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Abstract  

In this study the energy concept along with the 

classical plate theory (CPT), first and third 

order shear deformation theories (FSDT and 

TSDT) are used to predict the large deflection 

and through the thickness stresses of a FGM 

plate. For defining the volume fraction of the 

FGM constituent materials three different 

functions are considered; simple power-law (P-

FGM), exponential (E-FGM) and sigmoid 

(S_FGM) functions. Power-law and exponential 

functions are commonly used to control the 

variations of properties of FGMs. However, 

with both functions, a stress concentration 

appears due to abrupt change of the volume 

fraction of the constituents. Therefore, a 

sigmoid FGM is used to define a new 

distribution for the volume fraction. The aim of 

this paper is to investigate and discuss the 

differences between these distribution functions 

for the constituents’ volume fraction. For any of 

these functions, the results for different “n” and 

different aspect ratios are obtained and the 

relationships between them and the produced 

stress curves will be discussed. So, in this way it 

will be possible to predict the appropriate 

distribution functions considering the range of 

“n” and geometry (aspect ratio) of the plate. 

1 Introduction 

The conventional laminate composites which 

are usually comprised of two different materials 

have been widely used to satisfy the increasing 

high performance industrial demands. However, 

stress singularities in such composites may 

occur at the interface between two different 

materials, due to the mismatch properties of the 

constituent materials. Particularly, in a high-

temperature environment, such as engine 

combustion chamber the relatively high 

mismatch in thermal expansion coefficients will 

induce high residual stresses.  Consequently, 

these large inter-laminar stresses will lead to 

delamination. Furthermore, large plastic 

deformations at the interface may trigger the 

initiation and propagation of cracks. One way to 

overcome these problems is to use “functionally 

graded materials” [1, 2].  

Functionally graded materials (FGMs) are a 

kind of composite material formed by two or 

more constituent phases with a continuously 

variable composition. FGMs possess a number 

of advantages that make them attractive in 

potential applications, including reduction of in-

plane and transverse or through-the-thickness 

stresses, an improved residual stress 

distribution, enhanced thermal properties, 

higher fracture toughness, and reduced stress 

intensity factors. A wide range of results on 

linear behavior of functionally graded plates 

with different material function models are 

available in the literature [3-5]. However, 

nonlinear investigations of FGM plates under 

mechanical loading are limited in number. 

In this study, a simply supported elastic 

rectangular FGM plate subjected to pressure 
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loadings is considered. The material properties 

of the FGM plates are assumed to change 

continuously throughout the thickness of the 

plate, according to the volume fraction of the 

constituent materials based on the power-law, 

exponential, or sigmoid functions. The material 

properties of the FGM plate, except for the 

Poisson‟s ratio which is constant, are assumed 

to vary continuously throughout the thickness of 

the plate. However, considering the assumed 

loading the variations in Young‟s modulus (E) 

is only important .The constitutive equations for 

rectangular plates of FGM are obtained using 

the Von-Karman theory for large deflections 

and the solution was obtained by minimization 

of the total potential energy. 

2 Theoretical formulation 

A FGM can be defined by the variation in the 

volume fraction of its constituents. Most 

researchers use the power-law function or 

exponential function but here a sigmoid 

function is also considered to describe the 

volume fractions for the FGM. The 

configuration of elastic rectangular plates is 

considered as shown in Fig. 1. The material 

properties i.e. Young's modulus (E), are 

normally considered to be varied from upper to 

the lower surface of the plate such that the top 

surface (i.e.  z=h/2) is ceramic-rich, whereas the 

bottom surface (i.e.  z=-h/2) is metal-rich. Since 

the effect of Poisson's ratio on the deformation 

is much less than that of Young's modulus [6] 

its value is assumed to be constant.  

 

Fig. 1. Geometry of FGM plate 

In the following sections responses of the FGM 

plate under pressure loading based on simple 

power-law, sigmoid and exponential functions 

will be investigated. At first, the general 

characteristics of the FGM plates based on these 

functions are described. 

2.1 Characteristics of P-FGM plates 

The volume fraction of the P-FGM is assumed 

to obey a power-law function: 

      
  

 
 

 
 

   

 

(1) 

where “n” is the material parameter and “h” is 

the thickness of the plate. The material 

properties of a P-FGM can be determined by the 

rule of mixture using      as shown below: 

                       

 

(2) 

Where    and    are the Young‟s moduli of the 

bottom and top surfaces of the FGM plate, 

respectively. The variation of Young‟s modulus 

in the thickness direction of the P-FGM plate is 

depicted in Fig. 2, which shows that the 

Young‟s modulus changes rapidly near the 

bottom surface for n>1,and increases quickly 

near the top surface for n <1. 
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Fig. 2. Variation of Young‟s modulus in P-FGM plate. 

2.2 Characteristics of S-FGFM plates  

For a FGM of a single power-law function with 

an extreme high or extreme low “n” value stress 

concentration like laminated composite 

materials occurs on the interface of the 

ceramic/metal constituents. Note that such a 

material looks like a metal base with a thin layer 

of ceramic as coating or vice versa.  To 

eliminate or reduce the stress concentration and 

ensure the smooth distribution of stresses 

among all the interfaces, volume fraction of the 

constituents is defined by two power-law 

functions which simulate the behavior of a 

sigmoid function. The two power-law functions 

are defined by: 
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By using the rule of mixture, the Young‟s 

modulus of the S-FGM can be evaluated as 

follows: 
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(6) 

The variation of Young‟s modulus in such a S-

FGM plate is depicted in Fig .3. 

 

Fig. 3. Variation of the Young‟s modulus in S-FGM plate 

2.3 Characteristics of the E-FGM plate 

In some references another function rather than 

the simple power-law and sigmoid is proposed 

to describe the material properties of FGMs 

called exponential function shown below: 
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The material distribution in the thickness 

direction of the E-FGM plate is plotted in Fig .4. 

 
Fig. 4.Variation of Young‟s modulus in E-FGM plate 

3 The solution procedure 

A linear elastic simply supported FGM plate 

under pressure loading is considered. The 

displacement field associated with classical 

plate theory (CPT), first and third order shear 

deformation theories (FSDT and TSDT) were 

employed and the related constitutive equations 

were obtained using the Von-Karman theory for 

large deflections. Consequently, the total 

potential energy is calculated and then 

minimized in order to obtain the solution. The 

general displacement field for CPT, FSDT, and 

TSDT can be written as [7] 

                     
       

  
             

 

(8) 
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 (10) 

where (      ) are the displacements 

corresponding to the coordinate system and are 

functions of the spatial coordinates; (          ) 

are the displacements along the respective axes 

of x, y, and z, and    and    are the rotations 

about y and x-axes, respectively. Note that for 

each one of the theories considered the 

functions f(z) and g(z)  are defined as below: 

I. For the CPT:  f(z)=z and g(z)=0 

II. For the FSDT: f(z)=0 and g(z)=z 

III. For the TSDT: f(z)=        and 

            

According to the non-linear strain-displacement 

relationships [8] and the stress-strain 

relationships the stresses in the plate using the 

energy concept can be evaluated. By definition, 

the total potential energy is the summation of 

strain energy and the change in potential energy 

of the applied uniform pressure which can be 

written as below: 

      

 

(11) 

where U and V are defined as below: 

  
 

 
             

   

    

 

 

 

 

 
(12) 

 

                
 

 

 

 

 
(13) 

 
 

where q is the uniformly distributed load.  

By applying suitable boundary conditions and 

guessing the appropriate displacement and 

rotation fields, it is possible to evaluate the 

constants of the functions by minimizing the 

total potential energy. It is assume that the 

constants of displacement and rotation fields are 

  ,    and    which are respectively for 

displacements along x and y-axis, displacement 

along z-axis and the rotation about x and y-axis. 
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(14) 

Eq. (13) provides a set of three non-linear 

equilibrium equations in terms of some 

constants which should be found. 

After calculation of these constants and finding 

the displacement and rotation fields the through 

the thickness stresses are evaluated.  

4 Results and discussion  

In this section the responses of P-FGM and S-

FGM plates for different value of “n” and 

different aspect ratios are compared but the E-

FGM is compared by the other two functions for 

n=1 because of its characteristic of being 

independent of “n”. Here, a ceramic-metal FGM 

plate is considered. Young„s moduli for ceramic 

and Aluminum are 380GPa and 70GPa, 

respectively. As stated before, the Poisson‟s 

ratio is assumed to be constant and equal to 0.3. 

The analytical results are presented in terms of 

dimensionless deflection and stress. The 

dimensionless parameters used here are as 

follows [9]: 

Aspect ratio AR=a/h; 

Dimensionless axial stress      
      

  ; 

Load parameter            
  ; 

Dimensionless thickness coordinate Z=z/a 

4.1 Comparison the responses of P-FGM and 

S-FGM plates for different “n” and aspect 

ratios 

First of all, it should be noted that in P-FGMs 

for small “n”, the plate will be rich in ceramic 

(alumina), which has a large Young's modulus, 

and as a result its deflection will be small. 

However, for large “n”, the plate will be rich in 

metal and the deflections will be larger.  

For the stress field, in both small and large “n” 

cases one side of the plate will experience stress 

singularity because of existing a thin layer of 

metal or ceramic, respectively. However, this 

phenomenon will occur in S-FGM in both sides 

of the plate for each value of “n”. Note that if 

“n” is very small for this material, we will have 

two thin layers of ceramic and metal in top and 

bottom surfaces of the plate and a large area 

composed of ceramic/metal mixture placed 

between the two layers. On the other hand, if 

“n” is too large, two thick layers of ceramic and 

metal in the top and bottom surfaces of the plate 

will form and only a very thin layer of mixture 

remains in the mid-region of the plate which 

results in stress jumps when moving across the 

interfaces (for more details see Fig. 5 to 10). 

  

Fig. 5.   at the center of the plate under load Q=-400 for 

AR=20 in P-FGM plate 

. 

Fig. 6.   at the center of the plate under load Q=-400 for 

AR=20 in S-FGM plate 
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As shown in Figs. 5 and 6, the sigmoid function 

leads to smaller axial stress values with respect 

to simple power-law in both tension and 

compression parts of the stress field. This 

phenomenon will occur for all values of “n” and 

all aspect ratios. Another important finding is 

that for large aspect ratios, which will occur for 

thin plates, all the theories (CPT, FSDT and 

TSDT) predict the same results. It means that 

using the CPT is adequate for stress analysis of 

thin plates and there is no need to use higher 

order shear deformation theories. Nevertheless, 

decreasing the aspect ratio will result in the 

deviation of predictions by CPT from other 

theories‟ (see Figs. 7 and 8). As mentioned in 

[9] the compressive nature of stress at the top 

surface predicted by the CPT for thick plates 

appears to be tensile if one applies higher order 

theories to the problem. This is clearly shown in 

Figs. 7 and 8. It can be observed from these two 

figures that in S-FGM materials this behavior 

appears more quickly and obviously in small 

values of “n”. If the aspect ratio decreases more, 

i.e. AR=1.5, the FSDT and TSDT predict a pure 

tensile stress instead of compressive stress in 

thinner plates. This phenomena is more apparent 

for large values of “n” (see Figs. 9-12)  

. 

Fig. 7.   at the center of the plate under load Q=-400 for 

AR=2 in P-FGM plate 

 

Fig. 8.   at the center of the plate under load Q=-400 for 

AR=2 in S-FGM plate 

For large values of “n” the P-FGM plate will be 

rich in metal and stress singularity will take 

place in top surface because of a thin layer of 

remaining ceramic. The results for this material 

are similar to the results of Fig. 9. For the same 

situation for S-FGM, stress singularities occur at 

the interfaces of the mid-layer (composed of a 

mixture of ceramic and metal) with the pure 

metal and ceramic layers (see Fig. 10). If the 

value of “n” increases further, the two pure 

metal and ceramic layers look like two breaks in 

thickness and get closer to each other which 

means that the thickness of mid-layer tends to 

decrease. 

. 
Fig. 9.   at the center of the plate under load Q=-400 for 

AR=20 in P-FGM plate 
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. 

Fig. 10.   of the plate under load Q=-400 for AR=20 in S-

FGM plate 

. 

Fig. 11.   at the center of the plate under load Q=-400 for 

AR=2 in P-FGM plate 

 

. 

Fig. 12.   at the center of the plate under load Q=-400 for 

AR=2 in S-FGM plate 

 

Comparisons of Figs. 9 and 11 and Figs. 10 and 

12 show that for thicker plates or small aspect 

ratios, no compressive stress is observed in top 

layers (the thing which is seen in thin layers) by 

higher order shear deformation theories. This is 

what would expect from deformation of a thick 

plate. Therefore, it would be concluded that 

besides the existence of shear effect there is one 

more reason for CPT not to be valid for thick 

plates.  

4.2 Comparison of P-FGM, S-FGM and E-

FGM responses in n=1 

As shown in Figs.13 through 16, the exponential 

function predicts less stresses that the other two 

functions. For all aspect ratios and different 

deflection theories the E-FGM plate experiences 

lower stress values that P-FGM and S-FGM 

plates and the magnitude of stress in both P-

FGM and S-FGM are the same. 

. 

Fig. 13. Comparison of axial stresses for P-FGM, S-FGM 

and E-FGM based on CPT 
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. 
Fig. 14. Comparison of axial stresses for P-FGM, S-FGM 

and E-FGM based on TSDT 

 

. 

Fig. 15. Comparison of axial stresses for P-FGM, S-FGM 

and E-FGM based on CPT 

. 

Fig. 16. Comparison of axial stresses for P-FGM, S-FGM 

and E-FGM based on TSDT 

5 Conclusions 

As discussed in the previous sections, for all 

values of “n” the CPT becomes invalid with 

increasing the plate thickness or decreasing the 

aspect ratio. Also, the predicted stresses in S-

FGM are lower than those of P-FGM plates. 

While, for a fixed aspect ratio, by moving from 

small values of “n” towards its larger values the 

total behavior of the plate under pressure based 

on different distribution functions does not 

change significantly, rather than the shape of the 

curves and the points of singularities. For small 

“n”, depending on distribution function there are 

some breaks in one or both sides of the curves. 

For large “n”, the breaks in P-FGM plate move 

to another side and in S-FGM plate they will 

move closer to the mid-region of the plate. The 

behavior of P-FGM and S-FGM plates in 

converting the compression stress into tension 

for thick plates are similar with only slight 

differences. For n=1 it was shown that the 

stresses predicted by exponential distribution 

function is lower than the two other functions. 
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