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Abstract  
 Investigated are local flows in the laminar 

boundary layers in the vicinity of heating 

elements. On the basis of asymptotical analysis 

mathematical models are formulated and 

similarity parameters are found. Determined 

are flow parameters providing flow control 

(separation, transition). Presented are results of 

numerical and analytical analysis.  

Another method of the flow control is associated 

with the technology of new materials 

development. For example, porous metals allow 

use of passive control methods to influence 

boundary layer separation or laminar-turbulent 

transition 

1  Introduction  
New materials development particularly porous 

metals technology lead to the opportunity to 

create new passive methods of the boundary 

layer flow control. It may be used to delay 

boundary layer separation as well as to delay 

laminar-turbulent transition. 

     Porous metal structure usually is associated 

with the surface flow suction (injection) due to 

pressure difference between external and 

internal surfaces of porous metal plate. In many 

cases it may be supposed that distributed mass 

transfer will exist which will obey Darsi law (or 

linear dependence between vertical velocity 

distribution on the wall and pressure change 

distribution). 

  From mathematical point of view this 

condition allows to reconsider many early 

obtained classical results describing self-

induced boundary layer separation for the case 

of passive control. This model includes 

boundary layer equations with an additional 

relation determining induced pressure 

distribution. 

Corresponding mathematical problem was 

formulated. It was found that for unsteady self-

induced boundary layer separation it is needed 

to take into account time delay in Darcy law. 

Presented are numerical results describing self-

induced laminar boundary layer separation in 

the flow near porous wall. Obtained are pressure 

coefficient and longitudinal length of 

preseparated region dependencies as a functions 

of porosity coefficient. It was found that in 

limiting cases we will get classical results for 

impermeable wall (porosity coefficient tends to 

zero) or results corresponding to the four deck 

disturbed flow structure (porosity coefficient 

tends to infinity).  

    It is important that new boundary condition 

on the wall describing relation between pressure 

change and vertical velocity is linear and 

doesn’t change uniformity of the problem. So it 

is possible to investigate as well linear stability 

problems incorporating early obtained results.  

  Presented are results of stability analysis 

describing longwave disturbances development. 

These results may be useful to provide passive 

boundary layer flow control along with the 

buffet onset control.   

 

2  Problem formulation  
Porous wall structure supposes that due to 

pressure difference on the external and internal 

sides of porous surface may lead to the 

distributed suction (in the regions of relatively 

high pressure) or distributed injection. In many 

cases it may be supposed that mass transfer 
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obeys the Darsy law (or linear dependence 

between vertical velocity on the wall and 

disturbed pressure distribution).  

      This boundary condition allow in fact to 

reconsider early obtained results [1-3] 

describing self-induced boundary layer 

separation for the case of passive flow control. 

2.1 Equations  

Using results obtained in [1]  mathematical 

problem for flows near porous walls may be 

formulated as follows 
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This  problem differs from problems describing 

disturbed flow near impermeable wall due to 

condition for the vertical velocity on the wall 

[1-3].In fact such conditions are well known in 

fluid mechanics. 

For  small values of self-induced pressure next 

form of solution may be considered  
 

1uyu  , 1vv  ,  1pp      

 

This form of solution gives next form of 

equations for the first approximation 

2
1

2
1

1
1

y

u

x

p
v

x

u
y















 

011 









y

v

x

u

 
 

As usual solution may be presented in the 

normal mode approximation 
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After some transformations we will get Airy 

equation 
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Introducing new variables 
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Eventually we will get next relation associating 

increment of growth and wall velocity 

parameter    
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Next two limits can be considered 

The first one corresponding small porosity 
0  
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Then since  3  
we will get 
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The same result as was obtained in classical 

case (impermeable plate) [1] 

In the second limit-corresponding to large 

porosity   

 

1 ,     

 

So, large  values correspond to small length of 

disturbed region. 

It is important that new boundary condition on 

the wall is linear in the approximation 

considered so mathematical problem for linear 

regimes may be considered as a uniform one. 

     To investigate stability problems is needed to 

consider unsteady mass transfer regimes. 

 

2.2 Numerical results 
In general case mathematical problem (1) 

should be solved numerically. Numerical 

method used was described in [4]. Obtained are 

induced pressure gradient (marked by red color) 

and skin friction (marked by green color) as 

functions of induced pressure. 

Such form results presentation was adopted 

due to monotonic character of pressure 

distribution upstream from the zero skin 

friction. Results presented on the next figures 

corresponds to the next values of parameter  

250. ,0.5, 0.75. 
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Fig. 1. Induced pressure gradient and skin friction 

distributions as functions of induced pressure for 

250.  
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Fig. 2. Induced pressure gradient and skin friction 

distributions as functions of induced pressure for 

500.  
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Fig. 3. Induced pressure gradient and skin friction 

distributions as functions of induced pressure for 

750.  

All results presented show that growth of 

porosity coefficient leads to the growth of the 

induced pressure gradient. At the same time 

induced pressure at the point of zero skin 

friction is approximately the same (near unity). 

To analyze it in the next part of the paper 

limiting case is considered corresponding to the 

large porosity coefficient values. 

  

2.3 Limiting regime 1   

For large porosity coefficients 1  it may be 

supposed that interaction region will have more 

complex –four deck structure. The main change 

of the total displacement thickness will form in 

the region with the nonlinear velocity changes 

an where viscosity influence will be negligible 

in the first approximation. Near the wall then 

relatively thin region will be located where 

viscosity forces will be important. Such 

disturbed flow structure change is associated 

with the diminishing of the longitudinal length 

of disturbed flow. Original problem analysis 

both for linear and nonlinear regimes will lead 

to the next estimate for longitudinal length of 

the interaction region 
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Solution in the region of nonlinear inviscid 

disturbances may be written as follows 
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Comparison of the second and third terms in the 

last equation lead to the estimate for the 

disturbed flow length 
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Interaction condition gives the estimate for the 

displacement thickness change 
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Supposing that the induced pressure value is 

limited the next equation may be deduced 
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This equation solution has the next form 
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In the nearwall region solution may be written 

in the next form 
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Then equation for the longitudinal impulse has 

the form 
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Taking into account the induced pressure 

distribution we can arrive at 
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This equation analysis shows that thickness of 

viscous region can be estimated as follows 
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And longitudinal momentum equation has the 

next form 
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Substitution of the vertical velocity on the wall 

dependence gives eventually the next equation  
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Solution corresponding to the boundary 

conditions on the wall and on large distances 

upstream has the next form 
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Then skin friction distribution may be written as 

follows 
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If the the beginning of the Cartesian coordinate 

system corresponds to the zero skin friction then  

1c and correspondingly disturbed pressure 

pressure value at this point 

 
1 )xexp(cp   

 

This analytical result confirms numerical data 

obtained for finite porosity coefficient   

values. 

3 Local Surface Heating  
Among different methods of boundary layer 

flow control one of the mostly investigated now 

is a method associated with energy release due 

electrical discharge, surface heating or cooling.  

The aim of this paper is the analysis of 

possible application of the local surface heating 

to determine response of the boundary layer 

flow and to find optimal heating elements 

parameters.       

It is supposed that on the surface of the body 

are located heated parts, having temperatures 

different from the gas temperature in ambient 

boundary layer flow. It is supposed that 

temperature difference may change with time. 

Practically this method is easy to fulfill using 

electrically conducting strips. Example of such 

method application is described for example in 

[5]. 

The most important factor due to energy 

release (surface heating) is density change in the 

region influenced by the heating. This region 

structure is controlled by the convection and 

thermal conductivity processes. At the same 

time density change (diminishing due to 

temperature rise) will change boundary layer 

thickness. Situation is similar to the local flow 

nearby local surface distortion, but in our case 

effective surface distortion is created due to 

temperature (density) change. The difference is 

that the distortion shape is not known 

beforehand but is formed due to energy release 

in the boundary layer and due to the region with 

smaller density formation. Previous analysis of 

the disturbed flow nearby local surface 

distortions allowed to develop corresponding 

mathematical problems and to find distortions 

parameters influencing boundary layer flow [2].  
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In the paper corresponding asymptotical 

analysis was applied to analyze energy release 

influence on the separation of the boundary 

layer flow along with the influence on the 

boundary layer flow instability.   

Investigated are local flows in the laminar 

boundary layer nearby heating elements located 

on the surface and flows near porous surface. 

On the basis of asymptotic analysis 

mathematical models are derived and similarity 

parameters are found. Described are unsteady 

local heating regimes providing boundary layer 

separation and laminar-turbulent transition 

control. Presented are numerical and analytical 

analysis results. 

      At present time intensive investigations are 

conducted associated with new methods of 

boundary layer control due to energy release. 

The energy source may be due to the electrical 

discharge, surface heating or cooling. Along 

these methods mechanical devices are analyzed, 

so called MEMS, or methods associated with 

suction or injection. Application of such 

methods allows suppressing boundary layer 

separation, to change boundary layer transition 

position along with the influence on the 

turbulent boundary layer parameters.     

      This paper is aimed at analysis of possible 

regimes of local surface heating to determine 

arising disturbances in the boundary layers. It is 

supposed as well to formulate corresponding 

mathematical problems and to determine 

similarity parameters. Analogous analysis is 

done for disturbed flows near porous surface. 

      

     It is supposed that on the streamlined surface 

are located parts having temperature which 

differs from the temperature of an ambient gas. 

It is supposed as well that this temperature 

depends on time. Practically is easy to fulfill 

such method of control having conducted wires 

or strips and using electrical current for local 

heating [5]. 

      Let us consider physical aspects of such 

flows. The most important factor associated 

with the surface heating is gas density change in 

the region where energy release influence is 

significant.  Dimensions of this region are 

determined by convection and heat conduction 

processes. Temperature increase will lead to the 

density decrease which will change boundary 

layer thickness. This change may induce in the 

external inviscid flow corresponding pressure 

disturbances. Situation is very similar to the 

flow in the boundary layer with the surface 

distortions. The main difference is that in the 

considered case geometry of surface distortions 

are not known beforehand but is determined by 

energy release and by corresponding decreased 

density region formation. Flow analysis in the 

boundary layer disturbed by an abrupt change of 

surface temperature and catalytic properties 

distribution is presented in [7-9].  

     For the subsequent analysis we will use the 

following papers [8- 10] results where local 

surface distortions located on the bottom of the 

surface were analyzed. It is supposed that the 

Reynolds number is large but doesn't exceed the 

critical value corresponding to the laminar-

turbulent transition. Subsequent analysis is 

based on the derivation of estimates of possible 

physical mechanisms and similarity parameters 

determination. 

3.1 Problem formulation 
 

Considered is the supersonic or subsonic 

viscous gas flow near a flat semi-infinite plate. 

It is supposed that the Reynolds number is large 

but is subcritical corresponding to the laminar 

flow  



2 /luRe , where 

    ,u  ,  - are density, longitudinal velocity 

and dynamical viscosity coefficient in 

undisturbed flow over the region where heated 

part of plate is located, l - is a distance from a 

leading edge to a zone of energy release. The 

next nondimensional values are choosed for the 

Cartesian coordinates, velocity vector 

components, density, pressure, dynamical 

viscosity coefficient 

 


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         In general case it is supposed that 

temperature change in the local region is 

finite )(O~T~T 1 , and the region of 

increased temperature is characterized by the 

next longitudinal size )(Oa 1 , next transversal 
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size )(Ob 1 and characteristic time of 

temperature change )(O  . 

       Undisturbed flow is 2-D and steady but 

disturbed flow is supposed to be unsteady and 

3-D. Preliminary analysis is conducted for 2-D 

flow and then results are generalized for 3-D 

flows. 

         Following to the method of matched 

asymptotic expansions [11], in the beginning 

let's consider the region having identical sizes 

comparable with the body 

length )(O~z~y~x 1 . For large Reynolds 

number the flow in this region is described by 

the Euler equations. For the flat plat having zero 

angle of attack and zero thickness these 

equations solution is a solution describing 

undisturbed flow. To fulfill no - slip conditions 

it is needed to introduce boundary layer - region 

located nearby the surface and having the next 

sizes )(O~y),(O~z~x 1 . 

     Local surface heating may lead to the 

effective distortion formation, thickness of 

which may be evaluated using longitudinal 

impulse equation.        

       Surface temperature change will cause 

corresponding gas density change in the layer 

located nearby the surface )(O~~ 1 . If the 

Prandtl number is finite )(O~Pr 1  in general 

case it may be deduced that thickness of local 

viscous layer and thickness of temperature 

conducting layer are comparable. In the near 

wall layer longitudinal velocity is proportional 

to the distance from the 

wall /y , )/y(O~u  . If values of convective 

and diffusion terms in the longitudinal 

momentum equation have the same order then 

the next estimate can be obtained for the 

thickness of local layer as a function of its 

longitudinal size a  

)(O)a(O~y /  31                                   

Subsequent analysis depends on the longitudinal 

size of heated part of the surface. At least three 

different regimes described by different 

mathematical models may be formulated. 

        The first one corresponds to the 

longitudinal size smaller than the boundary 

layer thickness. If sizes of the disturbed region 

have the same orders  

 
2331 // ~a   ),a(O~a       

 

we will get the disturbed region where the flow 

is described by Navier-Stokes equations with 

boundary conditions taking into account rarefied 

gas effects (slip conditions). Characteristic time 

in this region has the next order
1 ~ .  

        For relatively larger sizes of the heated part 

 1

232 Re   Rea /  the disturbed flow will be 

described by so called equations for 

compensation regime [9]. This regime will exist 

for length comparable with the boundary layer 

thickness as well as for larger sizes but lesser 

than the length scale comparable with the so 

called free interaction scale. Corresponding to 

this regime 
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Corresponding mathematical problem may be 

written as follows  
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3.2 Numerical results 

This problem was numerically solved. 

Numerical results were obtained  for the next 

surface temperature distribution 

1150
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 On the fig.4 induced pressure distribution is 

presented )t,x(p bb   for large time values. 

 

 

 

                                                          

 

Fig.4. Induced pressure distribution 

 

 

 

 

                                           

4. Conclusions 
 

Presented are numerical and analytical results 

describing viscous-inviscid interaction 

processes in laminar flows near porous walls. 

This method of passive boundary layer flow 

control looks promising in some cases like 

separation prevention or laminat-turmulent 

transition delay. 

     This method may be useful as well to prevent 

buffet onset.  

New interesting features were discovered. So it 

was shown that porous wall (passive control 

tool) doesn’t change seriously pressure value 

near the point of separation, but changes 

pressure gradient in longitudinal direction. It 

means that length of disturbed flow region 

diminishes if porosity coefficient grows. For 

subsequent analysis of the flow stability 

unsteady Darsy law should be taken into 

account. 
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