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Abstract

This paper details a practical approach
for predicting the aeroelastic response
(structure/aerodynamics coupling) of flex-
ible pod/missile-type configurations with
freeplay/hysteresis concentrated structural non-
linearities. The nonlinear aeroelastic response of
systems in the presence of these nonlinearities
has been previously studied by different authors;
this paper compiles methodologies and related
airworthiness regulations. The aeroelastic
equations of the pod/missile configuration are
formulated in state-space form and time-domain
integrated with Fortran/Matlab codes developed
ad hoc for dealing with freeplay/hysteresis
nonlinearities. Results show that structural
nonlinearities change the classical aeroelastic
behaviour with appearence of non-damped
motion (LCOs and chaotic motion).

1 Introduction

This report analyses the time-domain aeroelas-
tic response of flexible slender wing+body con-
figurations in the presence of freeplay/hysteresis
concentrated structural nonlinearities. The the-
oretical formulation and methodology are di-
rectly applicable for the preliminary design of
pod/missile-type configurations, characterizing
the nonlinear aeroelastic response on the en-
tire flight envelope and predicting the effect
of the structural nonlinearities on stress or fa-

tigue. In addition, the solving procedure of the
time-domain aeroelastic equations is based on a
methodology and tools that can be extended for
using with complex aircraft-type configurations.
The first part of the paper is devoted to review the
state of the art of the analysis of structural non-
linearities from the aeroelastic standpoint. Both
technical publications and civil/military airwor-
thiness regulations are reviewed, discussing the
current methodologies and analyzing advantages
and disadvantages of each one.
The following sections will describe the aeroe-
lastic model of a flexible missile configuration.
The structural model is a beam-like flexible fi-
nite element model for the missile body while
the all-movable control surfaces are assumed to
behave as rigid plates. The inertia is based on
a mass per unit length distribution along the
longitudinal axis of the missile, and the aero-
dynamics is calculated with the unsteady slen-
der body theory. The structural nonlinearities
are located at the missile-to-pylon fittings or at
the all-movable control surfaces rotation due to
freeplay/hysteresis of the actuators or even wear
of the hinge bearings.
The aeroelastic equations are formulated into the
state-space form and are time-domain integrated
with Fortran/Matlab codes developed ad hoc for
treating these kind of piecewise linear nonlinear-
ities. The report details particular features on
the state-space formulation, time integration, and
post-processing of the system response, that are
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shown to be useful not only for pod/missile-type
configurations but also for more complex sys-
tems (aircraft-type) when dealing with concen-
trated nonlinearities.
The test case to show the previous methodol-
ogy and tools is a conventional missile-type con-
figuration. Two possible boundary conditions
(missile hanged on the aircraft or free-flying)
are combined with different location (missile-to-
pylon fittings or control surface rotation) of a
freeplay or hysteresis nonlinearity. In addition,
parametric variations on the nonlinearity charac-
teristics are studied: deadband amplitude, dead-
band center, preload, and initial boundary condi-
tions.

2 Regulations & State of the Art

Different Civil and Military Airworthiness Regu-
lations contain paragraphs regulating procedures
and techniques for predicting and/or preventing
the effects of local structural nonlinearities. As
example of typical requirements, table 1 below
shows the acceptable freeplay limits according to
military specification MIL-A-8870C.

CONTROL
SURFACE

FREEPLAY [deg]

Trailing
Edge

Control
Surface

Extends outboard of 75% main surface span0.13
Extends outboard to between 50% and 75%
main surface span

0.57

Extends outboard to less than 50% main sur-
face span

1.15

Tab
Tab span≥ 35% control surface span 0.57
Tab span< 35% control surface span 1.15

All-movable
Control
Surface

0.034

Table 1 Control Surface Freeplay according to
MIL Specification.

Table 2 summarises the main methodologies
and calculation methods that are currently ap-
plied when dealing with local structural nonlin-
earities.

3 Time-Domain Integration: A Practical
Approach

Different authors have shown that local
piecewise-linearnonlinearities cause chaotic-

type complex responses, and the unique method-
ology that is able to predict chaotic behaviour
is the nonlinear time-domain approach. This
paper follows this methodology, the aeroelastic
equations are written in state-space form and in-
tegrated with Fortran 90 codes developed ad hoc
for treating freeplay/hysteresisnonlinearities.
This section describes the main characteristics of
these codes.
The experience on the missile configuration
of this paper ([4]) and also on other industrial
projects inside Airbus Military ([3]) has led
to incorporate the following features into the
integration codes:

1. Capturing of the corner points of the
freeplay/hysteresis nonlinearity. During
the time-domain integration process, the
aeroelastic equations must switch once the
system crosses any corner of the nonlin-
earity. If the system does not switch at
the exact corner point, integration errors
will acumulate and the solution could di-
verge. This paper uses theIllinois method
(Figure 1b) for locating the exact corner
points. Figure 1a compares theIllinois
method (time step 0.001 [sec]) with clas-
sical Runge-Kutta integrations without de-
tection of switching points. TheIllinois
method converges with time step 0.001
[sec], while Runge-Kutta solutions should
use time-step of 10−5 [sec] to supply the
same accuracy asIllinois.

2. Real-time response detectors. The aeroe-
lastic characterization of the flight enve-
lope of an aircraft could lead to thousands
of time-domain integrations, varying flight
speed, altitude, and parameters of the non-
linearity. It is interesting to include into the
code adetectorthat identifies as soon as
possible the type of motion (damped, LCO,
or flutter), writes out the necessary infor-
mation (response type, frequency, and am-
plitude), and continues inmediately with
the following integration point. This proce-
dure is critical to avoid wasting time inte-
grating damped responses or clearly iden-
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METHOD DEFINITION ADVANTAGES DISADVANTAGES

Time-Domain
Integration of
the Aeroelastic
Equations

The aeroelastic equations are written in the state-space
form (time-domain 1st-order differential equation) and
time-integrated with a suitable integration scheme. The
state-space approach requires to calculate the general-
ized aerodynamic forces in the time-domain, a calcula-
tion that is straightforward in particular problems as in-
compressible 2D or 3D flow ([2] and[10] respectively),
quasi-steady aerodynamics ([12] y[15]) or unsteady slen-
der body theory ([4]). However, other methods like
Double-Lattice[1], used extensively in the industry, need
of mathematical tools (rational approximation methods of
Roger&Abel[6], Burkhart[7], Padé[18], or Karpel[14])
to transfer aerodynamic forces from frequency- to time-
domain.
The time-domain integration is performed by different
methods: Runge-Kutta, Newmark[3], Houbolt’s Finite
Difference Method[17], or Henon’s method[8].

-Capture all types of
reponses: damped,
periodic and chaotic
motion.
-The state-space
approach allows
coupling with Flight
Control Laws[5].

-Time-domain in-
tegration increases
computation times.
-Complexity of the
post-processing.

Time-marching
method / Re-
duced Order
Models ROMs.

Direct coupling between CFD (Computational Fluid Dy-
namics) and CSM (Computational Structural Model)[16].
Reduced Order Model ROMs are used for simplifying the
aerodynamics by reducing the number of aerodynamic
states.

-Capture all types of
reponses: damped,
periodic and chaotic
motion.

-Computational cost.

Quasi-linear
methods: De-
scribing Function
or HBM

System response is assumed to be harmonic, and the local
nonlinear stiffness is substituted by anequivalent linear
stiffnessthat results from retaining the fundamental har-
monic term of the Fourier series of the nonlinearity. This
method is extensively used in the industry. Reference [4]
contains a detailed description of the method and differ-
ent variations of it for improving its capabilities.

-Aerodynamic forces
in the frequency
domain.
-Low computation
time.

-No of high-freq
responses.
-No accuracy in
freeplay-type non-
linerity.
-No accuracy in local
loads prediction.

Stability anal-
ysis in Laplace
domain.

Harmonic balance method combined with classical p-K
solution of the aeroelastic equations[11].

-Coupled with
classical tools (freq-
domain).

-No high-freq re-
sponse.

Numerical
Continuation
Methods.

Qualitative analysis of the response by calculating of the
bifurcation diagrams of the system, previously written in
the state-space form.

-Low computational
cost. -No freeplay-
type nonlin. -No ape-
riodic response.

-Only qualitative re-
sults.

Point Transfor-
mation Method.

A piecewise linear system can be solved by analytical
integration of linear systems with classical tools as the
transition matrix. The state-space equations areswitched
when changing from a linear zone to another within the
piecewise nonlinearity.

-Efficient computa-
tion.

-Only piecewise lin-
ear systems.

Center Manifold
Method.

Apply a linear transformation on the state-space equa-
tions and solve a differential equation with the eigenval-
ues with zero real part[19].

-Low computational
cost.

-No freeplay-type
nonlin.

Normal Form
Theory.

Solve state-space equations with changes of
variables[19].

-Low computational
cost.

-No freeplay-type
nonlin.

Asymptotic Ex-
pansion Methods.

Perfome asymtotic expansion of state-space equations
with thesingular perturbation method[9].

-Low computational
cost.

- U∞ close toU f lutter.
-No freeplay-type
nonlin.

Table 2 Civil and Military Airworthiness Regulations with paragraphs regulating procedures for prevent-
ing the effects of local structural nonlinearities.
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Initial Step
Regula Falsi Step

Illinois Method

Runge Kutta (Time Step = 0.001 [sec])
FHSWB (Time Step = 0.001 [sec])

Runge Kutta (Time Step = 0.001 [sec])
FHSWB (Time Step = 0.001 [sec])

Runge Kutta (Time Step = 0.001 [sec])
FHSWB (Time Step = 0.001 [sec])

Runge Kutta (Time Step = 0.001 [sec])
FHSWB (Time Step = 0.001 [sec])

Fig. 1 (a) Comparison of the code used in this paper (time step 0.001[sec]) with classical Runge-Kutta
method with different time-steps (from 0.001 to 1.E-6 [sec]). (b) Illinois method for capturing the exact
corner point of the freeplay/hysteresis nonlinearity.

tified LCOs. The following conditions are
used as motiondetectors([4]):

• Two damped motiondetectors: (1)
Square mean of the non-dimensional
generalized velocities (∑ (dξ̂i/dt̂ )2 <

10−4) (2) Distance of the system to
each corner point of the nonlinear-
ity (< 10−4). If any of the previ-
ous conditions repeats consecutively
50 times, the code considers damped
motion, stops the integration and
passes to the next integration point.

• One LCO motiondetector: The code
saves packages of 50 consecutive
max/min of the nonlinear DOF in
vectors asLCOj(1 : 50) and com-
pares these packages throughout the
following equation: LCODetector=

∑i=50
i=1

√

[LCOj(i)−LCOj+1(i)]
2. If the

variable LCODetector is less than
10−10, then it means that the two
packages are identical and is preclud-
ing the appearance of an harmonic
LCO. The code considers that an
LCO has been reached if 4 consecu-
tive identical packages occur.

• Three flutter detectors: (1) Abso-
lute value of a defined-by-user output

reachs a maximum value (2) Square
mean of the non-dimensional gen-
eralized coordinates (∑ξ̂2

i > 10+6) (3)
Square mean of the non-dimensional
generalized velocities (∑ (dξ̂i/dt̂ )2 >

10+6). Once one of the three condi-
tions is reached, the code stops and
goes to the next integration point.

3. Unique Modal BaseIOB . A system with
a freeplay/hysteresis nonlinearity changes
the stiffness as passing through the dif-
ferent zones of the nonlinearity. This
stiffness variation makes the system to
change of normal modes (modal base)
as the system crosses the corners of the
freeplay/hysteresis nonlinearity. Choosing
different modal bases at the two sides of
a corner point could lead to discontinu-
ities due to the inhability to transfer the
boundary condition from one to the other
modal base. In a modal approach, the only
way of solving this problem is by using
an unique modal base. For this particular
problem ([4]), it is used the IOB (In/Out
Base), that is composed by the modal base
of the nominal system augmented with the
rigid body mode obtained after dropping
down to zero the stiffness of the nonlinear
DoF. This modal base has been also used in
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other projects as the Airbus Military Aerial
Refuelling Boom System (Figure 2), ob-
taining satisfactory results.

Fig. 2 Boom System in AIRBUS Military A310-
Demo platform

4. Modules for post-processing the system re-
sponse: PSD analysis, phase-plane plots,
and bifurcation diagrams.

5. Modules for characterization of the chaotic
response: Poincaré maps for detecting
chaos and a magnitude that is introduced,
the Dispersal Rate DIRA, that quantifies
the chaos intensity.

4 Application Case: Missile/Pylon Configu-
ration

The previous methodology is applied to the
missile-type configuration shown in Figure 3.
Two cases are analyzed:lateral aeroelastic sta-
bility of a missile installed into a flying plat-
form (missile/pylon in Figure 3a) andlongitu-
dinal/lateral aeroelastic stability of a free-flying
missile. The missile geometry is sketched in Fig-
ure 3b and the freeplay/hysteresis nonlinearity is
shown in Figure 3c.

4.1 Aeroelastic Model

4.1.1 Generalities

The time-domain aeroelastic equations are for-
mulated by coupling the following Structural,
Aerodynamic and Flight Control Laws (FCLs)
models:

• Structural Model: The missile is composed
of body and control surface(s) as main
structural components. The body usually
has a largefineness ratio(ratio of the body
length to its maximum width) and con-
trol surfaces are lowaspect ratiowings.
The large fineness ratio makes the body
mainly flexible along the longitudinal axis
and an appropiate structural model is a
beam-like structure. On the other hand,
the low-aspect-ratio control surface behave
as a rigid plate. The mass properties are
defined via the followingmass-per-unit-
length functions: for the body,mb(x) =
25.0+50.0 · x

L [Kg/m]; for the control sur-
faces,mw(x) = 25· ( x

L −
x0
L ) [Kg/m]. L is

the body length andx0 is the x-coordinate
of the control surfaces leading edge at the
root station (see Figure 3b).

• Aerodynamic Model: Unsteady Slender
Body Theory formulated in a body-fixed
curvilinear reference system.

• Flight Control Laws (FCLs): For these
analyses, classical flutter is assumed, i.e.,
no FCLs and the control surface response
is goberned by the actuators stiffness.

4.1.2 Unsteady Aerodynamics

The unsteady generalized forces are calculated
using theSlender Body Theoryformulated in the
body reference system (see Figure 4). Ifw(x; t)
is the body center line deformation, the velocity
potential (assuming inviscid, adiabatic, and irro-
tational flow) is written as:

Ω(x,y,z; t) = U∞

[

x+z
∂w
∂t

(x; t)

]

+ Φ(x,y,z; t) =

= U∞

[

x+z
∂w
∂t

(x; t)

]

+ φ0(x,y,z)+ φ(x,y,z; t)

where φ0(x,y,z) is the zero-deformation trans-
verse velocity potential (thickness effect) and
φ(x,y,z, t) is the unsteady velocity potential as-
sociated tow(x; t).
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(a) (b) (c)

Fig. 3 (a) DOFs of the pod/missile-type configuration (left figure)and definition of the hysteresis non-
linearity (right figure) (b) Missile configuration analyzedinto this paper (upper figure) compared with
the standard AMRAAM missile (botton figure) (c) Freeplay/Hysteresis Nonlinearity

Fig. 4 Body-fixed reference system to solve the
Slender Body Unsteady Aerodynamics.

Once assumed axial simmetry, the potential
φ0(x,y,z) is directly calculated by classical Slen-
der Body Theory:

φ0(x, r; t) = U∞R(x)
dR
dx

(x) ln
r
L

+g(x,M∞)

beingR(x) the body radius,r the radial coordi-
nate, andL the body length used as reference
magnitude. The potentialφ(x, r,θ; t) is calculated
by conformal transformationsthat depends on
the vertical motionw(x; t) of each transverse sec-

tion. The deformation is written as:

w(x; t) =
m

∑
i=1

ψi(x)ξi(t) =

=
m

∑
i=1

ψi,b(x)ξi(t)+
m

∑
i=1

ψi,wb(x)ξi(t) = W jB+WrB

where ψi,b(x) represents thei-mode contribu-
tion of the body-wing joined motion (WjB ),
while ψi,wb(x) represents thei-mode contribu-
tion of the wing deformation relative to the body
(WrB ). Each contribution uses a differentcon-
formal transformationthat are detailed in [4]. Fi-
nally, thei-mode Generalized Aerodynamic Force
Qi is written as a linear combination of the Gen-
eralized Coordinatesξi ([4]):

Qi

q∞L2 =
m

∑
i=1

[

qξiξ j
ξ̂ j +qξi ξ̇ j

1

Û∞

dξ̂ j

dt̂
+qξi ξ̈ j

1

Û2
∞

d2ξ̂ j

dt̂2

]

4.2 Missile Configurations and Location of
the Nonlinearity.

Figure 5 summarises the missile configurations
that have been analyzed.

The missile/pylon configuration (S01) is con-
sidered rigid (RIG ) and the nonlinearity freeplay
or hysteresis is located in three possible loca-
tions: lateral motion of missile/pylon (LAT ), yaw

6



NONLINEAR TIME-DOMAIN STRUCTURE/AERODYNAMICS COUPLING I N SYSTEMS WITH
CONCENTRATED STRUCTURAL NONLINEARITIES

(FDA) Freeplay Deadband Amplitude
(FDC) Freeplay Deadband Center
(FDP) Freeplay Deadband Preload

(FBC) Freeplay Boundary Condition

(HDA) Hysteresis Deadband Amplitude
(HDC) Hysteresis Deadband Center
(HDP) Hysteresis Deadband Preload

(HBC) Hysteresis Boundary Condition
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Fig. 5 Summary of missile configurations analyzed into this paper.

motion of missile/pylon (YAW ), and control sur-
face rotation (ROT).

The free-flight missile configuration (S02)
can be rigid (RIG ) or flexible (FLE ) and the
freeplay or hysteresis nonlinearity is located at
the control surface rotation (ROT).

Besides this, and for each configuration, para-
metric variations are performed on the main char-
acteristics of the nonlinearity: deadband am-
plitude (DA), deadband center (DC), deadband
preload (DP), and initial boundary conditions
(BC).

5 Results

5.1 Introduction

The following sections summarise the linear and
nonlinear flutter analyses performed on the mis-
sile configuration. All calculations assume initial
steady flight at sea level.

5.2 Linear Flutter

Before characterizing the nonlinear aeroelastic
behaviour, it is necessary to analyze thelinear
flutter of the nominal stiffness and zero-stiffness
configurations for understanding the main flutter
mechanisms. The lowest speed flutter mecha-
nism is a coupling of the YAW mode with the
control surface rotation (ROT). Table 3 com-
pare flutter speeds of the nominal system cal-
culated with the codes of this paper ([4]) and
MSC.NASTRAN SOL145. The Doublet-Lattice
(MSC.NASTRAN) is less appropiate for calcu-
lating the interference lifting surfaces/body than
the Unsteady Slender Body Theory, which im-
poses the zero-flow bondary condition at the ex-
act body surface. That is the reason why in-
cluding the body aerodynamics or not (AERO
OFF) introduces important differences. This ef-
fect is also relevant in case of mild flutter. Ta-
ble 4 details the flutter speed for zero stiffness
at the relevant degrees of freedom. The zero-
stiffness situation should correpond to the system
while passing through the deadband zone of the
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freeplay/hysteresis nonlinearity.

CONF
RIGid
FLExible

BODY
AERO

Flutter Speed (KTAS)
DIF[%]

NASTRAN FHSWB

S01 RIG
ON 486. 496. 2.06
OFF 484. 470. 2.98

S02
RIG

ON 562. 616. 8.77
OFF 572. 596. 4.03

FLE
ON 442. 241. 83.40 (*)
OFF 196. 262. 25.19 (*)

(*) Not relevant: Mild flutter mechanism.

Table 3 MSC.NASTRAN vs [4]: Linear Flutter
Speed (KTAS) of the NOMINAL system.

CONF
RIGid

FLExible
Flutter Speed (KTAS)

nominal KROT = 0 KLAT = 0 KYAW = 0
S01 RIG 496. 331. 489. 381.

S02
RIG 616. 0. N/A N/A
FLE 241. 0. N/A N/A

Table 4 MSC.NASTRAN vs [4]: Linear Flutter
Speed (KTAS) of the K=0 system.

5.3 Nonlinear Aeroelastic Response

5.3.1 Missile/Pylon Configuration (S01)

The missile is assumed to be rigid (RIG) and
freeplay or hysteresis nonlinearities are located
at the three possible degrees of freedom: missile
control surface rotation (ROT), pod/pylon yaw
(YAW), and pod/pylon lateral motion (LAT). In
addition, the main parameters of the nonlinearity
are studied: deadband amplitude (FDA/HDA),
nonlinearity center (FDC/HDC), and preload
(FDP/HDP).
The following conclusions have been obtained:
(1) Nonlinearities lead to LCO/Chaos below lin-
ear flutter speed (2)Preload tends to increase
theULCO (Flight Speed of LCO appearance) (3)
Nonlinearities in a mode that is not involved into
the flutter mechanism (LAT mode) do not mod-
ify the linear flutter behaviour (4) Nonlinearities
in the YAW mode increase the linear flutter speed
(5) Hysteresis nonlinearity has more tendency to
cause chaotic response than freeplay nonlinear-
ity. The chaotic-type response will be analyze in
the following section.
From the previous results, one particular case for

the hysteresis nonlinearity has been selected and
is shown in Figure 6.
Figure 6(a) represents the number of characteris-
tics frequencies of the system response as a func-
tion of the KTAS Flight Speed (x-axis) and hys-
teresis deadband amplitude (y-axis) for an hys-
teresis nonlinearity located at the control surface
rotation. Figure 6(b) shows a bifurcation diagram
with chaotic motion (random number of points)
around 250-275 KTAS.

5.3.2 Free-Flight Missile Configuration (S02)

The missile body can be rigid (RIG) or flex-
ible (FLE), and freeplay/hysteresis nonlineari-
ties are located at missile control surface rota-
tion (ROT). In addition, the main parameters of
the nonlinearity are studied: deadband amplitude
(FDA/HDA), nonlinearity center (FDC/HDC),
and preload (FDP/HDP).
Two conclusions are considered relevant: (1) For
the rigid body (RIG), thePreload increases the
Flight Speed (KTAS) of LCO appearance and (2)
For the flexible body (FLE), a low-speedmild
flutter mechanism appears (around 230 KTAS).
This mild flutter is not modified by the presence
of structural nonlinearities.

6 Chaotic Response: DIRA Parameter

The complex behaviour of the chaotic response
can be characterized by different methods ([4]).
PSD analyses, bifurcation diagrams, Poincaré
maps, Lyapunov exponents, or 2D phase planes
are the most commonly used tools in the liter-
ature. This paper uses the Poincaré map for a
qualitativedetection of chaos response, and in-
troduce a novel parameter (Dispersal RateDIRA)
for a quantitativeanalysis of the chaos.
Figure 7 shows two Poincaré maps calculated
for two different flight speeds. Each map shows
pairs(ξ̂3,dξ̂3/dt̂) at a defined timet = t∗1, where
ξ̂3 is the normal mode associated to the non-
linearity (control surface rotation). Each pair

1Time t = t∗ should be large enough for having a stabi-
lized chaos. Finally, the results do not depend on selected
time t∗.
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D D D D D D D D D D D D D D D D D D D D D D D 17 29 93 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

D D D D D D D D D D D D D D D D D D D D D D 31 27 38 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

D D D D D D D D D D D D D D D D D D D D D 16 9 29 16 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

D D D D D D D D D D D D D D D D D D D D D 14 26 56 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

D D D D D D D D D D D D D D D D D D D D 8 23 23 18 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

D D D D D D D D D D D D D D D D D D D 12 12 13 40 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

D D D D D D D D D D D D D D D D D D D 10 22 14 53 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

D D D D D D D D D D D D D D D D D D D 8 19 25 38 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

D D D D D D D D D D D D D D D D D D 14 12 18 24 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
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Fig. 6 (a) Analysis of the missile control surface rotation response (case RIG.S01.ROT.HDA): number
of characteristic frequencies as a function of flight speed (KTAS) and hysteresis deadband amplitude (b)
Bifurcation diagram (representation of max/min) for HDA=0.006.

(ξ̂3(t∗),dξ̂3/dt̂(t∗)) is obtained by solving the
state-space equations with a initial condition
close to a nominal one (difference less than 1%).
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Fig. 7 Poincaré Map (Generalized Speed vs Gen-
eralized Coordinate) with theℜ2 partition de-
fined for calculating the DIRA parameter.

Based on these Poincaré maps, the following
DIRA parameter is introduced for quantifying the
chaos:

DIRA(I ,P) =
N−N0

N
·100

whereI is anℜ2 interval that circumscribes the

Poincaré map,P is a partition of the intervalI , N
is the number ofℜ2 intervals of the partitionP,
andN0 is the number of intervals of the partition
P that do not contain a pair(ξ̂3(t∗),dξ̂3/dt̂(t∗)).

Figure 8(a) shows Poincaré maps for different
flight speeds, while Figure 8(b) shows theDIRA
parameter of these Poincaré maps as a function of
the flight speed (KTAS). TheDIRAparameter al-
lows to determine the flight speed range with high
level of chaos, giving so a better understanding of
the chaotic motion of the system.

7 Conclusions

This paper analyses the effect of
freeplay/hysteresis local structural nonlin-
earities on the aeroelastic behaviour of a missile
configuration. The first part is devoted to review
the Airworthiness Regulations and methods/tools
that are currently used for preventing and/or pre-
dicting the effect of structural nonlinearities from
the aeroelastic standpoint. Among all methods,
this paper uses thetime-domain integration
of the aeroelastic equations written into the
state-space form.
The time-domain integration needs of specific
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Fig. 8 Left figure: Poincaré maps for different flight speeds. Rightfigure: DIRA parameter vs flight speed.

tools that are detailed into the second part of
the paper. The freeplay/hysteresis nonlinearities
are piecewise linear functions that modify the
stiffness properties as the system switches into
the different zones. This means that the system
changes its normal modes but, for avoiding
discontinuities at the corner points, an unique
normal modes base is needed. This paper uses
the IOB modal base, that is built by completing
the nominal normal modes base (nominal stiff-
ness) with the rigid body mode that appears when
the stiffness of the nonlinear DOF is dropped to
zero (system inside the freeplay deadband zone).
In addition, it is necessary acorner capturing
modulefor switching the state-space equations
at the exact corner point. This paper uses the
illinois method, a variation of the well-known
regula-falsi method.
Additional modules are useful when dealing
with time-domain integration: real-time response
detectors, PSD analyses, and chaotic motion
detectors. This paper introduces theDispersal
Rate DIRAparameter for quantifying the chaos
intensity.

All this methodology and tools have been
applied to a missile-type configuration with
a freeplay/hysteresis nonlinearity in different
DoFs (lateral, yaw, and control surface rotation).
Results show that nonlinearities clearly modify
the classical aeroelastic behaviour, changing the
linear flutter speed and introducing LCOs and
chaotic motion below the nonlinear flutter speed.
The missile configuration has served as a test
case for validating the methodology, procedures,
and tools detailed into the paper. UPM and
Airbus Military are working on extending the
results to aircraft-type complex configurations
with nonlinearities at control surfaces.
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