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Abstract

Slender wings and some wing-body configura-
tions are capable of producing vortex lift at
higher angles of attack. This seemingly benefi-
cial feature is however susceptible to wing rock -
a non-linear phenomenon that can cause the air-
plane to reach a limit-cycle oscillation due to vor-
tex asymmetry. Some stability models were de-
veloped to predict and control the wing rock. In
the present work, an analytical investigation of
wing rock dynamics leads to a stability criterion,
which can be applied for both open and closed
loop systems, determining boundaries for the ex-
istence of the non-linear phenomenon.

1 Introduction

Wing rock occurs in slender wings and some
wing-body configurations. This phenomenon is
a side effect of vortex lift, that is present under
some specific flight conditions, when asymmetry
arises in the lifting vortex structure, leading to a
limit cycle oscillation in roll [1]. This movement
can then couple with other axis movements [2]
and can cause loss of control of the airplane. As
this phenomenon occurs at landing and flight ma-
neuvers, wing rock is a dangerous situation and
also a major problem during the tracking of an
enemy target, particularly for fighters, such as the
F-5 [3], F-8 [4] and F-15 [5].

This phenomenon has been motivating a se-
ries of research studies proposing non-linear
models for its prediction, in the other hand the
literature provides mainly empirical or semi-

empirical formulations due to the complexity as-
sociated with the modeling of the flow field [6].
In wing rock investigation, the stability analysis
is an issue of great interest that will be treated in
this work.

The present investigation makes use of a sim-
plified, semi-empirical model for rolling mo-
tion and proposes a method for the analysis of
their stability both on open loop and feedback-
controlled cases.

2 Methodology

2.1 Model Analysis

Several semi-empirical formulations have been
proposed to simulate the characteristic roll mo-
tion of wing rock. The relation used as an exam-
ple is adapted from [7] and relies on the common
assumption that the roll moment coefficient Cl is
a function of the roll angle Φ and its first deriva-
tive

Cl = a1Φ+a2Φ̇+a3|Φ|Φ̇+a4
Φ̇

|Φ̇|
,

lim
t→0

Φ̇

|Φ̇|
= 0 ,

(1)

where a1 to a4 are real-valued coefficients ob-
tained in a semi-empirical context.

The development of the equation of motion
then is based on the aerodynamic relation for the
roll moment, that is,

L = qSbCl . (2)
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Using Newton’s second law, it becomes

Φ̈−a1
qSb
Ixx

Φ−a2
qSb
Ixx

Φ̇

−a3
qSb
Ixx
|Φ|Φ̇−a4

qSb
Ixx

Φ̇

|Φ̇|
= 0 .

(3)

The analytical description of the system is not
possible due to the two non-linear terms a3 and
a4. However the analysis of some limit cases can
help the understanding of some general charac-
teristics of the system.

The first case analyzed is the linear system,
when the values of a3 and a4 are zero. For this
first particular case, it is possible to use the rela-
tions for second order, linear time-invariant sys-
tems and determine the natural frequency of os-
cillation and the damping coefficient as

ωn = (−a1)
1/2

(
qSb
Ixx

)1/2

,

ζ =
−a2

2(−a1)1/2

(
qSb
Ixx

)1/2

.

(4)

This first case is then compared to the second
case, in which only the value of a4 is assumed to
be zero. The equation of motion results,

Φ̈−a1
qSb
Ixx

Φ+(
−a2

qSb
Ixx
−a3

qSb
Ixx
|Φ|

)
Φ̇ = 0 .

(5)

Eq. (5) was written in a form that is analogous
to the LTI (linear time-invariant) system, and for
analysis purposes only it is compared with its
equation, allowing the determination of pseudo
values for the natural frequency and damping,
that is,

ω̃n = (−a1)
1/2

(
qSb
Ixx

)1/2

,

ζ̃ =
−a2−a3|Φ|
2(−a1)1/2

(
qSb
Ixx

)1/2

.

(6)

One conclusion that can be drawn from this
development is that, for sufficiently small non-
linearities, the natural frequency of the oscillation

of the non-linear system is roughly the same of
the LTI system. This assumption plays a critical
role in the development of the method.

The damping equation is used whenever the
original relation is applied for model-fitting. To
proceed with the analysis, it is assumed that the
system suffers an infinitesimal perturbation εΦ is
amplified if, and only if ζ̃ < 0. Assuming that,

lim
t→0
|Φ|= 0⇒ lim

t→0
ζ̃ = ζ , (7)

one can conclude that,

ζ < 0⇒ a2 > 0 , (8)

for the amplification of an infinitesimal perturba-
tion, which could lead to an oscillation of infinite
amplitude, as in a LTI system.

However, this can be avoided in the model by
making a3 < 0. So one can conclude that at some
amplitude the amplification turns to zero. This
analysis can be used for preliminary experimen-
tal data fitting by following the suggested proce-
dure:

• calculate a1 according to the LCO (limit-
cycle oscillation) frequency

• set a2 according to the amplification ratio
observed

• adjust a3 to achieve the LCO amplitude

The fourth term in the Eq. (3) is not analyzed
at the moment. This can represent a Coulomb
friction-like effect or some kind of on-off con-
troller that reacts for or against the sense of the
angular speed. This term, however, will be used
further in the development of the work.

2.2 An energy approach

The system analysis by energy requires manipu-
lation from Eq. (2), which represents the roll mo-
ment of the aircraft. From the definition of work,

W =
∫ t2

t1
LdΦ , (9)

this relation is then used to determine the gain
or loss of mechanical energy, dE, in the system
during a cycle [8].
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To compute the work from Eq. (9), it is nec-
essary to determine the angular position of the
aircraft with relation to time. For the wing rock
phenomenon it can be written in the form,

Φ(t) = A · f (t) · cos(ωt) . (10)

This generic form is not adequate for integra-
tion, as the function that represents the amplifica-
tion envelope is not previously known. One rea-
sonable simplification considers the system in a
limit-cycle, and f (t)≡ 1 ∴ Φ(t) = Asin(ωt).

This allows Eq. (9) to be written as,

dE =
∫ t2

t1
LAωcos(ωt)dt . (11)

As stated in the last section, the LCO fre-
quency is assumed the same as that of the equiva-
lent LTI system. The Eq. (11) can then be rewrit-
ten as,

dE =
∫ 2π/ωn

0
LAωncos(ωnt)dt . (12)

In order to perform this integral analytically
using the expression given in Eq. (1), it is neces-
sary to break down the cycle into four parts, as
the non-linear terms have kinks and discontinu-
ities, that is

dE =W1 +W2 +W3 +W4 , (13)

where

W1 =
∫ 2π/ωn

0
â1A2

ωnsin(ωnt)cos(ωnt)dt

W2 =
∫ 2π/ωn

0
â2A2

ω
2
ncos2(ωnt)dt

W3 =
∫

π/ωn

0
â3A3

ω
2
n|sin(ωnt)|cos2(ωnt)dt

+
∫ 2π/ωn

π/ωn

â3A3
ω

2
n|sin(ωnt)|cos2(ωnt)dt

W4 =
∫

π/2ωn

0
â4(−1)Aωncos(ωnt)dt

+
∫ 3π/2ωn

π/2ωn

â4Aωncos(ωnt)dt

+
∫ 2π/ωn

3π/2ωn

â4(−1)Aωncos(ωnt)dt ,

(14)

where âi = ai
qSb
Ixx

.
It is important to note that the first term does

not contribute to the final value of the integral.
This is a necessary conclusion that will be ex-
ploited later on.

The integral is greatly simplified to,

dE =
4
3

â3ωnA3 +πâ2ωnA2 +4â4A . (15)

3 Validation

Assuming the dynamic model of Eq. (1), the fol-
lowing â parameters are used in order to simulate
the behavior of an airplane in wing rock motion.

â1 =−0.8028
â2 =+0.0803
â3 =−0.2141
â4 =−0.0080

(16)

The time response of the system to an initial
perturbation of 15 degrees shows the amplifica-
tion of the oscillation up to the establishment of
a LCO at about 40 degrees (0.7056 rad). It is
possible to notice that the overall behavior of the
system compares fairly well to the general phe-
nomenon - amplification of an initial perturbation
up to the establishment of a sinusoidal oscilla-
tion.

With this representative system one now can
use Eq. (15). The application of this relation is
firstly used in order to find the neutral points, de-
fined as the amplitudes in which there is no en-
ergy gain or loss, mathematically

dE = 0 . (17)

This relation still needs the determination of
the natural frequency. There are two possible ap-
proaches, the first is the measurement from the
LCO and the second is the use of Eq. (4). The
second approach is preferred in order to verify
the validity of the assumption that ω̃n ≈ ωn.

ωn = (−a1)
1/2

(
qSb
Ixx

)1/2

=
√
−â = 0.8960rad/s

(18)
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Fig. 1 Time response of the system with an initial
perturbation of 15◦

Solving the Eq. (15), three corresponding
roots are obtained, that is,

A0 = 0
A1 = 0.1779
A2 = 0.7056

(19)

Accordingly to the theory, there are three
points where the cycle amplitude is kept. The
first root represents the trivial solution when the
system is not moving. And the third root rep-
resents the LCO amplitude. Comparing the am-
plitudes from the simulation and the theory one
determines that the difference is in order of 10−4

in this case, what is considered extremely precise
and shows that the hypothesis assumed for the so-
lution are valid for this case.

From an analysis of Eq. (15), it is natural to
conclude that the existence of the intermediate
root, which defines the critical initial perturba-
tion, is dependent on the condition that a4 > 0.

3.1 The effect of a discontinuous non-
linearity

The final validation case was created to push the
method to its limits and test the validity of its
assumptions. The setup is made to increase the
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Fig. 2 Simulations around second root, showing
the limits of the attenuation region

ratio between non-linear and linear terms magni-
tudes, the chosen values for the terms are

â1 =−0.8028
â2 =+0.8028
â3 =−1.6056
â4 =−0.0803

(20)

For this case, it is possible to notice a con-
siderable distortion on the LCO as shown in Fig-
ure. This clearly violates the hypothesis applied
in Eq. (10), what would render the methodology
useless.

It is important to apply the procedure as done
previously to test the limitations of the theory.
With that, one obtains

A0 = 0
A1 = 0.1653
A2 = 1.0128

(21)

Surprisingly, the LCO amplitude prediction
is fairly precise, with an error of only 0.07%.
This result was found on similar cases simulated
during this work, but the authors have no con-
clusive explanation of this unexpected agreement
between the prediction and the simulation. How-
ever, it is important to notice that there is a con-
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Fig. 3 Oscillation build-up on system with
stronger non-linearities. Note that the oscillation
shape deviates from that of a sinus, going against
the assumptions of the methodology

siderable difference between the value of the sec-
ond root and the observed critical initial pertur-
bation. For this case, it was found that the criti-
cal initial value is 0.1775rad, which means a dis-
crepancy of about 7%. The only conclusion that
can be drawn from this case is that this methodol-
ogy should not be used with such cases, with the
risk of getting arbitrarily imprecise results.

4 Application

It is possible to analyze the behavior of the sys-
tem in a closed loop, assuming the following con-
trol law

δa = k1Φ+ k2Φ̇+ k3Φ̇|Φ|+ k4
Φ̇

Φ̇
. (22)

Considering that the aileron deflection pro-
duces a linear effect in the roll moment coeffi-
cient, proportional to Clδa

, the equation of motion
becomes

Φ̈− (â1 + k̃1)Φ− (â2 + k̃2)Φ̇

− (â3 + k̃3)|Φ|Φ̇− (â4 + k̃4)
Φ̇

|Φ̇|
= 0 ,

(23)

where

k̃i = ki
Clδa

qSb

Ixx
.

The first important conclusion comes from
Eq. (14), which shows that the value of k̃1 does
not play a significant role on the problem sta-
bility, as the integration of its term yields zero.
This condition is not verified in the 6DoF model,
mainly because the fitting does not take into ac-
count the changes in ωn that the eventual inser-
tion of a k̃1 gain brings. This is considered a lim-
itation in this methodology and it must be taken
into account.

In the other hand, from equation Eq. (15) it is
possible to conclude that, in order to always have
dE < 0, it is necessary to obey the condition,

A <
3π

4
â2 + k̃2

â3 + k̃3
(24)

Stability regions for the controlled system
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Fig. 4 Stability map for gain k2, proportional to
Φ̇. The region in red represents where there is
energy absorbtion in a cycle and the regions in
blue where there is energy dissipation.

With that, it is possible to determine the mini-
mum gain of a feedback controller in order to sta-
bilize the effect. One has to keep in mind, how-
ever, that simply setting the value to its minimum
ideally creates a situation where the initial pertur-
bation is never damped. Considering simulation
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Stability regions for the controlled system
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Fig. 5 Stability map for varying values of k3

Stability regions for the controlled system
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Fig. 6 Stability map for gain k4

and precision errors, choosing a value that is too
close to the minimum necessary to keep stability
creates a situation similar to that seen in Fig. 2,
where an initial perturbation takes a long time to
be damped.

Another method to analyze the stability of the
loop that is redundant in this case, but it is nec-
essary in cases where the integration cannot be
evaluated analytically. This method consists in
setting a value for k and sweeping values of A.
This is represented in the stability maps in Figs. 4
to 6.

It is also important to note in these maps the
representation of the existence of a limit-cycle
oscillation. That is the case where an horizontal
line (constant k) intercepts the neutral line. The
first and the second intersection represent the crit-
ical initial perturbation and the LCO amplitude,
respectively.

4.1 Testing of the methodology using an on-
off controller activated by a thresold

Another control law model that can be exploited
is that of an on-off controller that acts against the
roll rate if some angle is exceeded, written as,

||Φ||> Φthr⇒Clδa
= k̃5

Φ̇

||Φ̇||
||Φ||< Φthr⇒Clδa

= 0
(25)

This control law can represent the asymmet-
rical activation of a spoiler to counteract roll mo-
tion added to a derivative action. It is possible to
solve this equation in a numerical form, using the
arguments in Eq. (16) and also

Φthr = 10◦

k̃2 < 0

k̃5 =−0.3

(26)

It is evident that this problem could be solved
analytically, by dividing the integration in the dis-
continuity. However, the numerical method is
proposed in order to exemplify the application
with a hypothetical rule that is not analytically
solvable.
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The first step is to create a time vector and
calculate the imposed Φ and Φ̇.

~t = 0 : step :
2π

ω̃n
~Φ = sin(~t)
~̇
Φ = cos(~t)

(27)

Then the moment of each term of the equa-
tion is

~L1 = a1A~Φ

~L2 = a2A~̇Φ

~L3 = a3A~Φ|A~̇Φ|

~L4 = a4
A~̇Φ

|A~̇Φ|

~L5 = ||Φ||> Φthr⇒Clδa
= k̃5

AΦ̇

||AΦ̇||
||Φ||< Φthr⇒Clδa

= 0

(28)

It is then simple to integrate the energy con-
tribution from each term. In this work the trape-
zoidal rule was used.

The stability map as obtained shown in Fig. 7,
when compared to Fig. 8 shows that the spoiler
action is extremely effective in controlling oscil-
lations with high amplitude. In order to assess
these results, they are compared to simulation re-
sults.

The comparison between numerical simula-
tion is again very precise, with the numerical
method predicting 16.4◦ for k̃2 =−0.05 while the
figure obtained by simulation is 16.2◦.

It is important to cite that the simulation re-
sult for this case is not stable, in fact the simu-
lation results are completely unreliable after A =
Amax , as in this point naturally Φ̇Amax = 0, and
then any acceleration will be counteracted by the
spoiler. The agreement between the method re-
sult and the simulation is again not explained by
the authors, and precautions should be taken to
avoid this kind of situation.

One proposed solution to obtain reliable sim-
ulation results is changing the control law, so that
the spoiler is activated if Φ > 10◦ and Φ̇ > 5◦/s.

Stability regions for the controlled system
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Fig. 7 Stability map for them problem using a
derivative controller and a the actuation of spoil-
ers if the amplitude is greater than 10◦

Stability regions for the controlled system

Amplitude (deg)

k

0 5 10 15

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Fig. 8 Stability map of the same problem without
the action of the spoiler
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Fig. 9 Simulation results for control using asy-
metric spoiler activation. Note that after achiev-
ing maximum amplitude, the simulation becomes
unstable, as any movement is counteracted by
the spoiler. In fact, the time spent on the region
where Φ > 10◦ is only dependent on the simula-
tion timestep.

This renders the simulation stable and indepen-
dent of the time step. Comparing again the result
on the stability map (that is slightly changed due
to the new dead zone) for the same k̃2 = −0.05,
one obtains a predicted amplitude of 18.6◦ and
a measured amplitude of 18.0◦ , a margin that is
considered satisfactory for this application.

The stability map for this situation is shown
in Fig. 10. The final important conclusion about
this analysis is that the absolute stability limit is
not changed, as the highest value for k̃2 that guar-
antees stability for any initial perturbation is un-
der the region where the spoiler is activated.

5 Conclusion

The present work has proposed a method for de-
termining the stability limits for non-linear sin-
gle degree of freedom models with and without
a controller, applied to the analysis of the wing
rock phenomenon.

Results from simulations have been com-
pared to those obtained by the procedure usually

Stability regions for the controlled system
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Fig. 10 Stability map for controller using asym-
metrical spoiler after a threshold of position and
rate. Note that the maximum value of the con-
troller gain for the system to be stable is depen-
dent only on the behavior of the system before
the position threshold (green line).

shows good agreement (in the order of magnitude
of 1%), and yield some precision even when one
of the hypothesis is not verified, namely, that the
LCO is approximately by harmonic motion.

The method, while extremely simplified for
wing rock motion, and does not allow predict-
ing of the phenomenon, only works in a model
that represents an airplane undergoing the phe-
nomenon, could also be used in other fields of
engineering where single degree of freedom LCO
are concerned.
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