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Abstract

While deterministic methods have been and still
are used in the design of aircraft components,
it has been recognized that the inherent uncer-
tainty involved in those structures requires the
consideration of alternative procedures to deal
more accurately with structural reliability. The
necessity for a competitive industry to design ef-
ficient and reliable products, implies taking into
account these methodologies applied to realistic
computer models of aircraft components. In this
work, a revision of some existing procedures of
reliability analysis and their capabilities is car-
ried out, along with a practical example show-
ing the performance of the methods used in the
study. The reliability analysis methods selected
are the FOSM, the FORM and TANA3, based
on the approximation of the limit state function
and the Monte Carlo, Latin Hypercube and im-
portance sampling. Results show that some dif-
ferences exist in the performance of each method.
Limit state approximation methods behave much
better in those cases with a reduced number of
random variables or limit state functions. How-
ever, in those cases having a high number of ran-
dom variables and/or limit state functions, sam-
pling methods become an alternative, with com-
putational costs quite similar to the limit state ap-
proximation methods.

1 Introduction

Uncertainty quantification of structural response
is an essential task in the design of aircraft com-

ponents. Conventional methods, involving deter-
ministic design, define safety factors to deal with
the inherent uncertainties found in every system.
However, in reliability analysis the goal is the ob-
tainment of the probability of failure when de-
sign criteria or limit states are not satisfied. The
main advantage of these methods over determin-
istic design is that structural safety can be defined
more accurately and, at the same time, the per-
formace of conventional procedures is enhanced,
because in each situation its specific uncertainties
are taken into account.

The word uncertainty is used to identify the
fact that it is impossible to know exactly the value
of a quantity that is susceptible to be measured,
but it is possible to know its most probable value.
This probabilistic information, related to the vari-
able, can be estimated and when the magnitude is
considered from this point of view, then is quali-
fied as a random variable.

Oberkampf et al. [2002] oppose the concept
of uncertainty, as a potential difference in any
phase of the design process, due to the lack of
information, with the concept of error, which is a
recognizable failure not attributable to the lack of
information neither to a random component.

Nowadays, it is accepted a classification that
divides the uncertainty in epistemological and
random. According to Oberkampf et al. [2002,
2004], epistemological uncertainty refers to the
lack of knowledge about a phenomenon and it
can be decreased with further investigation. It
comes from some degree of ignorance or incom-
plete information about the system or its environ-
ment.
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Random uncertainty is a measure of the het-
erogeneity or variability of the physical system
considered. It cannot be decreased with addi-
tional investigation.

Thoft-Christensen and Baker [1982] divide
the uncertainties related to structural analysis in
three types, depending on the modeling process.
The first type is the physical uncertainty, due to
the natural variability of magnitudes involved in
the structure, as loads, material properties and
dimensions. This uncertainty can be decreased
in some cases, specially in those quantities sub-
jected to quality control, as materials and geo-
metrical dimensions, but it cannot be removed
because it is a random uncertainty.

The next type of uncertainty comes from the
probabilistic characterization of the physical un-
certainty. This type is known as statistical or
parametric uncertainty and is caused by the lack
of data to accurately estimate the statistical be-
haviour of the physical magnitudes related to the
structure. It is mainly a random uncertainty.

The third type is the model uncertainty, also
known as formal uncertainty, which is mainly
epistemological and is caused by the simplify-
ing hypothesis required to build the mathematical
model of the structure.

A special kind of epistemological uncer-
tainty, called phenomenological uncertainty,
which is of special interest in structural engineer-
ing, is described by Melchers [1999]. It occurs
when the technology used in any stage of de-
sign, analysis or contruction causes uncertainty
about any aspect of structural performance. It is
of special importance when novel techniques are
applied or when they are not fully tested. As it
happens with the other uncertainties of this type,
its effects can only be estimated subjectively.

On the other hand, according to Schueller
[2007], it is advisable to take into account all
the posible uncertainties, instead of selecting the
most important ones from an aprioristic criterion.
Thus, errors coming from not considering the
factors having great sensitivity on the response
are avoided. The drawback of this procedure is
the impact on computational cost when a high
number of random variables are considered.

Reliability is related with the probability of
verifying a certain condition, and so, it cannot
be established with total certainty that a design
will fulfill a limit state condition. Instead, there
is some probability p f that the limit state will not
be verified. This is known as the probability of
failure.

In a probabilistic analysis, the uncertainties in
the basic magnitudes of the structure are consid-
ered directly in the analysis, changing from fixed
quantities to random variables. In the case of an
aircraft component with resistance R supporting
some external loads which provoke a structural
response S, the probability of failure is:

p f =P(R 6 S) = P(R−S 6 0) =
=P [g(r,s)6 0]

(1)

Where g(r,s) is the limit state function. If fR
and fS are the probability density functions of R
y S, respectively, and fRS is its joint probability
density function (fig. 1), then:

p f =P [g(r,s)6 0] =
∫

∞

−∞

∫ s

−∞

fRS(r,s)drds (2)
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Fig. 1 Joint probability density function of R and S

And when R and S are statistically indepen-
dent:

p f =
∫

∞

−∞

∫ s

−∞

fR(r) fS(s)drds (3)
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The limit state function defines if a design be-
longs to the failure domain, where the limit state
is not verified, or to the safety domain, where it
is. If a is the vector of basic variables which con-
tains the n random variables of the structure, then
the domains are defined as follows:

Failure domain: F ={a | g(a)< 0} (4)
Security domain: S ={a | g(a)> 0} (5)

The boundary between both domains is
known as the failure surface or limit state sur-
face, which generally is an hypersurface of n−1
dimensions in the n-dimensional space of basic
variables. The safety margin is now defined as a
random variable which can be identified with the
value of the limit state function:

M = g(a) (6)

From the previous considerations, it can be
generalized the expression (2) corresponding to
the probability of failure, which now can be for-
mulated as:

p f = P [g(a)6 0] =
∫
· · ·

∫
g(a)60

fA (a)da (7)

The equation (7) is known as the fundamen-
tal equation of reliability, where fA (a) is the joint
probability density function of all the basic vari-
ables involved in the response of the system.

Except in some particular cases, the integral
(7) cannot be resolved analytically, because of
the nonlinearity of fA (a), and also due to the fact
that the number of random variables usually em-
ployed is high, and therefore the dimension of the
problem. Several methods have been proposed to
solve this problem. In this paper, the most ap-
propiate methods for the design of aircraft com-
ponents are selected and explained. Also, a
practical example is considered to demonstrate
the application of the methods and their perfor-
mance.

2 Methods

The uncertainty quantification methods consid-
ered in this paper can be divided in two types.
The first one covers the methods involving ap-
proximations of limit state surface. The consid-
ered methods, based on the Taylor series expan-
sion of the limit state function and other approx-
imations, are the FOSM or first order second-
moment method, the FORM or first order relia-
bility method and the TANA3 or two point adap-
tive nonlinear approximation. Those methods re-
quire information about the value of the limit
state function and its derivatives in the vicinity
of the design point.

The second type is made up of the simu-
lation methods. This category includes Monte
Carlo simulation and its modifications, aimed to
reduce the elevated computational requirements
associated with them. Those methods are the
latin hypercube sampling and importance sam-
pling. In simulation methods, samplings of the
random properties are generated and feeded as an
input to the system, obtaining a response popula-
tion where statistical data is measured. A brief
description of all the aforementioned methods is
presented next.

2.1 FOSM method

The FOSM (First Order Second-Moment
Method), proposed by Cornell [1969], assume
the approximation of limit state surface by the
tangent hyperplane at the point µµµA, defined by
the mean value of the random variables:

M = g(a)' g(µµµA)+∇gT (µµµA)(a−µµµA) (8)

The mean value of the previous expression is:

µM = E [g(a)]' g(µµµA) (9)

And the variance has the value:

σ
2
M =Var [g(a)]'

n

∑
i=1

n

∑
j=1

∂g(µµµA)

∂ai

∂g(µµµA)

∂a j
σAiA j

(10)
From the equations (9) and (10), it is possible

the determination of the reliability index as:

β =
µM

σM
(11)
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The probability of failure is then obtained as:

p f = 1−Φ(β) (12)

Where Φ is the cumulative distribution func-
tion of the standard normal variable. The previ-
ous procedure has several drawbacks. The most
important is that the results is not invariant with
respect to the formulation of the limit state func-
tion. Besides, it only gives accurate results in
certain situations as, for instance, when all the
variables a are statistically independent, follow a
Gauss distribution and g(a) is a linear function.
In this case, M follows a Gauss distribution too
and the reliability index (11) has an exact value.

Unfortunately, in most of the situatons, these
hypothesis cannot be verified and so the equa-
tion eq. (11) only gives an approximation to the
reliability of the design.

2.2 FORM method

The FORM method (First Order Reliability
Method), proposed by Hasofer and Lind [1974],
uses the information of the first two statistical
moments of the random variables. It assumes that
the random variables are statistically independent
and follow a normal distribution. This does not
reduce the generality of the approach, because
by means of some transformations it is possible
the approximation of any type of distribution in
this way. Those tranformations can be linear,
like the ones by Rackwitz and Fiessler [1978],
Chen and Lind [1983] and Wu and Wirsching
[1987] or nonlinear, as in the case of the devel-
oped by Rosenblatt [1952], Nataf [1962] and Box
and Cox [1964].

Taking into account those considerations, the
standard normal properties a′ can be defined from
the transformation of the original random vari-
ables to a standard Gauss distribution as:

a′i =
ai−µAi

σAi

(13)

The FORM consists in the search of the most
probable point of failure (MPP) in the standard-
ised domain, in order to allow the substitution of

the limit state function by its Taylor series expan-
sion of first order at that point:

g(a′)' g(a′f)+∇g(a′f )
T (a′−a′f ) (14)

Where a′f , the most probable point of fail-
ure, is the point of minimum distance to the ori-
gin from the limit state surface. Geometrically,
the method supposes the approximation of the
limit state surface by the tangent hyperplane at
the most probable point of failure (fig. 2). The
reliability index, which it is also known as Ha-
sofer and Lind index, is related now to the failure
surface, but it is invariant with respect to the for-
mulation of the limit state function.

β =−
a′Tf ∇g(a′f )√

∇g(a′f )T ∇g(a′f )
(15)
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Fig. 2 First Order Reliability Method

Several methods exist which calculate the
MPP position. In that regard, the alternatives
suggested by Rackwitz [1976], Rackwitz and
Fiessler [1978] and Ayyub and Haldar [1984] can
be recommended.

2.3 TANA3 method

Instead of using information about the limit state
function and its derivatives till a certain order,

4



UNCERTAINTY QUANTIFICATION AND RELIABILITY ANALYSIS METHODS APPLIED TO
AIRCRAFT STRUCTURES

like in the rest of the limit state approximation
methods, adaptive approximations use informa-
tion generated in several points. Thus, a more
precise estimate of nonlinear limit state functions
can be calculated without using derivatives of
higher order, which reduces the computational
cost.

The TANA3 (Two-point Adaptive Nonlin-
ear Approximations) method [Xu and Grandhi,
1998] is based on an exponential approximation
which uses information of the current iteration k
and also of the previous one k− 1. So, the limit
state surface can be approximated as:

g(a)'g(ak)+
n

∑
i=1

∂g(ak)

∂ai

(
ai,k
)(1−ri)

ri

(
ari

i −ari
i,k

)
+

+
ε2

2

n

∑
i=1

(
ari

i −ari
i,k

)2

(16)

Where the nonlinear index ri and the param-
eter ε2 can be defined as:

ri = 1+
ln
(

∂g(ak−1)

∂ai

)
− ln

(
∂g(ak)

∂ai

)
ln
(
ai,k−1

)
− ln

(
ai,k
) (17)

ε2 =
2 [g(ak−1)−g(ak)]

n
∑

i=1

(
ari

i −ari
i,k−1

)2
+

n
∑

i=1

(
ari

i −ari
i,k

)2−

−
2

[
n
∑

i=1

a1−ri
i,k

ri

∂g(ak)

∂ai

(
ari

i,k−1−ari
i.k

)]
n
∑

i=1

(
ari

i −ari
i,k−1

)2
+

n
∑

i=1

(
ari

i −ari
i,k

)2

(18)

2.4 Monte Carlo method

The Monte Carlo Sampling method
(MCS)[Sobol, 1994] provides an estimation
of the reliability by means of statistical simula-
tions of the random variables. The procedure
consists in the selection of a high number of
samples m of the random properties, according
to their probability distribution, and perform
deterministic analysis with those values in order

to obtain the structural response for each one of
the samples. By means of the processing of those
results, the statistical moments of the structural
response can be obtained.

The application of Monte Carlo method to
obtain the solution of equation (7) requires the in-
troduction in the integrand of the function υ(a):

υ(a) =

{
1 , si g(a)6 0
0 , si g(a)> 0

(19)

Now, the domain of integration in the expres-
sion (7) includes the whole real domain and the
probability of failure can be formulated as:

p f = P [g(a)6 0] =
∫
· · ·

∫
υ(a) fA (a)da (20)

If a Monte Carlo sampling is applied to the
previous equation, so that m samples are gener-
ated, of which m f provoke that g(a)6 0, then the
probability of failure p f ,e can be estimated as:

p f ,e =
1
m

m

∑
j=1

υ(a j) =
m f

m
(21)

The accuracy of the previous estimation in-
creases with the number of samples m, although it
is related with the probability of failure too, since
a very low value of p f requires a higher number
of samples to achieve some results in the failure
domain.

Shooman [1968] suggest the following ex-
pression to estimate, with a confidence of 95 %,
the probability of failure p f with an error εp f ,e:

m =
4(1− p f )

ε2
p f ,e

p f
(22)

As can be seen, the obtention of precise re-
sults with low values of probability of failure en-
tails a large number of simulations. Thus the
application of direct Monte Carlo simulation is
restricted to simple problems, not requiring ex-
cessive computational resources, or to structures
where either the failure criteria can be relaxed or
the accuracy of the results or both.

On the other hand, the equation (22) clearly
shows that the error not depends on the dimen-
sion n of the problem, and so the method is
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suitable for those cases with a high number of
random variables, where the computational cost
compares with the required by the limit state ap-
proximation methods. Moreover, as each one
of the deterministic simulations in Monte Carlo
sampling is independent from the others, the al-
gorithm can be easily parallelized, reducing the
analysis time by a factor related with the number
of simultaneous jobs than can be executed.

2.5 Latin hypercube sampling

The random sampling in Monte Carlo method
can be improved with some techniques of sam-
pling selection. One of these methods is the
Latin Hypercube Sampling (LHS), proposed by
McKay et al. [1979]. In LHS, the domain where
random variables are defined, is divided in sub-
domains of equal probability and the samples are
selected so the design region is evenly covered.

If m is the number of samples and n is the
number of random variables, then the domain of
each variable is divided in m subdomains of equal
probability. The samples are selected randomly
in each subdomain and only a sample is taken per
subdomain, and so each row and column in the
hypercube of partitions has only a sample. Fig-
ure 3 shows an example with m= 10 samples and
n = 2 random variables.

An advantage of LHS sampling over Monte
Carlo sampling is that, if the structural response
is dominated by only one parameter, then all the
levels of the response are evaluated. This is
not guaranteed by direct sampling. However, if
the response is controled by multiple parameters,
then LHS sampling does not provide a significant
advantage over MCS.

2.6 Importance sampling

Importance sampling method was proposed by
Kahn and Marshall [1953] and was applied later
to reliability structural analysis [Augusti et al.,
1984]. The objective in this method is to con-
centrate the distribution of samples in the region
which has more contribution to the probability of
failure, instead of spreading them over the whole
domain (fig. 4). In order to do that, an auxil-

0

1

0 1

x
2

x1

LHS
Monte Carlo

Fig. 3 Comparison of MCS and LHS sampling

iar probability density function h(a) is defined,
with the purpose of generate samples in the re-
gion which most contributes to the value of inte-
gral (20):

p f = P [g(a)6 0] =
∫
· · ·

∫
υ(a)

fA (a)
hA(a)

hA(a)da

(23)

According to that, the estimation of probabil-
ity of failure p f ,e is now as follows:

p f ,e =
1
m

m

∑
j=1

υ(a j)
fA
(
a j
)

hA(a j)
(24)

The main disadvantage of this method is that
the selection of hA(a) is conditioned by the shape
of failure domain.

3 Application example

This section describes the application of the
uncertainty quantification procedures previously
mentioned to a finite element model of an aicraft
panel (fig. 5). The panel is made up of an alu-
minum skin reinforced with four frames and four
stiffeners. The nominal values of the panel prop-
erties are shown in table 1.
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Variable µ σ δ (%) Distribution
Skin thickness (mm) 1.5 0.225 15 Lognormal
Frame thickness (mm) 2.5 0.375 15 Lognormal
Stiffener thickness (mm) 2.5 0.375 15 Lognormal
Frame pitch (mm) 200 37.5 15 Lognormal
Stiffener pitch (mm) 250 30 15 Lognormal
Frame height (mm) 50 7.5 15 Lognormal
Stiffener height (mm) 30 4.5 15 Lognormal
Skin modulus (GPa) 72 3.6 5 Normal
Frame modulus (GPa) 71 3.55 5 Normal
Stiffener modulus (GPa) 71 3.55 5 Normal
Shear load (kN/m) 5 1.5 30 Gumbel
Axial load (kN/m) 10 3 30 Gumbel

Table 1 Panel properties
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Failure domain

Security domain

Failure surface

g(a′) = 0

fA′(a′)

κA′(a′)a′f

MPP

a1

a2

Failure domain

Security domain

Failure surface

g(a′) = 0

fA′(a′)

κA′(a′)a′f

MPP

Fig. 4 Importance sampling method

The mesh consists of four node shell elements
to modelate the skin, and beam elements for the
frames and the stiffeners (fig. 6), resulting in a
total of 2329 elements, 2432 nodes and 14,592
degrees of freedom (DOF). The model has its ro-
tations restrained at the four edges and also its
displacements are restrained in one of the bor-
ders. The loads applied consist of a shear load
in the borders with a value of 0.5 kN/m and an
axial load of 1.0 kN/m on the edge opposite to
the restrained border.

Fig. 5 Geometry of the panel

Fig. 6 Finite element mesh of the panel

For carrying out the calculations, a HPC clus-
ter of 8 nodes with 48 processors of 64 bits and
192 GB of physical memory has been used. The
peak performance provided by this machine is
237 GFlops.

In order to evaluate the structural reliability
of the panel, several uncertainties have been con-
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sidered. Those uncertainties have been classified
according to their type into one of the categories
of material, geometry or loads. The type of prob-
ability distribution for each one of the 12 ran-
dom variables has been chosen taken into account
the physical phenomena involved with them (ta-
ble 1). On the other hand, all the variables are
statistically independent.

The limit state selected to verify the structural
reliability evaluates the buckling factor λ, which
must be above the minimum value λmin = 100.
This condition can be expressed as:

g(a) =
λ

λmin
−1 > 0 (25)

Prior to the evaluation of the structural relia-
bility, a deterministic analysis is conducted with
the mean values of the random properties. Fig-
ure 7 shows the first buckling mode obtained with
those values.

Fig. 7 First buckling mode

The table 2 shows the results of probability
of failure and reliability index for each one of the
methods considered. Besides, to establish some
conclusions regarding to computational cost of
each method, the number of iterations is also pre-
sented, including the required ones to calculate
the gradients of limit state function with finite
differences in limit state approximation methods.
Finally, the fig. 8 compares the computational
times of each method.

In view of the previous results, several con-
siderations can be done. The first one is that all
the results are quite similar, except for the FOSM
method, which show some diferences. Those re-
sults were expected, as this method only gives an

Method β p f n Iterations
FOSM 1.177 1.195×10−1 23
FORM 2.451 7.123×10−3 644
TANA3 2.133 1.645×10−2 185
MCS 2.878 2.000×10−3 10,000
LHS 2.652 4.000×10−3 1000
VRT-I 2.927 1.711×10−3 745

Table 2 Structural reliability results for each method

FOSM

FORM

TANA3

MCS

LHS

VRT-I

102 103 104 105 106

Time (s)
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et

ho
d
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0h 56m 34s

0h 19m 16s

7h 0m 20s

1h 10m 20s

0h 55m 12s

Fig. 8 Computational times for each method

approximation to the structural reliability. On the
other hand, the number of iterations is very low,
so this method can be considered as an alterna-
tive to evaluate the probability of failure at early
stages of the design, when precise values are not
required.

The results from the rest of the methods will
be compared against the Monte Carlo method, as
the reliability result in this case has been obtained
from a population with 10,000 samples. This
sampling size has been selected based on previ-
ous calculations which concluded that this size
gives acceptable results in most of the analysis
cases, with a processing time not too long.

The FORM method gives an accurate approx-
imation to the probability of failure at a reason-
able cost. This method is much more precise than
the FOSM and also has the advantage of being
invariant with respect to the formulation of the
limit state function. However, although this is not
the case, the computational time increases very
quickly with the number of random variables and
limit state functions. This is because the values
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of derivatives are usually calculated with proce-
dures which increase the computational cost, like
finite differences. In those cases, sampling meth-
ods become an alternative, because, except for
the importance sampling, they are independent of
the size of the problem.

The adaptive approximation TANA3 gives a
more conservative value of the probability of fail-
ure, which can be considered as a better ap-
proximation than the one provided by the FOSM
method, but not as good as the one by the FORM.
In that regard, TANA3 can be view as a compro-
mise between those methods.

The latin hypercube sampling has performed
properly. This method gives a result quite sim-
ilar to the Monte Carlo sampling, although re-
quiring far less iterations and computational time.
The imporance sampling is also a very good al-
ternative when considering sampling methods, as
their results are quite accurate with a cost signif-
icantly less than direct sampling methods MCS
and LHS.

4 Conclusions

In this work, a revision of some existing proce-
dures of reliability analysis and their capabilities
has been carried out. A practical example has
been used to show the performance of the meth-
ods used in the study. Finally, some conclusions
can be drawn.

The FOSM method gives an approximation to
calculate the probability of failure at early stages
of the design, when precise values are not re-
quired, but it is not an alternative to evaluate the
security of the structure.

Considering the performance of each method,
it is reasonable the recommendation of using
limit state approximation methods in those cases
with a reduced number of random variables or
limit state functions, when the values of deriva-
tives must be calculated with procedures which
increase the computational cost. In this situation,
sampling methods can not beat the performance
of limit state approximations.

However, in those cases having a high num-
ber of random variables and/or limit state func-

tions, the number of iterations required to eval-
uate the first derivatives, causes that sampling
methods become an alternative, with computa-
tional costs quite similar to the limit state approx-
imation methods. Moreover, those methods are
not penalized by the problem size and can be eas-
ily parallelized, increasing their performance.
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