
CONCEPTUAL DESIGN OF A HARD LANDING INDICATION
SYSTEM USING A FLIGHT PARAMETER SENSOR

SIMULATION MODEL

P. Sartor*, R.K. Schmidt**, W. Becker*, K. Worden*, D.A. Bond** , W.J. Staszewski*
*University of Sheffield, **Messier-Dowty

Keywords: landing gear, hard landing, Bayesian sensitivity study

Abstract

A Flight Parameter Sensor Simulation (FPSS)
model has been developed to assess the conser-
vatism of the landing gear loads calculated using
a hard landing analysis process. Conservatism
exists due to factors of safety that are added to
the hard landing analysis process to account for
uncertainty in the measurement of certain flight
parameters. The FPSS model consists of: (1) an
aircraft and landing gear dynamic model to deter-
mine the ‘actual’ landing gear loads during a hard
landing; (2) an aircraft sensor and data acquisi-
tion model to represent the aircraft sensors and
flight data recorder (FDR) systems to investigate
the effect of signal processing on the flight pa-
rameters; (3) an automated hard landing analysis
process, representative of that used by airframe
and equipment manufacturers, to determine the
‘simulated’ landing gear loads. Using a tech-
nique of Bayesian sensitivity analysis, a number
of flight parameters are varied in the FPSS model
to gain an understanding of the sensitivity of
the difference between ‘actual’ and ‘simulated’
loads (measured as Mean-Square Error (MSE))
to the individual flight parameters in symmetric,
two-point landings. This study shows that the
tyre-runway friction coefficient and aircraft ver-
tical descent velocity (Vz) contributed the most to
the spin-up and spring-back drag axle response
load MSE and bending moment MSE. It was also
found that aircraft vertical descent velocity, mass,
centre of gravity position and tyre type had sig-

nificant influences on the maximum vertical re-
action vertical axle response load MSE. Due to
the modelling technique, it was also found that
vertical acceleration was as significant as Vz in
reducing the MSE. While ground speed and air-
craft pitch did not change considerably from the
‘actual’ to the ‘simulated’ landings, their inter-
actions with tyre-runway friction coefficient and
aircraft vertical descent velocity contributed to
the MSE in all cases. Of equal importance, it was
also shown that within the range studied, shock
absorber servicing state and tyre pressure do not
contribute significantly to the MSE and learning
the true value of these flight parameters would
not reduce the MSE.

1 Introduction

A static structural overload occurs when land-
ing gear exceeds its material yield point in any
location. A common aircraft operational occur-
rence which may result in a landing gear over-
load is a hard landing. A hard landing is de-
fined by the regulatory authorities in EASA Cer-
tification Specification (CS) 25 and Federal Avi-
ation Regulations (FAR) 25 as a landing with a
limit vertical descent velocity exceeding 10 ft/s
[1, 2]. However, the effect of the vertical de-
scent velocity must be combined with other crit-
ical enveloping flight parameters, including: air-
craft gross weight, aircraft centre of gravity loca-
tion, aircraft orientation (pitch, roll, yaw), rates
of motion (pitch rate, roll rate, yaw rate), ground
speed, vertical descent velocity, longitudinal, lat-
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eral and vertical acceleration, shock absorber ser-
vicing state and the tyre-runway friction coeffi-
cient, to accurately assess the loads in the landing
gear.

If the flight crew suspect that there has been
a hard landing, the following analysis process is
performed: (i) the flight crew makes an occur-
rence declaration; (ii) visual and Non-Destructive
Testing (NDT) inspections are performed on the
landing gear by the operator’s maintenance crew
to assess for damage to the landing gear and
airframe structure; (iii) aircraft flight parameter
data, such as aircraft acceleration, ground speed
and aircraft orientation (pitch, roll), are down-
loaded from the Flight Data Recorder (FDR) and
reported to the aircraft and landing gear manu-
facturers, who then calculate the loads during the
occurrence at spin-up, spring-back and maximum
vertical reaction. Only after the data has been an-
alyzed can it be determined if there has been an
overload.

A degree of conservatism exists in the current
hard landing analysis process to ensure safety
of aircraft operation. This conservatism evolves
from factors of safety or conservative assump-
tions included within the analysis process to ac-
count for: (i) uncertainty in measured aircraft
flight parameters and (ii) unavailable aircraft
flight parameters. For example, vertical accel-
eration is typically sampled at 8 Hz. A land-
ing however, takes less than 125 ms. Thus, a
possibility exists that the peak vertical acceler-
ation recorded on the FDR is less than the ac-
tual maximum value. To date, the effect of such
assumptions on the degree of conservatism in a
hard landing analysis process has not been quan-
tified [3].

A Flight Parameter Sensor Simulation
(FPSS) model has been developed to assess the
conservatism in a hard landing analysis process
[4]. Using a technique of Bayesian sensitivity
analysis, a number of flight parameters are varied
in the FPSS model to gain an understanding
of how the model responds to variations in the
inputs, to identify the most influential input pa-
rameters and to identify which input parameters
have little or no effect on the conservatism [5]. In

this technique, an emulator of the model is cre-
ated by fitting a Gaussian process to the response
surface using data from multiple runs of the
model as dictated by a Design-of-Experiments
(DOE) so that the output of the model can be
predicted for any point in the input space without
having to run the simulation. Each input param-
eter is represented as a probability distribution
and sensitivity analysis data is inferred at a
reduced computational cost and with little loss
of accuracy. Computational savings can be up
to two orders of magnitude compared to using
a Monte Carlo method [6, 7]. Accuracy of the
emulator model is dependent on the model and
the number of model runs, and can be quantified
through cross-validation with the model runs.

This paper first describes the loads of inter-
est when determining the serviceability of the
Main Landing Gear (MLG) structure. The FPSS
model is then explained. The theoretical back-
ground of the Bayesian sensitivity analysis is
then presented, including a discussion on Gaus-
sian processes which are used to develop the
emulator, and the main effects and sensitivity
indices inferred from the resulting distribution-
over-functions. Finally, the results of the sensi-
tivity analysis for symmetric landings using the
FPSS model are shown.

2 Landing Gear Loads

Figure 1 shows a typical telescopic port MLG
structure and Figure 2 illustrates the landing dy-
namics of the MLG in a two-point, symmetric
landing. On approach, the landing gear wheels
are not spinning. However on contact with the
runway, the landing gear wheels spin-up to the
ground speed of the aircraft under the influence
of the ground reaction and the tyre-runway fric-
tion. The resulting drag force deforms the land-
ing gear aft and stores energy in the structure.
When the tyre velocity reaches the aircraft for-
ward speed, the frictional force between the tyre
and the ground reduces and the release of the
strain energy stored in the rearward deforma-
tion produces a spring-back. The landing gear
oscillates until the structural damping reduces
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the stored energy to zero [8]. Also during this
time, there is an increasing vertical ground-to-
tyre load, which is a function of the gas spring,
oil damping (related to the square of the vertical
descent velocity) and bearing friction. The shock
absorber continues to close until all the vertical
energy has been absorbed and then it partially
recoils [9]. The shock absorber travel (SAT),
in conjunction with the landing loads, creates a
bending moment on the landing gear structure
which is computed at the lower bearing.

In order to calculate the internal landing gear
loads and to assess the serviceability of the land-
ing gear structure after a hard landing, the axle
response loads are required. The ground-to-tyre
loads, discussed previously, act as the forcing
function and with the mass and flexibility charac-
teristics of the landing gear, produce the dynamic
response loads at the landing gear axle. The dif-
ference between the ground-to-tyre loads and the
axle dynamic response loads is due to the iner-
tia forces of the landing gear mass between the
ground and the landing gear axle during the im-
pact [10]. The points of interest for the symmet-
ric landing analysis are the drag axle response
load and bending moment at the lower bearing
at spin-up and spring-back, and the vertical axle
response load at maximum vertical reaction [11].

3 Overview of the Flight Parameter Sensor
Simulation Model

The FPSS model, shown in Figure 3, consists
of: (1) an aircraft and landing gear dynamic
model, (2) an aircraft sensor and data acquisition
Simulink model to represent the aircraft FDR and
(3) an automated hard landing analysis process.
Various hard landing cases, represented as (C1,
C2, C3,. . . , Cm), were modelled using a represen-
tative aircraft and landing gear dynamic model.
For each of the landing cases, it was possible to
define flight parameters such as: aircraft gross
weight, aircraft centre of gravity location, aircraft
orientation (pitch, roll, yaw), ground speed, verti-
cal descent velocity, lateral velocity, MLG shock
absorber servicing state, tyre type, tyre pressure
and the tyre-runway friction coefficient. These

Fig. 1 Typical Port Main Landing Gear Structure

Fig. 2 Example of Occurrence Port Main Land-
ing Gear Landing Dynamics

landing cases provide simulation of the ‘actual’
flight parameters during the simulation, as well as
landing gear dynamic response loads at the axle
at spin-up, spring-back and maximum vertical re-
action.

The aircraft sensor and data acquisition
model (SC1) represents the aircraft sensors and
FDR systems. Aircraft flight parameters such
as vertical, longitudinal and lateral accelerations,
pitch and roll angle and ground speed are used
in the typical hard landing analysis process. A
typical aircraft navigation system and indicat-
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ing/recording system was modelled in Simulink
to investigate the effect of signal processing
(sampling rate, filtering, analog to digital conver-
sion, transfer/receive delays) on the aircraft flight
parameters.

Finally, with the flight parameter data from
the FDR, a hard landing analysis process was
modelled and the conservative assumptions typ-
ically made were applied. These assumptions in-
clude: aircraft mass, inertia and centre of grav-
ity location as close as possible to the occurrence
case, assumed tyre type, correctly serviced shock
absorber and assumed tire-runway friction coeffi-
cient. The peak aircraft vertical acceleration data
from the FDR, as well as the other FDR param-
eters at the peak vertical acceleration, are used
to model the symmetric landing gear dynamic
axle response loads. Based on the initial condi-
tions provided by the FDR (ground speed, pitch,
roll), the aircraft vertical descent velocity was it-
erated until the aircraft vertical acceleration out-
put from the hard landing analysis process model
matched the peak vertical acceleration from the
FDR. From the landing gear dynamic axle re-
sponse loads calculated based on those condi-
tions, it was possible to estimate the difference
between the ‘actual’ and the ‘simulated’ landing
gear loads using a normalized Mean-Square Er-
ror (MSE) method:

Mean-Square Errori =
(Factuali-Fsimulatedi)

2

σ2
Factual

×100

(1)

Fig. 3 Flight Parameter Sensor Simulation Model

4 Bayesian Sensitivity Analysis

4.1 Gaussian Processes

Any computer model, such as the FPSS model,
can be considered a function of its inputs: f(x).
Although this function is deterministic and gov-
erned by known mathematical functions, it is of-
ten complex and may actually be encoded by a
large numerical model which has no closed-form
expression for its outputs as a function of its in-
puts. Therefore, f(x) could be considered an un-
known function, since the output is unknown for
a given set of inputs until the model has actu-
ally been run. If however, the function (model)
is sampled at a number of carefully chosen in-
put points, it is possible to fit a response surface
which can predict the output of the model for any
point in the input space without having to run the
model. For models that are computationally ex-
pensive (they require several minutes, hours or
days to run), creating an emulator (a model of a
model) is a useful approach for sensitivity analy-
sis which requires generally multiple runs of the
model under investigation. [6]

A particular probabilistic approach for devel-
oping an emulator is the use of Gaussian process
regression [12, 13, 14]. Gaussian processes are
an extension of a multivariate Gaussian probabil-
ity distribution. Most forms of regression return a
crisp value f(x) for any given x; however a Gaus-
sian process returns a Gaussian probability dis-
tribution. Therefore, for a function, the Gaussian
process can be considered a Gaussian probabil-
ity distribution, where the mean and covariance
are specified at any point (or variable) by a mean
function and covariance function, respectively.

Gaussian processes adhere to the Bayesian
paradigm, such that a number of prior assump-
tions are made about the function being mod-
elled, and then training data (samples from the
model) are used to update and evaluate a poste-
rior distribution over functions. It is assumed that
the model is a smooth function so that if the value
of f(x) is known, the value at f (x′) for x close
to x′ will be highly correlated. This assumption
allows information to be gained on the response
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surface at reduced computational cost.
For any set of n input parameters {x1,. . . ,

xn}, each of dimension d, the prior beliefs about
the corresponding outputs can be represented by
a multivariate normal distribution, the mean of
which is a least-squares regression fit through the
training data:

E{f(x)|β}= h(x)T
β (2)

where h(x)T is a specified regression function
of x, and β is the corresponding vector of co-
efficients. Here, h(x)T is chosen to be (1,xT ),
which represents linear regression. The covari-
ance (cov) between output points is:

cov{f(x), f(x′)|σ2,B}= σ
2c(x,x′) (3)

such that

c(x,x′) = exp{−(x−x′)T B(x−x′)} (4)

where σ2 is a scaling factor and B is a diago-
nal matrix of length-scales, which represent the
roughness of the output with respect to the indi-
vidual input parameters.

The posterior distribution is then found by
conditioning the prior distribution on the training
data y (the output vector corresponding to the in-
put set), and integrating out the hyperparameters
σ2 and β. This results in a Student’s t-process,
conditional on B and the training data:

[f(x)|B,y]∼ tn−q{m∗(x), σ̂2c∗(x,x′)} (5)

where m∗ and c∗(x,x′) are the posterior mean and
posterior covariance function respectively and
B, β̂, σ̂2 are the hyperparameters of the poste-
rior distribution, the definitions of which can be
found in [6]. The quality of the emulator is de-
pendent on the number and distribution of train-
ing data points in the input space, and the values
of the hyperparameters.

4.2 Inference for Sensitivity Analysis

If the input vector, x, is uncertain, X, the "true
input configuration" is considered a random vari-
able with the probability density function p(x).

The output Y = f (X) is then also a random
variable and the distribution of Y is known as
the uncertainty distribution. With the posterior
distribution-over-functions described by equa-
tion 5, several quantities relevant to the sensitiv-
ity analysis can be inferred: the main effects and
interactions, as well as the sensitivity measures
including Main Effects Indices (MEI) and Total
Effects Indices (TEI).

4.2.1 Main Effects

The function f(x) can be decomposed into main
effects and interactions:

y = f (x) = E (Y )+
d
∑
i=1

zi(xi)+
d
∑
i< j

zi, j(xi, j)+

d
∑

i< j<k
zi, j,k(xi, j,k)+ . . .+ z1,2,d(x)

(6)

zi(xi) = E(Y|xi)−E(Y) (7)

zi, j(xi, j) = E(Y|xi, j)−zi(xi)−z j(x j)−E(Y) (8)

Here zi(xi) represents the main effect of
xi,zi, j(xi, j) is the first order interaction and fur-
ther terms represent higher order interactions.
E(Y) is the expected value of the output y con-
sidering all possible combinations of inputs. The
main effect of an input is the effect (on the
output) of varying that parameter over its input
range, averaged over all the other inputs. In-
teractions describe the effect of varying two or
more parameters simultaneously, additional to
the main effects of both parameters. The poste-
rior mean values for main effects and interactions
can be inferred by substituting the posterior mean
from equation 5 into the conditional expectation:

E(Y|xi) =
∫

χ−i

f(x)p(x−i|xi)dx−i (9)

where χ−i is the sample space of x−i, x−i is the
subvector of x containing all elements except xi
and p(x) represents the multivariate probability
density function of the input parameters. Al-
though this results in a series of matrix integrals,
a Gaussian or uniform p(x) density allows these
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to be solved analytically. Expressions for inter-
actions can also be derived with their respective
definitions.

4.2.2 Variance and Sensitivity Indices

Variance-based sensitivity analysis quantifies the
proportion of output variance for which individ-
ual input parameters are responsible. In partic-
ular, sensitivity can be measured by conditional
variance:

Vi = var{E(Y|Xi)} (10)

This is the expected value of the contribution
of the input variable Xi to the output variance and
is also the variance of the main effect xi, there-
fore it is known as the MEI. It can be extended
to measure conditional variance of interactions of
inputs, for example,Vi, j = var{zi. j(xi, j)}, and so
on for higher order interactions. An additional
sensitivity measure, the TEI, measures the vari-
ance caused by an input xi and any interaction of
any order including xi and describes the output
variance that would remain if one were to learn
the true values of all inputs except xi:

VTi = var(Y)− var{E(Y|X−i)} (11)

The full details of the calculation of Vi and
VTi can be found in [6]. All the quantities of in-
terest presented here are calculated using the soft-
ware package Gaussian Emulation Machine for
Sensitivity Analysis (GEM-SA) [15].

5 Sensitivity Analysis of Flight Parameter
Sensor Simulation Model

Using the discussed Bayesian sensitivity analy-
sis technique, a sensitivity study was performed
for symmetric landings using the FPSS model.
The objective was to determine how sensitive
the difference between ‘actual’ and ‘simulated’
loads was to the individual model parameters so
that one can learn more about these parameters
and reduce this difference, calculated as MSE.
The input parameters include: aircraft pitch angle
(pitch), ground speed (Vx), vertical descent veloc-
ity (Vz), longitudinal tyre-runway friction coef-
ficient (µ), MLG shock absorber servicing state

(SA), MLG tyre type (tyre), MLG tyre pressure
(tyre press), aircraft mass (mass) and aircraft cen-
tre of gravity position (CG). In order to estimate
the sensitivity measures described previously, the
probability distributions for the input parameters
are defined. The assumption was made that the
inputs are independent, although in reality flight
parameters such as pitch and ground speed are
not independent and flight parameters such as roll
and yaw may be coupled. The parameters can be
specified as either Gaussian or uniform distribu-
tions based on how informative the available in-
put parameter data are. In this study, the distribu-
tions have been defined as uniform distributions
and the ranges of the flight parameters, normal-
ized between zero and one, are based on typical
aircraft operating limitations.

To develop the emulator, 399 combinations
of input parameters were generated using a max-
imin Latin hypercube DOE in GEM-SA. The
FPSS model was then run to provide the corre-
sponding ‘actual’ and ‘simulated’ drag axle re-
sponse loads, vertical axle response loads and
bending moment at spin-up, spring-back and
maximum vertical reaction. The MSE was then
calculated for the loads. The sensitivity analy-
sis was carried out in GEM-SA. The emulators
were built on the first 80% of the training data
and then verified using the remaining 20% of the
training data. Figure 4 shows an example of the
emulator accuracy for the spin-up drag axle re-
sponse load MSE. Generally it was found that the
emulators did a reasonable job since the model
test data tended to be within the 95% confidence
bands of the predictions and errors could be at-
tributed to predicting high values of MSE since
there are fewer training points for the emulator in
these regions.

5.1 Main Effects Plots

The main effects plots for the analysis show MSE
versus the normalised flight parameters. The
lines represent mean main effects values, aver-
aged over variations in the other parameters and
can be thought of as the expected value of the
output with respect to one parameter if the true
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Fig. 4 Symmetric Spin Up Drag Axle Response
Load Emulator Accuracy

values of the other parameters are known. These
plots show which of the flight parameters the
MSE is significantly sensitive to and the nature of
the input/output relationships. The main effects
plots for drag axle response load MSE and bend-
ing moment MSE at spin-up and spring-back
show the same trends. The spin-up drag axle re-
sponse load main effects plots are shown in Fig-
ure 5. The maximum vertical reaction vertical
axle response load main effects plots are shown
in Figure 6. The main effects plot for tyre was
not illustrated because a discrete uniform distri-
bution was assigned to each tyre. In GEM-SA,
this was described by a continuous distribution
and the main effects plots are not meaningful.

Fig. 5 Symmetric Spin Up Drag Axle Response
Load Main Effects Plots

5.1.1 Aircraft Pitch Angle

The main effects plots for spin-up and spring-
back show that the drag axle response load MSE

Fig. 6 Symmetric Maximum Vertical Reaction
Vertical Axle Response Load Main Effects Plots

and bending moment MSE linearly increases as
the pitch angle increases. Due to filtering and
sampling, the FDR model tends to reduce the air-
craft pitch angle by less than one degree, there-
fore it is not expected that pitch would have a
large contribution to the MSE. Part of the rela-
tionship between pitch and MSE can be attributed
to the constraint in the model that limits the pitch
angle to 0 degrees to ensure a two-point land-
ing. If this constraint is removed, the relationship
between pitch and MSE tends to be more con-
stant. The main effects plot for the vertical axle
response load MSE also shows a constant rela-
tionship with pitch. As will be shown in section
5.2, the contribution to the MSE from pitch alone
is low, except in the case of bending moment at
spring-back. The flight parameter pitch tends to
only be significant in the other cases when its in-
teractions with other flight parameters are consid-
ered.

5.1.2 Tyre-Runway Friction Coefficient

Figure 5 illustrates the relationship between MSE
and µ for spin-up and spring-back drag axle re-
sponse load bending moment. As the actual µ for
the landing approaches the value assumed within
the hard landing analysis process, the difference
between the ‘actual’ and ‘simulated’ loads is re-
duced. This is logical considering that if the ’ac-
tual’ landing has a tyre-friction coefficient that is
significantly lower than that assumed in the hard
landing analysis process model, this will greatly
contribute to the MSE.
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Figure 6 shows that there is a constant re-
lationship between MSE and µ for vertical axle
response load at maximum vertical reaction. In
section 5.2.3 it is also shown that µ has little con-
tribution to the MSE.

5.1.3 Vertical Descent Velocity

The relationship between the MSE and Vz is non-
linear and tends to increase and level off at high
vertical descent velocities. Figure 7 illustrates
the difference between the peak aircraft vertical
acceleration (Nz) in the ‘actual’ landing and the
peak Nz from the FDR model. At higher verti-
cal descent velocities (and hence higher vertical
accelerations), the possibility increases that the
peak vertical acceleration will be missed on the
FDR, due to low sampling rates (8 Hz) in con-
junction with greater peak amplitudes. There-
fore, the ‘simulated’ loads will be more under
predicted as vertical descent velocity increases
and the difference between the ‘actual’ and ‘sim-
ulated’ loads will be greater.

As discussed in section 2, Vz is an input flight
parameter, however the aircraft vertical accelera-
tion measured by the FDR model is matched in
the current hard landing analysis process model
by iterating Vz. In the FDR model, the vertical
acceleration is sampled and filtered and therefore
any loss of data will have a significant impact
on the landing gear loads modelled in the current
hard landing analysis process model. Therefore,
the vertical acceleration is one of the most impor-
tant parameters in reducing the MSE.

Fig. 7 Effect of Sampling on Peak Vertical Ac-
celeration

5.1.4 Ground Speed

As Vx increases, the time required for spin-up,
the maximum drag ground-to-load and the ver-
tical ground-to tyre-load increases [16]. In the
FDR model, filtering and sampling reduces the
aircraft ground speed by less than 1 m/s. This
is consistent with the fact that ground speed is
generally assumed to be constant in landing sim-
ulations. The main effect plots for Vx shows that
the MSE increases as Vx increases. This indicates
that as Vx increases, the loads and moments do
not increase linearly. As will be shown in sec-
tion 5.2, the contribution to the MSE from Vx
alone is low and Vx is only significant for spin-up
and spring-back when its interactions with other
flight parameters are considered.

5.1.5 Shock Absorber

In all of the main effects plots, the MLG shock
absorber servicing state has a constant relation-
ship with MSE. Therefore, the MSE is not sen-
sitive to the shock absorber servicing state over
its range and any shock absorber servicing state
will give similar MSE values. When the shock
absorber is overinflated, higher loads are trans-
mitted through the landing gear structure. How-
ever, because the shock absorber is stiffer (stiffer
spring curve), there is a higher aircraft vertical
acceleration for the same vertical descent veloc-
ity. In the hard landing analysis process model,
the peak vertical aircraft acceleration is matched
by iterating Vz. Therefore, if the correctly ser-
viced shock absorber is used in the hard landing
analysis process model, a higher Vz will be re-
quired to match the vertical acceleration. Due
to the fact that the vertical acceleration is being
matched, the difference between the vertical and
drag axle response loads and the bending moment
from the landing with an overinflated shock ab-
sorber and from the landing with a correctly ser-
viced shock absorber will be very similar.

When the shock absorber is underinflated,
lower loads are transmitted through the landing
gear structure and there is a lower aircraft verti-
cal acceleration for the same vertical descent ve-
locity. Therefore, for a correctly serviced shock
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absorber, the aircraft vertical acceleration will be
higher and the loads in the ‘simulated’ landing
will be higher and therefore, more conservative.

5.1.6 Tyre Pressure

In all of the main effects plots, the MLG tyre
pressure has a constant relationship with MSE.
This indicates that the MSE is not sensitive to tyre
pressure over its range and any value of the tyre
pressure will give similar output values. There-
fore, knowing the tyre pressure is not useful in
reducing the MSE.

5.1.7 Mass & Centre of Gravity

The main effects plots for drag axle response load
and bending moment at spin-up and spring-back
show that the MSE is generally constant over the
range of mass and the CG. However, the main ef-
fects plots for the maximum vertical reaction ver-
tical axle response load MSE shows a non-linear
relationship with mass and CG. As expected, as
the mass and CG in the ‘actual’ landing moves
closer to or further from the mass and CG in
the ‘simulated’ landing, the MSE increases. This
trend is more prevalent in the main effects plots
for the vertical axle response load MSE than for
spin-up and spring-back drag and bending mo-
ment MSE and is expected since the MEI and
TEI, presented in section 5.2.3, indicate that mass
and CG are very significant to the vertical axle re-
sponse load.

5.2 Main Effects Indices and Total Effects
Indices

The MEI plots for spin-up, spring-back and max-
imum vertical reaction represent the expected
value of the contribution of the input flight pa-
rameter to the MSE. A high MEI means that the
MSE will be reduced considerably if one were to
learn the true value of that flight parameter. The
TEI represent the contribution from one flight pa-
rameter if all its interactions with the other pa-
rameters are included. While an input parame-
ter may have a low MEI, the TEI indicates if its
first order and higher order interactions are sig-
nificant.

5.2.1 Spin-Up

The MEI and TEI for the spin-up drag axle re-
sponse load are given in Figure 8. The MEI illus-
trate that µ and Vz contribute significantly to the
spin-up drag axle response load MSE. The TEI
show that along with µ and Vz, Vx and pitch with
their interactions, contribute to the spin-up drag
axle response load MSE. The first order interac-
tions account for 20.75% of the MSE. The inter-
actions between µ-Vz (11.71%), µ-pitch (1.82%),
µ-Vx (1.71%) and Vz-Vx (2.03%) account for ap-
proximately 17% of the MSE.

Fig. 8 Symmetric Spin-Up Drag Axle Response
Load MEI and TEI

The MEI and TEI for the spin-up bending
moment are given in Figure 9. The results are
similar to the spin-up drag axle response load
MSE. As discussed in the landing dynamics in
section 2, one would expect µ, Vz and Vx would
be influential in calculated spin-up and spring-
back drag axle response and resulting bending
moment. Any change in these parameters due to
the FDR or assumptions that are made in the hard
landing analysis process model would have an ef-
fect on the MSE. Therefore, the spin-up drag axle
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response load MSE and bending moment MSE
may be reduced by learning the true value of µ
and Vz.

Fig. 9 Symmetric Spin-Up Bending Moment at
Lower Bearing MEI and TEI

5.2.2 Spring-Back

The MEI and TEI for the spring-back drag axle
response load are given in Figure 10. The MEI
and TEI again show similar results to the spin-
up drag axle response load, in that µ, Vz, Vx and
pitch contribute significantly. However, the TEI
also shows that tyre and its interactions have an
effect on the the spring-back drag axle response
load MSE. The following first order interactions
account for approximately 19% of the MSE: µ-
Vz (9.56%), µ-Vx (3.04%), µ-pitch (2.96%), µ-tyre
(2.28%) and Vz-tyre (1.31%). Therefore, tyre, due
to its interaction with µ and Vz, is an important
parameter in the spring-back drag axle response
load MSE.

The MEI and TEI for the spring-back bending
moment MSE are given in Figure 11. Again, µ,
Vz, Vx, pitch and tyre contribute significantly. The
following interactions account for approximately

Fig. 10 Symmetric Spring Back Drag Axle Re-
sponse Load MEI and TEI

24% of the MSE: µ-Vz (5.95%), µ-pitch (13.88%),
µ-mass (2.36%) and Vx-pitch (2.41%). Therefore,
mass is also a significant parameter for spring-
back bending moment MSE. The spring-back
drag axle response load MSE and bending mo-
ment MSE may be reduced by learning the true
value of µ, Vz, tyre and mass.

5.2.3 Maximum Vertical Reaction

The vertical axle response load at maximum ver-
tical reaction is of interest when calculating the
landing gear loads. The MEI and TEI for the ver-
tical axle response load MSE are given in Fig-
ure 12. The MEI illustrate that mass and Vz
contribute significantly to the vertical axle re-
sponse load MSE. The TEI show that along with
mass and Vz, CG, pitch and tyre with their inter-
actions, contribute to the vertical axle response
load MSE. The first order interactions account
for 49% of the MSE. The interactions between
mass-CG (14.68%), mass-pitch (14.19%), Vz-CG
(4.17%), Vz-pitch (2.33%), mass-tyre (2.11%) ac-
count for approximately 37% of the MSE. There-
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Fig. 11 Symmetric Spring Back Moment at
Lower Bearing MEI and TEI

fore, the vertical axle response load MSE may be
reduced by learning the true value of mass, Vz,
CG and tyre.

6 Conclusion

A Bayesian sensitivity analysis was performed to
determine the parameters of interest in order to
reduce the conservatism calculated in the FPSS
model. For symmetric two-point landings, it was
shown that tyre-runway friction coefficient and
aircraft vertical descent velocity contributed the
most to the spin-up and spring back drag axle re-
sponse load MSE and bending moment MSE. It
was also found that aircraft vertical descent ve-
locity, mass, centre of gravity position and MLG
tyre type had significant influences on the maxi-
mum vertical reaction vertical axle response load
MSE. While Vx and pitch did not change consid-
erably from the ‘actual’ to the ‘simulated’ land-
ing, the interactions with µ and Vz contributed to
the MSE in all cases. Therefore, the MSE can
be reduced by learning the true value of the fol-

Fig. 12 Symmetric Maximum Vertical Reaction
Vertical Axle Response Load MEI and TEI

lowing flight parameters: µ, Vz, mass, CG and
tyre type. Due to the current hard landing anal-
ysis process modelling technique, vertical accel-
eration is as significant as Vz in reducing MSE.
It was also shown that over the range in this sen-
sitivity study, the shock absorber servicing state
and MLG tyre pressure do not contribute signif-
icantly to the MSE and learning the true value
of these flight parameters would not reduce the
MSE.

This technique will be extended to asymmet-
ric landings and will consider other flight param-
eters such as lateral velocity, aircraft roll and air-
craft yaw. The effect of signal processing on
the aircraft flight parameters will also be inves-
tigated. The results of the sensitivity analysis
will then used in the conceptual design of sen-
sor and data acquisition system architectures that
improve the accuracy of the calculated loads.
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