted from the fact that
all of the workload distributions were assumed
to be fixed and independent. This meant that the
dynamic programming algorithm only had to per-
form value iteration at the first time step, and then
could re-use the optimal costs-to-go at all future
time steps. In a more realistic problem formu-
lation where new information becomes available
over time and changes the distribution of future
traffic and workload, the dynamic programming
solution would have to perform value iteration at
each time step, and it would therefore be slower.
The heuristic algorithm computed a solution in
about a hundredth of a second. The rollouts algo-

9



MICHAEL BLOEM, PRAMOD GUPTA

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

Mean Compute Time per Time Step [seconds]

Fr
ac

tio
n 

of
 O

pt
im

al
 C

os
t

 

 

Operational
Heuristic
Dynamic Programming
Rollouts

Fig. 3 Mean compute time per time step and
spread of cost results for each algorithm. The
bottom of the vertical line is the lowest cost re-
sult, the bottom of the box is the 25th percentile,
the horizontal line is the median, the top of the
box is the 75th percentile, and the top of the ver-
tical line is the maximum.

rithm took about two-thirds of the time required
by the dynamic programming solution per time
step to select a configuration. The efforts to speed
up the rollouts algorithm discussed in sub-section
3.3 approximately halved its computation time.

4.2 Large Problem Instances from Possible
Future Operations

A hypothetical future area of specialization con-
sistent with the research of Mogford [31–33] was
constructed by slightly modifying the super-high
altitude sectors in Cleveland Air Route Traffic
Control Center. It contains 11 sectors, all with
altitude floors at 34,000 feet, and is shown in fig-
ure 4.

Three problem instances from the same three
Thursdays in February of 2007 were created for
this possible area. For these instances, there are
8,362 possible valid configurations. At each time
step, the number of valid control actions ranged
between 1 and 2,288 and averaged almost 500.
The required number of control positions for each
problem instance was set so that the total number
of aircraft in the area divided by the number of
control positions would not be larger than 10 air-
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1
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Fig. 4 The 11 sectors in a possible future area of
Cleveland Air Route Traffic Control Center.

craft. The other details relating to these instances
are the same as for the smaller problem instances
as described in sub-section 4.1, except that these
simulations ran for one more time step.

An exact dynamic programming solution was
attempted for one of these problem instances but
after 10 hours it had still not finished comput-
ing the optimal costs-to-go. Since it takes pro-
hibitively long to compute the optimal solution
with exact dynamic programming problem in-
stances of this size, the cost results in table 3 are
expressed in terms of a percentage improvement
over the cost achieved by the heuristic. The roll-
outs approximate dynamic programming solution
achieves a cost reduction of between 10% and
28% for these three problem instances, with an
average cost reduction of more than 15%.

Information and automation tools are being
developed to enable larger areas of specializa-
tion [1, 11, 28, 31–33]. If the heuristic performs
better than configurations selected by a human
supervisor in larger areas of specialization, as it
does in current areas of specialization, then the
rollouts solution would offer a cost improvement
of 15% or more over configurations selected by
a human supervisor in larger areas of specializa-
tion. This should be investigated in future re-
search, as should the benefits over current opera-
tions of larger areas of specialization configured
with the algorithms proposed here.

10
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Table 3 Cost and Computation Time Results for Large Possible Future Problem Instances
Approach Percent Cost (g) Improvement Mean Compute Time

over Heuristic per Time Step
Min Mean Max [seconds]

Heuristic − − − 0.021
Rollouts 10.83% 17.87% 27.50% 97.0

The heuristic algorithm computes a solution
for each time step in about two hundredths of
a second on average, which is about twice as
long as it took for the smaller problems in sub-
section 4.1. The rollouts algorithm takes on av-
erage 100 seconds to compute each next config-
uration. This should be acceptable because this
computation would only need to complete within
the 15-minute time step.

5 Conclusions

A finite horizon airspace sector configuration
problem was formulated. It considers workload
costs, reconfiguration costs, and a constraint on
the number of control positions at each time step.
Three algorithms for this problem were proposed
and evaluated. On small problem instances from
current operations, an exact dynamic program-
ming solution can be computed with value it-
eration. This solution gives the optimal cost
value for the problem instances. Historical sector
configurations and those generated by a myopic
heuristic on average led to costs that were about
22% and 17% larger than the optimal cost, re-
spectively. A rollouts approximate dynamic pro-
gramming algorithm based on the myopic heuris-
tic achieved costs within 2% of optimal, on aver-
age. For large problem instances based on pos-
sible future operations, the rollouts algorithm re-
duced the cost achieved by the heuristic by more
than 15% on average with an acceptable compu-
tation time.

6 Future Work

There are several opportunities for extensions
of this work. A more sophisticated measure

of workload than aircraft count divided by con-
trol position monitor alert parameter should be
used. A more detailed comparison of histori-
cal and algorithmically-generated configurations
may reveal ways to improve the algorithms and
their cost function, particularly with the help of
airspace operations experts. The reconfigura-
tion cost in particular may need further research
and refinement because research on reconfigura-
tion costs is still in its early stages [21, 26, 27].
Furthermore, traffic and workload uncertainties
should be modeled more realistically. Finally,
the algorithms proposed here should be used to
approximate the benefits of increasing the size of
areas of specialization and thereby allowing more
possible configurations.
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