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Abstract  
The state of the art in research of atmospheric 
conditions influence on sonic boom is 
discussed. The influence of atmospheric 
turbulence on the characteristic ray trajectories 
and amplitude of propagating plane shock wave 
is investigated with the simplified model 
approach. Isotropic character of atmosphere 
turbulence is assumed. It is also supposed that 
the atmospheric turbulence is “frozen”, i.e. the 
time of acoustic wave passing through the 
turbulent media is considerably less, than the 
time of evolution of atmospheric turbulence 
structures. The turbulence field is simulated as 
a series of independent realizations of random 
scalar and vector fields that are not related one 
with the other. Propagation of the sonic boom 
wave is described on the base of classical Hayes 
- Zhilin theory equations. The using of Hopf’s 
transformation allows proving the unique 
existence of their solution. It is shown that 
under given arbitrary initial overpressure 
distribution p0 the sought distribution p in the 
whole area of the flow is continuously. 

1  Introduction  
Indubitably tomorrow is with supersonic 
passenger aviation. For the further progress in 
this area the adequate estimation of sonic boom 
level is extremely important. The clear 
international requirements imposing restrictions 
to sonic boom characteristics are not elaborated 
for the present, however sonic boom level 
exceeding 50 Pa is considered to be 
objectionable. Sonic booms constraints may 
essentially affect on aircraft configuration of 
supersonic transports (SST) are elaborated just 

as routing and flight regimes selection [1]. For 
the present-day for small-sized aircraft, such as 
supersonic business jet, the level of 15 Pa 
overpressure in head shock wave and loudness 
volume about 65 dBA, in principle, are 
accessible [2, 3].  

The theoretical analysis of the phenomenon 
under consideration has reached enough high 
level. Particularly, the quite efficient algorithms 
and the computer codes of sonic boom 
calculations have been developed in TsAGI.  

The tools available today for sonic boom 
prediction allow obtaining various sonic boom 
characteristics with rather good accuracy at 
state-determined (nominal) atmosphere 
conditions and they can be used also for 
optimizing aircraft configuration and flight 
regimes to minimize shock wave impact [4-6]. 

At the same time, atmospheric conditions 
such as wind, cloudiness, atmospheric 
turbulence, etc. notably effect upon shock wave 
overpressure signature and noise spectrum, as 
well as sonic boom carpet. The issue of more 
accurate calculation taking into account the 
meteorological condition effect on the sonic 
boom remains less evident [7-9].  

Inhomogeneity of atmosphere is 
characterized by various parameters. 
Nevertheless, as a matter of fact, it may be 
described by superposition of two factors: slow 
variations of state due to stratification, and more 
rapid variations due to random fluctuations of 
wind velocity and air temperature or 
atmospheric turbulence.  

The analysis of the results of 
measurements of sonic boom characteristics 
performed in flight experiments has shown [9] 
that the sonic boom intensity perceived on 
ground surface can be greatly more (or, on the 

MODELING OF ATMOSPHERIC CONDITION 
INFLUENCE ON SONIC BOOM 

 
S.L. Chernyshev, A.Ph. Kiselev, P.P. Vorotnikov

Central Aerohydrodynamic Institute n.a. prof. N.E. Zhukovsky (TsAGI) 
 

Keywords: sonic boom, atmospheric turbulence, stochastic field. 



S.L. CHERNYSHEV, A.PH. KISELEV, P.P. VOROTNIKOV 

2 

contrary, more less), than nominal computed 
value, and that this phenomena - sooner rule, 
than exception.  

The fundamentals for theoretical analysis 
of the propagating the acoustic waves of the 
finite amplitude in dissipative turbulent medium 
are stated by D.I. Blokhintcev and V.I. Tatarskii 
in their monographs [10, 11]. State of the art in 
research on the problem of modeling of the 
atmospheric turbulence influence on 
propagation of sonic boom wave was 
considered in the paper [12]. We shall notice 
that the expansion of the investigations in this 
area is observed at last years [13-15]. However 
using existing models is limited for present-day 
by the simplest cases of the shock waves 
propagation and for their practical application 
will take else much efforts.  

In present work the influence of 
atmospheric turbulence on the characteristic ray 
paths and amplitude of two-dimensional 
propagating acoustic wave is investigated in 
simplified model problem definition. Isotropic 
character of atmosphere turbulence is assumed. 
It is also supposed that the atmospheric 
turbulence is “frozen”, i.e. the time of acoustic 
wave passing through the turbulent media is 
considerably less, than the time of evolution of 
atmospheric turbulence structures. The 
turbulence field is simulated as a series of 
independent realizations of random scalar and 
vector fields that are not related one with the 
other [16]. 

Propagation of the sonic boom wave is 
described on the base of classical Hayes - Zhilin 
theory equations. The using of Hopf’s 
transformation allows proving the unique 
existence of their solution. It is shown that 
under given arbitrary initial overpressure 
distribution p0 the sought distribution p in the 
whole area of the flow is continuously. 

2  Modeling of the atmospheric turbulent 
boundary layer influence on sonic boom 
wave propagation  
To evaluate the ground level parameters of the 
sonic boom wave passing through the atmospheric 
turbulent boundary layer the isotropic character of 

the atmosphere turbulence was assumed (this 
seems to be the most reasonable way).  

Within the frame of this work the elaboration 
of the empirical method for analysis of 
relationships between the sonic boom parameters 
and the turbulence characteristics is based on 
Yu.L. Zhilin’s method of the sonic boom 
calculation based on the geometric acoustics laws 
[17, 18], and on the Ph. Blanc-Benon et al. 
stochastic model of the acoustic waves 
propagating through the random scalar and vector 
fields [19, 16].  

Hereinafter, we limit consideration of the 
model problem of the passing of the plane 
acoustic wave through two-dimensional 
stochastic field. 

The velocity V of 2D stochastic isotropic 
vector field at any given point x has a 
fluctuating component that may be presented as 
a sum of n random Fourier-modes: 
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where r is the radius-vector of the point with the 
orthogonal coordinates (x1, x2), the x1–axis 
coincides with the initial direction of the wave 
front. 

The direction of the wave vector Ki of each 
mode is random; within two-dimensional case, 
it is characterized by the random angle i. The 
homogeneity of turbulence field is ensured by 
the randomness of the phase shift i. The angle 
i and phase shift i are independent random 
variables with uniform distributions. The 
amplitude of the velocity fluctuations |u (Ki)| is 
a deterministic variable, its value is set 
according to the energy spectrum E(K), with 
K=|Ki| : 

KKEii  )()(Ku ,  

where K is a K increment. 
In this case we consider the fields with a 

Gaussian correlation function 
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arbitrary chosen points between which the 
correlation of velocity fluctuations is evaluated. 

For two-dimensional Gaussian random 
velocity fields the energy spectrum is 
determined by equation:  
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with 2
2

2
1

2 vvv   is the mean value of the 
square of the velocity fluctuations. We note that 
changing the kind of the energy spectrum 
constitutes no any difficulties. 

It is assumed, that Kmin = 0.1/L, and 
Kmax = 10/L. We are restricted by 50 random 
Fourier-modes in our simulations. The 
averaging was performed over the ensembles of 
order of 100 realizations of the stochastic field.  

Two-dimensional random temperature 
fluctuations field is defined by the same way as 
the random velocity fluctuations field: 
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As previously, the direction of the wave 
vector Ki and the phase shift j are the 
independent random variables with the uniform 
distributions, but j(Kj) is defined by the 
temperature fluctuations energy spectrum 
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where 2T   is the mean value of the square of the 
temperature fluctuations. 

The linear geometric acoustics forms the 
basis for the determination of the ray paths in 
each of turbulent layer realizations. As far as it 
is known the rays constitute the line tangent to 
the group velocity cg=cn+V. Here c is the local 
sound velocity, n = P/P is the unit vector along 
the direction of the wave front propagation, V is 
a medium velocity vector, P is a dimensionless 
wave vector, P = N/(1 + Mn), N=c0/c is the 
refraction index and M=V/c is the Mach 

number, c0 is the sound velocities in undisturbed 
medium.  

For the plane wave propagating through 
the random field the ray trace calculation 
consists in the solution of the system of eight 
ordinary differential equations: 

1) four equations to determinate the 
coordinates of radius-vector r and 
components of the wave vector P with 
the initial conditions  
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2) four equations to determinate the 
components of the geodesic elements 
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The determination of the geodesic elements 
R  and Q  describing the wave front evolution 
along each ray is necessary to calculate the 
elementary ray tube area.  

Two limit cases are considered: 
1) The turbulence is caused by the 

temperature fluctuations only, i.e. Mach 
number M = 0, and the refraction index 
N = 1 – T′/2T0, where T0 is the 
temperature of undisturbed medium. It is 
possible to represent the refraction index 
with a good accuracy as: 

 N = exp(–T′/2T0). Such a representation 
allows simplifying the process of the 
spatial derivatives calculation and, 
thereby, permits to accelerate the solution 
of the differential equations system.  

2) The turbulence is caused by the velocity 
fluctuations only. In this case N = 1 . 

The nonlinear transport equation for the 
propagation of the wave along the eigenrays 
to obtain the solution for the acoustic pressure 
p is used. This transport equation taking into 
account terms of the second order in momentum 
equation was derived by Robinson [20].  
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This equation is of the form of 
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(1) 

Here s is the arc length along the single ray 
trace; t′ is the retarded time coordinate. For the 
plane wave the elementary ray tube area 

,cos  12 RR jiA  where i and j are the 

unit vectors along axes x1  and x2 ,   is the angle 
between phase and group velocity vectors,  is the 
nonlinearity coefficient ( depends on the 
refraction index, when N = 1  = 1.2), 0 is the 
density of undisturbed medium. 

Unlike the approach stated in the 
paper [16], the equation (1) is solved in time-
domain (i.e. in s and t′ coordinates). If the 
eigenray passes through a caustic, then |A| → 0 
in the neighborhood of this point and the 
equation (1) has a singularity. 

In order to avoid troubles in the numerical 
solution of the equation (1) the regularizing 
known as the method of artificial viscosity is 

applied [21]: the term 
2

2

t

p


  is added to the 

transport equation (the  is a small parameter). 
Then the modified equation (1) is solved with the 
use of algorithm described in Ref. 22. To some 
extent this artificial technique may be considered 
as the effects of absorption modeling [23]. 

The described method of evaluation of 
atmosphere turbulent boundary layer influence 
on the sonic boom wave parameters was applied 
for the solution of model task, namely the 
propagation of the plane N-wave through the 
random temperature or the velocity fluctuation 
field. The parameters of initial N-wave are the 
same as in Ref. 19. The peak overpressure is 
500 Pa, the duration is 15 s, and the rise time 
 0 (time portion between 10% and 90% of peak 
pressure) is 1s. The linear scale of turbulence 
L is assumed to be equal to 0.1 m. 

In Fig. 1 the ray traces of acoustic wave 
propagating through the various realizations of 
random temperature field are shown. The 
distribution of the N refraction index in 
calculation domain is shown as shades of gray 
map. It is demonstrated in the figure the 
focusing and defocusing phenomena of the 
acoustic wave on the local heterogeneities as 
well as the influence of the temperature 
stochastic field parameters on this process.  

The first caustics appear at 

0
22 101721 TTTrms  .  in the range of 

15< x1/L <25. It is clear from the concentration 
and the crossings of the ray traces. We note that 
the pattern of the wave propagation essentially 
depends on the particular realization of the 
stochastic field even at the same average 
parameters. 

 
 

 
Fig. 1. Propagation of the acoustic rays 

through various realizations of the random 
temperature field: 

а) 2
0 10172.1  TTrms ; b) 3

0 103442  .TTrms . 
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Fig. 1b demonstrates the decrease of 
temperature turbulence influence on the acoustic 
wave as far as the parameter 0TTrms is reduced. 

The trajectories of the three eigenrays 
propagating through stochastic field and 
distribution of the parameter S along them are 
shown in Fig. 2. This parameter is of the form 
of  
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and characterizes the elementary ray tube area. 
It is clear that |S| → 0 when the ray traces are 
intersected. 

The ray traces of acoustic wave 
propagating through the random velocity field 
with zero mean component (without wind) are 

shown in Fig. 3, 2vvrms  . The field of vector 

cvM Т  is shown by arrows. 
The values of 0TTrms  and 0cvrms are 

specified in such a way that fluctuating part 

002 c

v

T

T rmsrms 



 of the refraction index 

 1n  was the same both for the temperature 
fluctuation field and for the velocity fluctuation 
field. 

 
 
 

The form of received overpressure 
signature in sonic boom wave propagating in 
stochastic temperature or velocities fields 
depends essentially on the specific realization of 
the random field as well as on the receiver 
location. In order to get the information on the 
turbulence influence on this or that 
characteristic of the sonic boom wave the 
statistical ensemble averaging is necessary. 

In Fig. 4 the results of calculations of 
cumulative probability f of p/p0 in the sonic 

 

Fig. 2. Acoustic rays focusing in the 
random temperature field and distributions 

of parameter S along the rays traces. 

 
Fig. 3. Propagation of the acoustic rays 

through the random velocity fluctuations field. 
2

0
105860 

.c
vrms .  

 
 

Fig. 4. Cumulative probability f of p/p0 in 
the sonic boom wave propagating through 

stochastic field. 
x1 = 25L: 1 – 00  TTrms , 2

0 10586.0  cvrms ; 

       2 – 2
0 10172.1  TTrms , 00  cvrms ;  

   x1 = 50L: 3 – 00  TTrms , 2
0 10586.0  cvrms ; 

       4 – 2
0 10172.1  TTrms , 00  cvrms  
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boom wave propagating through the stochastic 
temperature and velocity fluctuations fields at the 
distances of x1=25L and x1=50L from source are 
represented. The p is the maximum 
overpressure and p0 is the calculated value of 
p without turbulence. The results are 
generalized on the base of the calculation about 
50 eigenrays and 100 various realizations for 
each curve. 

As a whole it is possible note that 
described model allows qualitatively predicting 
the basic tendencies observed in the 
experimental investigations of the atmospheric 
turbulence influence on the sonic boom 
propagation. 

3  Using the Hopf’s transformation for the 
solution of nonlinear transport equation 
The nonlinear transport equation (1) may be 
transformed to Burgers type equation 
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ss A,0  and osc are the density, ray tube area 

and sound speed near the source,  - specific 
heats ratio. The distortion distance variable Z is 
given by equation  
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The dissipation effects may be included in 
equation (2) if we rewrite it as  

2
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, (3) 

where   is the effective coefficient of 
dissipation that  includes the temperature and 

viscous dissipation so as molecular relaxation. 
For the homogeneous atmosphere parameter 
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, where   is the kinematic viscous 

coefficient. 
The Hopf’s transformation [24] is 

concluded in presentation of the functions   in 

the form 
t
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As a result transport equation (3) is 
converted to the form: 
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Got equation is equation of heat transfer. It 
is proved that its solution exists, single and 
continuously depends on initial distribution of 
u0 at Z=0 [25]. 

It is possible to write latter as  
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where 0t is the initial value of retarded time 

coordinate t′. 
The Hopf’s transformation was earlier used 

for solution of the transport equation [26, 27], 
but for gaining of approximate solutions. 

If  tfu 0 , then the solution of 

equation (4) is known: 
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If we accept a piecewise-linear 
approximation for overpressure signature then 
the solution of equation (4) will be of the form 
of finite sum, which each member is expressed 
through error functions  erf  or  erfi . 

For example, for N-wave with initial 
overpressure in head pressure jump p0 , with 
pulse duration of T and zero rise time  the 
solution may be written as: 
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     22111  erfsignerfsignI  , 
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Expression for sought function derivative 
on retarded time t  will be of the form of 
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