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Abstract  

Various propeller theories are treated in 
developing a model that analyses the 
aerodynamic performance of an aircraft 
propeller along with the construct and 
behaviour of the resultant slip-stream. Blade 
element momentum theory is used as a low-
order aerodynamic model of the propeller and 
is coupled with a vortex wake representation of 
the slip-stream to relate the vorticity distributed 
throughout the slip-stream to the propeller 
forces.  

Nomenclature 

 a  axial induction factor 

 ′a  tangential induction factor 

 c  chord length (m) 

 CD  drag coefficient 

 CL  lift coefficient 

 CT  thrust coefficient 

 dr  blade element and annulus width (m) 

 dQ  torque of element or annulus (Nm) 

 dT  thrust of element or annulus (Nm) 

 F  combined tip- and hub-loss coefficient  

 I  momentum of inertia 

 N  in-plane normal force (N) 

 p  pressure (P) 

 r  radial position (m) 

 R  propeller radius (m) 

 Rhub  hub radius (m) 

S propeller disk/cross-sectional slip-stream 
area (m2) 

t time (s) 

 U  resultant velocity at blade element (m/s) 

 V  flow velocity (m/s) 

x thrust axis location downstream from 
propeller (m) 

α  local angle of attack (rad) 
β  local element pitch angle (rad) 

γ  strength of distributed annular vorticity 
(m/s) 

 γ s  strength of distributed swirl vorticity 
(m/s) 

Γ  strength of bound vorticity on propeller 
(m2/s) blade 

φ  angular coordinate around propeller disk 
(rad) 

ϕ  local inflow angle (rad) 
′σ  local solidity 

ρ  air density (kg/m3) 
Ω  propeller rotational speed (rad/s) 
 Subscripts: 
 ∞  free-stream 

 x  at station x 

 p  propeller/aircraft body 

 s  fully-developed slip-stream 

 0  at φ = π/2 

 F  between thrust line and direction of 
resultant propeller force 

1 Introduction 

An understanding of the propeller slipstream is 
important in the design phase of propeller-
driven aircraft. Aerodynamic performance, 
aircraft stability, and noise and vibration can be 
significantly affected by it’s interactions with 
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structural and aerodynamic control surfaces.  
During the early stages of design, one of the 
inputs is the thrust curve of the power plant - 
available thrust versus flight velocity. The 
iterative optimisation procedure requires rapid 
analysis of prospective engines and propellers to 
compare aircraft performance and discover 
configuration characteristics.  
A propeller producing thrust by forcing air 
behind the aircraft produces a slip-stream. This 
may rudimentarily be considered as a 
cylindrical tube of spiraling air propagating 
rearward over the fuselage and wings – having 
detrimental and beneficial effects. Flow within 
the slip-stream is faster than free-stream flow 
resulting in increased drag over the parts 
exposed to it’s trajectory. The rotary motion of 
the slip-stream also causes the air to strike the 
tailplane at indirect angles, having an effect of 
the stability and control of the aircraft. 
This analysis shows compatibility between 
different approaches to propeller modeling 
using blade element theory to predict the 
propeller forces, momentum theory to relate the 
flow momentum at the propeller to that of the 
far wake, and a vortical wake model to describe 
the slipstream deflection. 

2 Mathematical Models  

2.1 Momentum Theory  

Classical momentum theory, introduced by 
Froude [1] as a continuation of the work of 
Rankine [2], imposes five simplifying 
assumptions. The flow is assumed to be: 1) 
inviscid, 2) incompressible, and 3) irrotational; 
and both 4) the velocity and 5) the static 
pressure are uniform over each cross section of 
the disk and stream-tube. 
 

 
Fig. 1: Propeller stream-tube 

For the axial direction, the change in flow 
momentum along a stream-tube starting 
upstream, passing through the propeller, and 
then moving off into the slip-stream must equal 
the thrust produced by this propeller, [3] 

  T = ρπRs
2Vs(Vs −V∞ )              (1.1) 

Applying the conservation of mass to the 
stream-tube control volume yields, 

 A∞V∞ = AV = AsVs        (1.2) 

Far upstream the static pressure is p∞ and the 
velocity V∞. The static pressure falls to a value 
p- immediately upstream of the actuator disk 
and rises discontinuously through the disk, to a 
value p+ immediately downstream, although the 
velocity remains constant at V between these 
two planes, which are an infinitesimal distance 
apart. The thrust is therefore given by, 

  T = ( p+ − p− )A            (1.3) 

Since the flow is inviscid, the total pressure - in 
accordance with Bernoulli’s equation - is 
constant along any streamline, except for those 
that pass through the disk. The axial and 
tangential velocities are continuous as no fluid 
is created within the disk; the increase in total 
pressure is therefore experienced as an increase 
in static pressure. Applying Bernoulli’s equation 
upstream and downstream of the actuator disk, 

  
p+ − p− =

1
2
ρ(Vs

2 −V∞
2 )          (1.4) 

From the equations above it can be shown that 
the velocity of the flow through the actuator 
disk is the average of the upstream and 
downstream velocities. 

  
V =

V∞ +Vs

2
              (1.5) 
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An axial induction factor, a, is customarily 
defined as,  

  V =V∞ (1+ a)    (1.6) 
and from Equation (1.5), 

  Vs =V∞ (1+ 2a)   (1.7) 

A real propeller, however, is never uniformly 
loaded as assumed by the Rankine-Froude 
actuator disk model. In order to analyse the 
radial load variation along the blades, the 
angular momentum being imparted to the wake 
by the propeller must be considered. 
 

2.1.1 Effects of Wake Rotation 
The conservation of angular momentum 
necessitates rotation of the slip-stream if the 
propeller is to impart useful torque. Jonkman [4] 
describes how the Rankine-Froude actuator disk 
model may be modified to account for this 
rotation. As such, assumptions 4) and 5) from 
the actuator disk model may be relaxed and 
three supplementary assumptions added:  

1. The flow entering the control volume far 
upstream remains purely axial and 
uniform 

2. The slip-stream can be split into a series 
of non-interacting, annular stream-tube 
control volumes 

3. The angular velocity of the slip-stream 
flow far downstream of the propeller is 
low so the static pressure can be 
assumed to be the unobstructed ambient 
static pressure. 

Although wake rotation is now included in the 
analysis, the assumption that the flow is 
irrotational has not been lifted. Conserving 
angular momentum about an axis consistent 
with the slip-stream’s axis of symmetry can be 
applied to determine the torque.  

  
Q =

dL
dt

=
dIω
dt

=
dm
dt

ωr 2   (1.8) 

2.2 Blade Element Theory 
Unless some state of flow is assumed, 
momentum theory does not provide enough 
equations to solve for the differential propeller 
thrust and torque at a given span location. 

Additional equations [1], [5] governing the state 
of the flow are dependent on the characteristics 
of the propeller blades, such as airfoil shape and 
twist distribution. Blade Element (BE) theory 
uses these geometrical properties to determine 
the forces exerted by a propeller on the flow-
field. 

 
Fig. 2: Blade element aerodynamic forces 

As the word element in the title suggests, BE 
theory, again, uses several annular stream-tube 
control volumes. At the propeller plane, the 
boundaries of these control volumes effectively 
split the blade into a number of distinct 
elements, each of width dr. At each element, 
blade geometry and flow-field properties can be 
related to a differential propeller thrust, dT, and 
torque, dQ, if the following assumptions are 
made: 

1. Just as the annular stream-tube control 
volumes used in the slip-stream rotation 
analysis were assumed to be non-
interacting [assumption (1)], it is 
assumed that there is no interaction 
between the analyses of each blade 
element 

2. The forces exerted on the blade elements 
by the flow stream are determined solely 
by the two-dimensional lift and drag 
characteristics of the blade element 
airfoil shape and orientation relative to 
the incoming flow. 

As we are required to obtain the local angle-of-
attack to determine the aerodynamic forces on a 
blade element, we must first determine the 
inflow angle based on the two components of 
the local velocity vector.  

  
tanϕ =

V∞ (1+ a)
Ωr(1− ′a )

  (2.1) 

 
From Fig. 2 the following relation is apparent, 
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U =

V∞ (1+ a)
sinϕ

   (2.2) 

The induced velocity components in Equations 
(2.1) and (2.2) are a function of the forces on 
the blades and blade element momentum theory 
is used to calculate them. From Fig. 2, the thrust 
distributed around an annulus of width dr	   is 
equivalent to, 

       
  
dT =

1
2

BρU 2 (CL cosϕ − CD sinϕ )cdr (2.3) 

and the torque introduced by each annular 
section is given by, 

     
  
dQ =

1
2

BpU 2 (CL sinϕ + CD cosϕ )crdr (2.4) 

2.3 Blade Element Momentum Theory 

Combining the results of the previous two 
analyses enables a model of the performance of 
a propeller whose airfoil properties, size, and 
twist distribution are known. This analysis is 
based on the differential propeller thrust, dT, 
and torque, dQ, derived from momentum theory 
and blade element theory, being equivalent. 
Equations (2.3) and (2.4) are made more useful 
by noting that ϕ and U can be expressed in 
terms of induction factors etc [3], [6]. 
Substituting Equation (2.2) and carrying out 
some algebra, 

 

  
dT = ′σ πρ

V∞
2 (1+ a)2

sin2ϕ
CL cosϕ − CD sinϕ( )rdr

 (3.1) 
 

  
dQ = ′σ πρ

V∞
2 (1+ a)2

sin2ϕ
CL sinϕ + CD cosϕ( )r 2dr

 (3.2) 

2.3.1. Prandtl Loss Correction 
The effect on induced velocity in the propeller 
plane is most pronounced near the tips of the 
blades. The original blade element momentum 
theory does not consider the influence of 
vortices shed from the blade tips into the slip-
stream on the induced velocity field. These tip-
vortices create multiple helical structures in the 
wake, (as seen in Fig. 3), and play a major role in 

the induced velocity distribution along the 
propeller. To compensate for this deficiency in 
BEM theory, a tip-loss (or correction) factor, F, 
originally developed by Prandtl [7] is used.  
As a blade has a suction-surface and a pressure-
surface, air tends to flow over the blade tip from 
the lower (pressure) surface to the upper 
(suction) surface, effectively reducing the 
resulting forces in the vicinity of the tip. This 
theory is summarized by a correction to the 
induced velocity field and can be expressed 
simply by the following: 

  
F =

2
π

cos−1 e− f   (3.3) 

where, 

  
ftip =

B
2

R − r
r sinϕ

  (3.4) 

Much like the tip-loss model, the hub-loss 
model serves to correct the induced velocity 
resulting from a vortex being shed near the hub 
of the propeller. The model uses a similar 
implementation to that of the tip-loss to describe 
the effect of this vortex, replacing Equation 
(3.4) with, 

  
fhub =

B
2

r − Rhub

r sinϕ
  (3.5) 

For a given element, the local aerodynamics 
may be affected by both the tip- and hub-loss, in 
which case the two correction factors are 
multiplied to create the total loss factor. 

Now, to relate the induced velocities in the 
propeller plane to the elemental forces of 
Equations (3.1) and (3.2), the conservation of 
momentum in the axial direction (between the 
far upstream and the far downstream section) 
must be considered. This states that the thrust 
introduced by each propeller annulus is 
equivalent to the change in axial momentum 
flow rate. The correction factor is used to 
modify the momentum segment of the BEM 
equations. From Equations (1.3), (1.4), and (1.7)
, considering a radial differential, 

  dT = 4πrρV∞
2 (1+ a)aFdr  (3.6) 

Considering a radial differential of Equation 
(1.8) and substituting Equation (1.6), 



 

5  

PROPELLER BLADE ELEMENT MOMENTUM THEORY WITH 
VORTEX WAKE DELFECTION 

  dQ = 4πr3ρV∞Ω(1+ a) ′a Fdr   (3.7) 

Equalising Equations (3.6) and (3.7) with 
Equations (2.3) and (2.4), respectively, it is 
possible to obtain, 

  
a =

4F sin2ϕ
σ (CL cosϕ − CD sinϕ )

−1
⎡

⎣
⎢

⎤

⎦
⎥

−1

 (3.8) 

  
′a =

4F sinϕ cosϕ
σ (CL sinϕ − CD cosϕ )

+1
⎡

⎣
⎢

⎤

⎦
⎥

−1

 (3.9) 

 
Thus, when we include two-dimensional airfoil 
tables of lift and drag coefficient as a function 
of the angle-of-attack, α, we have a set of 
equations that can be iteratively solved for the 
induced velocities and the forces on each blade 
element. 

2.4 Vortex Structure of the Wake  
Propeller theory generally presumes that, after 
an initial distortion, the vortex sheets shed from 
the trailing edges of the propeller blades form a 
set of interleaved helicoidal sheets which 
propagate uniformly downstream parallel to the 
slip-stream axis without further deformation as 
if they were rigid surfaces. In reality, these 
sheets will soon roll up into a set of helical 
vortex filaments and a central vortex filament of 
opposite sense on the axis.  
The helicoidal vortex sheets are floating freely 
in an irrotational field with equal velocity on 
either side of the sheet, hence equal pressure. 
There is also no discontinuity of normal 
velocity, only a discontinuity of tangential 
velocity with magnitude equivalent to the vortex 
strength of the sheet. 

Since there is no pressure discontinuity across 
the sheets, we deduce that sheets move axially 
backward without deformation. To approximate 
this we assume that the discrete bound vorticity 
is transformed in the slip-stream onto the 
surface of a vortex tube. There will be two 
components of this vorticity: a tube of elemental 
annular vortices that account for the thrust, and 
lines of elemental axial velocity along the tube 
that account for swirl [8].  

 

 
Fig. 3: Vortex tube 

Only the annular vorticity is considered initially. 
This has strength, γ, and has to meet certain 
compatibility conditions: 

1. The total pressure inside the wake is 
taken to be higher than the free-stream 
by the loading on the propeller. 
However, the inner and outer flows must 
have the same static pressure, which 
yields the condition, 

  

1
2
ρVs

2 =
1
2
ρV∞

2 +
T

πR2  (4.1) 

2. From a consideration of the continuity of 
mass, the radius of the fully-developed 
slip-stream, Rs, is related to that of the 
propeller, R, by, 

  VR2 =Vs Rs
2   (4.2) 

3. By considering vorticity, the velocity 
jump across the wake boundary, 

 γ =Vs −V∞   (4.3) 
 

2.4.1. The Propeller related to the Vortex Wake 
From the previous description of air flowing 
from the aerodynamic pressure side to 
aerodynamic suction, this is now described with 
the trailing vorticity which includes a reduction 
of the inflow angle towards the blade tip and, 
resultantly, a reduction in blade lift [10]. 
The induced velocity may be considered to be 
the resultant velocity at a point due to the entire 
system of bound and free vorticity. For 
simplicity we assume that the propeller blades 
are narrow and are distributed along equally 
spaced radial lines. Considerations of symmetry 
further reveal that equally spaced radial vortex 
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lines of equal strength induce no overall 
velocity on any one of the lines. These 
conditions therefore satisfy that the effect on 
each blade due to bound vorticity on the other 
blades can be ignored and only trailing vorticity 
contributes to the resultant velocity at a blade. 
The fundamental expressions for the forces 
developed by the propeller may be described 
most conveniently by applying the Kutta-
Joukowsky theorem, 

 dL = ρU × Γdr   (4.4) 

The cross-product relationship can be used to 
separate the two components of the resultant 
force, the thrust and the torque.  

  dT = ρΓΩr(1− ′a )dr   (4.5) 

  dQ = ρΓV∞ (1+ a)rdr   (4.6) 
 

2.4.2. The Propeller Slip-stream 
The deflection of the wake is determined by 
relating the propeller forces to the 
characteristics of the fully-developed slipstream. 
The aerodynamic forces generated by a 
propeller under any deviation from uniform 
flight parallel to the thrust axis will lead to 
deflection of the slip-stream.   
We begin by considering the swirl component in 
the wake, represented by the vorticity γs. The 
axial component of the bound vorticity shed 
from the tip of the propeller blades per unit time 
is related to elemental axial vorticity lines along 
the stream-tube by, 

  BΓVΔt = γ s 2πRsVΔt   (4.7) 
so that, 

  2πRsγ s = BΓ    (4.8) 

This satisfies the condition that the total 
vorticity shed at the tips, BΓ, must also be shed 
in the opposite sense at the roots as a discrete 
vortex down the axis. 

Behind the propeller the vortex tube translates 
downstream as it is embedded between the inner 
and outer flows with a velocity, Vw. The annular 
component of the bound vorticity shed per unit 
time is related to the elemental annular vorticity 
distributed over the surface of the tube by, 

  γ 2πVw = BΓΩ   (4.9) 

But from a simplification of Equation (4.5), 
integrated across the blade, and for a number of 
blades, B,  

  
BΓΩ =

2T
ρR2

   (4.10) 

such that, 

  
ργVw =

T
πR2    (4.11) 

This combined vortex model, ensures that the 
swirl is contained within the stream-tube and 
induces no flow outside the wake [9].  
 

2.4.3. Propeller at Incidence 
We now consider a propeller at incidence to the 
slip-stream axis. In general, this will generate 
thrust and a tangential in-plane force N. 
Initially, thrust alone is considered; the 
inclusion of the in-plane force will follow as an 
incremental effect. Relative to the slip-stream, 
the down-going blade will have a forward 
velocity component, whereas the up-going side 
will be retreating. 

 
Fig. 4: Propeller slip-stream 

Considering a simple propeller blade at a 
rotation angle φ (where φ = 0 is at the top) with 
constant bound vorticity shed at the tip, the in-
plane force acting normal to the blade will be 
ρΓVR (for αp = 0). Taking an angular position φ 
around the propeller disk, the vertical 
component of the tip velocity is ΩRssin(φ), and 
the forward component of this is ΩRsαssin(φ) 
for small αs. Equation (4.7) now becomes, 
     BΓ[V +ΩRsα s sin(φ)]Δt = γ s 2πRsVΔt    (4.12) 
from which, 

  
2πRsγ s = BΓ

1+ΩRsα s sin(φ)
V

⎡

⎣
⎢

⎤

⎦
⎥  (4.13) 

Compared with Equation (4.8), this shows an 
incremental sinusoidal variation of swirl 
velocity that will induce a downwash. Now a 
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sinusoidal vorticity distribution of the form 
γ0sin(φ) induces a uniform downwash of 
strength γ0/2 inside the wake, which governs the 
deflection angle of the wake as it is 
counterbalanced by the up wash from the free-
stream, V∝θp. 

From Equation (4.13), with φ = π/2, γ0 = BΓΩαs 
/ (2πV), so that 

  
V∞θ p =

γ 0

2
=

BΓΩα s

4πV
  (4.14) 

From Equation (4.10) we deduce that, 

  
V∞θ p =

Tα s

2ρπR2V
  (4.15) 

From Fig. 4, αs = αp - θp. Considering this along 
with Equation (1.1), 

  
Tα p = ρπR2V (Vs +V∞ )θ p  (4.16) 

Where Tαp is the tangential component of thrust 
and must be equivalent to the tangential 
momentum flux in the slip-stream, which is 
represented by ρπR2VVsθp and resolved through 
θp. The other term, ρπR2VV∝θp, can be re-
written, from Equation (4.2), as ρπRs

2VsV∝θp, 
and represents the momentum flux of the part of 
the free-stream displaced by the cylindrical 
wake. 

From the above it can be shown that 

  

θ p

α p

= 1−
V∞

V
=

CT

1+ 1− CT( )2   (4.17) 

When αp ≠ 0, to account for the net normal 
force it is assumed that, in addition to any 
constant bound vorticity that may be present to 
generate thrust, there is a component of bound 
vorticity that varies sinusoidally around the 
propeller disk, Γ = Γ0sin(φ). The effect on the 
slip-stream by the tangential in-plane force may 
be determined by resolving the normal-to-blade 
force vertically, 

  N (φ) = ρVRΓ0 sin2(φ)  (4.18) 

Integration around the propeller disk, allowing 
for the number of blades, B, gives an average of 

  
N =

1
2
ρVBRΓ0   (4.19) 

Following the analysis above, this is dispersed 
over the trailing wake stream0tube with a form γ 
= γ0sin(φ), where, from Equation (4.8), 

  2πRsγ 0 = BΓ0    (4.20) 

This will add to the downwash in the wake, 
balanced by the up wash from the free-stream, 
V∝θp as above. The incremental effect is 
therefore, 

  
ΔV∞θ p =

N
2πρRRsV

  (4.21) 

Expressing the above equation in terms of the 
force coefficient and the propeller incidence, αp, 
and adding this to the right hand side of 
Equation (4.15), the analysis proceeds until 
Equation (4.17) becomes, 

  

θ p

α p

= 1−
V∞

V
⎛

⎝⎜
⎞

⎠⎟
+

1
4

dCN

dα p

Vs
2

V 2  (4.22) 

But, from actuator theory, 

  

Vs
2

V 2 =
4Vs

2

Vs +V∞( )2 =
4

1+
V∞

Vs

⎛

⎝⎜
⎞

⎠⎟

2  (4.23) 

The incremental term due to the in-plane force 
now has a similar form to the contribution from 
thrust alone, and Equation (4.17) becomes [9], 

  

θ p

α p

=
CT + dCN

dα p

1+ 1− CT( )2   (4.24) 

 

2.4.4. Slip-stream Trajectory 
The trajectory of the slip-stream, and hence it’s 
lateral displacement at any streamwise station, 
is governed by it’s angle to the thrust line (or 
free-stream). The deflection from the datum can 
then be obtained by integration. The incidence 
case is considered and all angles are assumed 
small. 
The approach adopted is to consider momentum 
in a direction perpendicular to the resultant 
force F, see Fig. 4 [10]. In this direction there is 
no force and the momentum must remain 
constant. 
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For a segment of slip-stream at station x 
downstream of the propeller, the longitudinal 
moment is ρSxVxdx, and the tangential 
momentum due to the outer flow is (ρSxV∝dx)θx. 
Momentum is constant along the normal to F, 
such that 

  

ρSxdx[Vx (α x +θF ) +V∞θx ] =
ρSsdx[Vs(α s +θF ) +V∞θ p ]

  (4.25) 

where the conditions on the right are those in 
the fully-developed slip-stream. 

Writing Sx = πRx
2, Ss = πRs

2 and S = πR2, 

 SxVx = SsVs = SV   (4.26) 
and 

 

ρSpVdx α x +θF( ) + V∞

Vx

θx

⎡

⎣
⎢

⎤

⎦
⎥ =

ρSpVdx α s +θF( ) + V∞

V
θ p

⎡

⎣
⎢

⎤

⎦
⎥

        (4.27) 

Now, θx = αp - αs and θp = αp - αs, so that 

  
α x 1−

V∞

Vx

⎛

⎝⎜
⎞

⎠⎟
+

V∞

Vx

α p = α s 1−
V∞

Vs

⎛

⎝⎜
⎞

⎠⎟
+

V∞

Vs

α p  

 (4.28) 
From the equations of motion the streamwise 
distribution of velocity in the slip-stream is 
derived in [11] as, 

  

Vs

V∞

= 1+ s    (4.29) 

in which 

  

s = a 1+
x

x2 + d 2

4

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (4.30) 

Equations (4.29) and (4.30) can be re-arranged 
to give 

  

Vx

Vs

=
V∞

Vs

+ 1−
V∞

Vs

⎛

⎝⎜
⎞

⎠⎟
f (x)  (4.31) 

where 

  

f (x) =
1
2

1+
x

D

1
4 + x

D
⎛
⎝⎜

⎞
⎠⎟

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 (4.32) 

Equation (4.28) can be re-written as 
 

  
α x (Vx −V∞ )Vs = α s(Vs −V∞ )Vx + (Vx −Vs )V∞α p

 (4.33) 
and from Equation (4.31) 

  Vx −V∞ = (Vs −V∞ ) f (x)  (4.34) 

So finally, 

  

α x

α p

=
α s

α p

1
f (x)

Vx

Vs

−
V∞

Vs

1
f (x)

−1
⎛
⎝⎜

⎞
⎠⎟
=

α s

α p

1+
V∞

Vs

1
f (x)

−1
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −

V∞

Vs

1
f (x)

−1
⎛
⎝⎜

⎞
⎠⎟

(4.35) 

 
The diameter of the slip-stream at any station x 
is given by 

  

Dx

D
=

1+ a
1+ s

   (4.36) 

 
In order to calculate the displacement, z, of the 
slip-stream it is only necessary to integrate the 
angular deflection.  

  
z = D α x dx

0

x

∫    (4.37) 
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