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Abstract

The paper is concerned with aeroelastic analy-
ses of an airfoil system in which both aerody-
namic and structural nonlinearities are consid-
ered. Here, structural dynamics is treated in
terms of polynomial nonlinearities. The work
aims to investigate effects of initial incidence
changes in the aeroelastic equations of typical
sections in transonic flows. Major interest is in
verifying how the different initial incidences af-
fect the transonic aeroelastic behavior with con-
centrated structural nonlinearities. A non-zero
mean angle-of-attack position of the torsional
spring is incorporated into the model to analyze
the characteristic of system equilibrium position
for a range of parameters. An Euler CFD code
based on a finite volume discretization on un-
structured grid is used for the unsteady aerody-
namic loading assessment. The results are partic-
ularly concerned with the investigation of nonlin-
ear effects for transonic flow over a NACA 0012
airfoil-based typical section. The investigation
considers both time histories of the aeroelastic
response as well as flutter speed boundary analy-
ses.

1 Introduction

Nonlinear aeroelasticity is a multidisciplinary
field, that is very important in aeronautics and
aerospace engineering. Aeroelasticity can be de-
fined as the science which studies the mutual
interaction between aerodynamic and dynamic
forces [1]. The influence of nonlinearities on

modern aircraft is becoming increasingly impor-
tant and the need for more accurate predictive
tools grows stronger.

The nonlinearities in aeroelastic analyses are
divided into aerodynamic and structural ones. In
this paper, the aerodynamic nonlinearities arise
from the presence of shock waves in transonic
flows. Structural nonlinearities can be classified
as distributed or concentrated. The distributed
nonlinearities are spread over the entire struc-
ture and can manifest themselves through com-
plex material behavior, by aging effects, and due
to faulty joints, junctions, or links. The con-
centrated nonlinearities are those acting locally,
being basically assumed for simplified structural
models [2].

Computational aeroelasticity is a relatively
new field emphasizing those types of aeroelastic
problems where loads based on CFD methods,
which can be both unsteady and nonlinear, are
used. A significant amount of effort has been de-
voted towards the numerical solution of transonic
aeroelastic phenomena, not only in the prediction
of transonic dip effects [3, 4, 5], but also towards
that of limit cycle oscillations (LCOs). Euler and
Navier–Stokes schemes have been coupled with
structural models [6]. Studies with concentrated
nonlinearities have revealed significant effects on
the aeroelastic stability, allowing the presence of
chaotic motion and limit cycle oscillations below
the flutter speed [7].

The methodology here presented is applied
to obtain the time domain aeroelastic responses
for an airfoil moving in pitch and plunge in the
transonic regime [6, 8]. The aim of this paper
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is to investigate the nonlinear behavior of typical
airfoil sections with structural and aerodynamic
nonlinearities. The modeling methodology is
based on coupling typical section motion equa-
tions to an Euler unsteady CFD code to obtain
time-marching aeroelastic responses through the
fourth-order Runge-Kutta scheme. The present
investigation of the time–marching tool is a re-
sult of the increased demand for nonlinear aeroe-
lastic parameters analysis that can influence dy-
namic system behavior. Previous work have
performed flutter boundaries calculations where
time-marching solutions are compared with those
from a computationally more attractive Hopf bi-
furcation analysis [9]. An Euler model is used for
the fuid, while the structure is represented as a
NACA 0012 airfoil with nonlinear torsional stiff-
ness.

Time-marching analysis of nonlinear aeroe-
lasticity has been performed for detailed mo-
tion characteristics [7, 10]. Different initial in-
cidence effects in the aeroelastic responses with
linear and nonlinear structural model have been
started in the previous work [10]. The aim of
this paper is to follow the investigation of non-
linear behavior considering different initial inci-
dences with concentrated structural nonlineari-
ties in the model. Also, this work intends to inco-
porate a non-zero mean angle-of-attack position
of the torsional spring into the model to verify
how system parameters can affect the equilibrium
solutions of the transonic aeroelastic behavior by
looking time histories development. Such anal-
ysis is based on a Hopf point prediction to cal-
culate direct flutter speed is an equilibrium posi-
tion of the system which satisfies additional con-
straints. Thus, characterizing the equilibrium so-
lution space of a system for a wide range of pa-
rameter is important [3].

The modeling methodology is based on cou-
pling typical section motion equations to an Eu-
ler unsteady CFD code to obtain time–marching
aeroelastic responses through the fourth-order
Runge–Kutta scheme. In order to solve the aero-
dynamic problem, the Euler equations are inte-
grated by a finite volume discretization on un-
structured grids. The development of the present

CFD tool is the evolution of the work and projects
performed by CTA/IAE [11, 12, 13, 14]. Nev-
ertheless, this CFD tool has been developed for
the unsteady aerodynamic and aeroelastic appli-
cations in the work of [9, 12, 15, 16, 17]. Concen-
trated structural nonlinearities are introduced into
the model. In this way, torsional nonlinearities,
described by polynomial functions, have been
considered. The results are presented in terms
of time-marching analyses, where time histories
of the aeroelastic response are considered. To
illustrate the performance of the time-marching
solver, complete flutter boundaries for a NACA
0012 airfoil with torsional structural nonlinear-
ity is performed. The flutter boundary results are
compared with the Hopf bifurcation predictions
obtained in previous work.

2 Aerodynamic Model

In the present study, the flow is assumed to
be governed by the two-dimensional, time-
dependent Euler equations, which may be written
in conservative form and Cartesian coordinates as

∂
∂t

∫ ∫
V

Qdxdy+
∫

S
(Edy−Fdx) = 0, (1)

whereV represents the area of the control volume
andS is its boundary,Q is the vector of conserved
quantities and the inviscid flux vectors,E andF,
are given by
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whereρ, u, v, p andeare density, Cartesian com-
ponents of the velocity, pressure, and specific en-
ergy, respectively.U andV are contravariant ve-
locity components, defined as

U = u−xt , V = v−yt , (3)
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wherext andyt represents the Cartesian velocity
components of the mesh.

The Euler equations can be rewritten for each
i-th control volume as

∂
∂t
(ViQi)+

∫
Si

(Edy−Fdx) = 0 . (4)

The 2-D Euler equations are discretized by a
finite volume procedure in an unstructured mesh.
The equations are discretized in space by a cen-
tered scheme, together with added artificial dissi-
pation terms. The artificial dissipation operator,
Di , can be written as

Di = d2(Qi)−d4(Qi) , (5)

whered2(Qi) represents the contribution of the
undivided Laplacian operator, andd4(Qi) is the
contribution of the biharmonic operator [18]. The
biharmonic operator is responsible for provid-
ing the background dissipation to damp high
frequency uncoupled error modes and the un-
divided Laplacian artificial dissipation operator
prevents oscillations near shock waves. The Eu-
ler solver is integrated in time by a second-order
accurate, 5-stage, explicit, Runge-Kutta time-
stepping scheme, as presented in [15].

3 Aeroelastic Equations

The physical model considered in the present
work is a typical section with pitch and plunge
degrees of freedom and free of mechanical fric-
tion [1].

mḧ−Sαα̈+Khh=−L, (6)

−Sαḧ+ Iαα̈+Kα(α−α0) = Mea. (7)

whereh is the plunge linear displacement andα
is the incidence, or pitch angular displacement.
Sα is the static moment about elastic axis,Kw

and Kα are translational and torsional stiffness
about elastic axis, respectively. In the present for-
mulation α0 is the mean initial angle-of-attack.
Here the left-hand-side terms represent a linear
structural model approximation for the vertical
displacement and pitch coordinates. The right-
hand-side terms represent the aerodynamic load-
ing terms, which are obtained from CFD code.

The equations of motion of this aeroelastic
system, with a linear structure, can be rewritten
in the form

dws

dt
= Rs , (8)

where
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(9)

andws = [h, ḣ,α−α0, α̇]T . Here,rα =
√

(Iα/m)
is the radius of gyration defined in terms of the
pitch moment of inertiaIα and the airfoil mass
per unit spanm, xα is the offset between the cen-
ter of mass and the elastic axis,µs = m/πρ∞b2

is the airfoil-to-fluid mass ratio defined in terms
of the fluid freestream densityρ∞ and the semi-
chord,b. Moreover,ωR = ωh

ωα
is the ratio of the

natural frequencies of plunging (ωh) and pitching
(ωα), Ū = U∞

bωα
is the reduced velocity defined in

terms of the fluid freestream velocityU∞, andCl

andCm are the lift and moment coefficients about
the elastic axis, respectively.

The fouth–order Runge–Kutta time stepping
scheme is used for the time marching aeroelas-
tic analyses. Time integration of the coupled
fluid–structure equations of motion is incorpo-
rated within the CFD Euler code as follows [10]:

1. Starting from a converged steady–state so-
lution of the flow over the rigid airfoil, per-
form a time step of the Euler equations in
the initial position of the airfoil and calcu-
late values forCl andCm;

2. The new position and velocity of the airfoil
are obtained by solving the dynamic equa-
tions of motion, Eq. (8), using the a fourth–
order Runge–Kutta time–stepping scheme;

3. The aerodynamic mesh is moved, and the
mesh nodal velocities are calculated, in or-
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der to accommodate the new position and
velocity of the airfoil;

4. The unsteady Euler equations are resolved
in order to obtain new aerodynamic coeffi-
cients;

5. Then, one can return to step (2) to calculate
new position and velocity of the airfoil, and
the process is repeated.

4 Torsional Structural Nonlinearity

Several classes of nonlinear stiffness contribu-
tions have been studied in papers treating the
open-loop dynamics of the aeroelastic system [2].
In this work, the linear torsional moment function
is replaced by the nonlinear function

M̄(α) = K̄αα = Kα f (α) , (10)

whereKα is considered as a global stiffness. The
functional form of f (α) can be expressed as a
polynomial nonlinearity for restoring torsion

f (α) = fα0 + fα1α+ fα2α2+ ...+ fαnαn . (11)

Again, non-zero mean angle-of-attackα0 po-
sition of the torsional spring is incorporated into
the nonlinear model

M̄(α−α0) = K̄α(α−α0) = Kα f (α−α0) (12)

5 Time-Marching and Flutter Boundaries
Analyses

5.1 Effect of Initial Incidence

Time-marching and flutter boundaries results
have been obtained with the linear and nonlin-
ear structural models. The Hopf bifurcation anal-
yses [4] were used to calculate airfoil flutter
boundaries and the results are showed in com-
parison with time-marching calculations for the
same flight conditions, as in [9].

The results for the time marching method
have been studied through the time histories of
the solution. The parameters for the structural
model are given in Table 1. The results were

calculated by first computing a converged steady
flow solution at airfoil initial incidence about the
elastic axis. The steady Euler solution was de-
termined using the steady portion of the original
unsteady Euler solver. Then, the coupled compu-
tational fluid dynamic (CFD) and computational
structural dynamics (CSD) method to the two-
dimensional typical section was performed. It
consists of a NACA0012 airfoil.

Table 1Structural model parameters.

Parameter Value

rα 0.539
xα -0.2
ωR 0.343
µs 100.0
xea -0.1
yea 0.0

Different initial incidences have been per-
formed in order to study the effects in the tran-
sonic aeroelastic behavior for both cases, linear
structural model and torsional nonlinear struc-
tural model analyses. The case analyzed corre-
sponds to structural model parameters in the Ta-
ble 1. First, the analysis are evaluated with zero
medium angle-of-attack of torsional spring posi-
tion, i.e., α0 = 0.

Aeroelastic responses with linear structural
model at fixedM∞ = 0.86 andŪ = 3.36 are ob-
tained, where four initial incidences have been
considered and given by 0.3◦, 0.5◦, 1.0◦ and
−1.0◦. The time history for the initial incidence
of 0.3◦ is presented in Fig. 1. The system exhibits
oscillations with slightly decreasing amplitudes.
Such behavior is consistent with the fact that this
point has been considered closer to flutter point.
One can observe that the system exhibits oscilla-
tions with incidences between 0.1◦ and−0.1◦.

The system also exhibits oscillations with
slightly decreasing amplitudes when initial in-
cidences of 0.5◦, 1.0◦ and −1.0◦ are used, as
shown in Figs. 2, 3 and 4, respectively. For ini-
tial incidence of 0.5◦, the system exhibits oscilla-
tions with incidences between 0.2◦ and−0.2◦, as
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Fig. 1 Time history for linear structural model at
M = 0.86,Ū = 3.36 and 0.3◦ initial incidence.
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Fig. 2 Time history for linear structural model at
M = 0.86,Ū = 3.36 and 0.5◦ initial incidence.

shown in Fig. 2. The next cases consider aeroe-
lastic behavior with initial incidences of 1.0◦ and
−1.0◦. Figures 3 and 4 show time histories with
the same oscillations amplitude,i.e., inicidences
approximately between 0.4◦ and−0.4◦. It is im-
portant to note that when increasing initial inci-
dences the system also increases oscillations am-
plitude, for the linear structural model.

Aeroelastic responses including torsional
polynomial nonlinearities in the structure have
been calculated with representative nonlinear
function showed in Fig. 5 and given by

f (α) = 0.3672α+18000α3 . (13)
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Fig. 3 Time history for linear structural model at
M = 0.86,Ū = 3.36 and 1.0◦ initial incidence.
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Fig. 4 Time history for linear structural model at
M = 0.86,Ū = 3.36 and−1.0◦ initial incidence.

Figure 6 depicts flutter boundaries computed
using two structural models, linear and nonlinear,
and two different techniques, time–marching and
Hopf Bifurcation analysis. In the Hopf bifurca-
tion case, flutter boundaries have been obtained
with the structural model given byf (α) = α, i.e.,
a linear torsional curve, and these results are rep-
resented by the diamond symbols in Fig. 6. Flut-
ter boundaries for the nonlinear structural model
given by Eq. (13), and obtained in [9], also using
Hopf bifurcation analyses, are indicated by the
delta symbols. However, the latter results have
been obtained using only the linear portion of
Eq. (13), i.e., f (α) = 0.3672α for the torsional
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Fig. 5 Nonlinear curvef (α) = 0.3672α+18000α3.
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Fig. 6 Flutter boundaries.

function. For instance, the nonlinear Hopf bi-
furcation results indicate that the flutter point for
M∞ = 0.86 is atŪ = 1.7, but this value was ob-
tained with only the linear portion of the polyno-
mial, as reported in [9], since there is no effect of
torsional nonlinear terms in the flutter speed cal-
culations with Hopf bifurcation analysis. Time–
marching flutter boundaries results forf (α) = α
torsional linear curve are also presented in Fig. 6,
as in [9], for comparison purposes.

The flutter point forM∞ = 0.86, consider-
ing the structural polynomial nonlinearity given
in Eq. (13), is also evaluated with the time–
marching methodology. Time history responses
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Fig. 7 Time history for nonlinear structural
model atM = 0.86,Ū = 1.9 and 1.0◦ initial inci-
dence.
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Fig. 8 Time history for nonlinear structural
model atM = 0.86,Ū = 2.0 and 1.0◦ initial inci-
dence.

are observed with variations of̄U , where the au-
thors have considered 1.0◦ initial incidence and
zero mean angle-of-attack torsional spring posi-
tion (α0 = 0). The flutter speed of the present
time-marching method is obtained when the sys-
tem begins limit cycle oscillations. For instance,
Fig. 7 presents the time history forM∞ = 0.86
andŪ = 1.9. In this case, the system oscillations
are easily identified with converging amplitude
responses. Figure 8 presents the response with
small–amplitude limit cycle oscillation in pitch,
indicating a nonlinear flutter point forM∞ = 0.86
at Ū = 2.0. For flight speeds above the flutter
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condition, time history responses have presented
limit cycle oscillation and can be observed, for
Ū = 2.2, in Fig. 12 forM∞ = 0.86 and 1.0◦ ini-
tial incidence.

Variations of initial incidence in the time-
marching method with torsional nonlinear model,
given in Eq. (13), are also analyzed. Figures 9 to
13 show time histories atM∞ = 0.86 andŪ = 2.2,
for different initial incidences in the calculations,
namely 0.1◦, 0.3◦, 0.5◦, 1.0◦ and −1.0◦. Al-
though the system exhibits different initial behav-
ior, the motion for long times indicated LCO with
the same amplitude in all cases. One can observe
that time histories for 1.0◦ and−1.0◦ also exhibit
different initial behavior and, after the initial tran-
sients die out, the long time behavior shows am-
plitude interval of oscillation from−0.2 to 0.4
for both cases, as shown in Figs. 12 and 13, re-
spectively.

For the time-marching computations per-
formed so far, aeroelastic response for the linear
structural model has presented the same behavior
with the variation of initial incidences. However,
when increasing initial incidence, the system also
exhibits increased oscillation amplitudes. The
system with variation of initial incidences, con-
sidering the nonlinear structural model, exhibits
different initial behavior, and the long time be-
havior indicates LCO with the same amplitude
for the results with the structural parameters pre-
sented in this paper. Similar behavior can be
seen in previous work [10], with the same struc-
tural model parameters but different nonlinear
torsional functions. In this paper, the nonlinear
torsional function, given by Eq. (13), presents a
linear coefficient value larger than that from the
nonlinear function curve used in [10], but the co-
efficients of nonlinear terms are the same. In the
comparison of these solutions, different flutter
speeds and different amplitudes in the responses
are observed. As expected, the nonlinear func-
tion curve representing the torsional nonlinearity,
given by Eq. (13), has verified the influence of
the different linear coefficient values in the flut-
ter speed and post bifurcation behavior.
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Fig. 9 Time history for nonlinear structural
model atM = 0.86,Ū = 2.2 and 0.1◦ initial inci-
dence.
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Fig. 10 Time history for nonlinear structural
model atM = 0.86,Ū = 2.2 and 0.3◦ initial inci-
dence.

5.2 Equilibrium Angle-of-Attack Analysis

This section presents equilibrium solutions of
aeroelastic system for symmetric NACA 0012
airfoil model in pitch and plunge motion. Non-
zero mean angle-of-attack position (α0) of the
torsional linear and nonlinear spring is incorpo-
rated into the model for such analyses. First,
equilibrium solutions of the aeroelastic model
with linear structure are computed forα0 = 1.0◦

and variations inM∞ and Ū . Static equilib-
rium angle-of-attack is obtained with the time–
marching methodology with variations of̄U , be-
low the flutter speed. Each curve of Fig. 14
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Fig. 11 Time history for nonlinear structural
model atM = 0.86,Ū = 2.2 and 0.5◦ initial inci-
dence.
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Fig. 12 Time history for nonlinear structural
model atM = 0.86,Ū = 2.2 and 1.0◦ initial inci-
dence.

presents equilibrium angle-of-attackαeq position
versusŪ at fixed Mach number.

A variation of Mach number from 0.3 to 0.92
has presented different equilibrium positions in
the solutions, as shown in Fig. 14. Increasing
small variation inαeq is observed fromM∞ = 0.3
to M∞ = 0.7, for the sameŪ values. These
freestream Mach numbers produce subsonic flow
throughout the domain forα0 = 1.0◦. The trend
of increasingαeq with increasingŪ is maintained
for each subsonic Mach number. When the flow-
field Mach number increases overM∞ = 0.7, the
equilibrium angle of attack starts to decrease with
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Fig. 13 Time history for nonlinear structural
model atM = 0.86, Ū = 2.2 and−1.0◦ initial
incidence.
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Fig. 14 Equilibrium angle-of-attack for linear
structural model (f (α) = α): α0 = 1.0◦ and 1.5◦

initial incidence.

the increase in the reduced velocity, as observed
in the equilibrium angle-of-attack positions from
M∞ = 0.8 toM∞ = 0.86. This reversal in trend is
observed in the transonic flight regime. Further-
more, forM∞ = 0.88,M∞ = 0.9 andM∞ = 0.92,
and at a fixedŪ , it is observed that the equilib-
rium angle-of-attack increases as the freestream
Mach number increases, as one can see in Fig. 14.

Equilibrium solutions of the aeroelastic sys-
tem with nonlinear structural model are also com-
puted for the nonlinear torsional curve given by
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Fig. 15 Equilibrium angle-of-attack for non-
linear structural model (f (α) = 0.3672α +
18000α3): α0 = 1.0◦ and 1.5◦ initial incidence.

Eq. (13). The results forα0 = 1.0◦ and varia-
tions ofM∞ andŪ are shown in Fig. 15. Again,
the static equilibrium angle-of-attack is obtained
with the time–marching methodology with varia-
tions ofŪ below the flutter speed. As before, an
increasing trend inαeq, but with very small vari-
ations, is observed fromM∞ = 0.3 toM∞ = 0.73,
at fixedŪ . As one starts to have transonic flow-
field conditions, the equilibrium angle-of-attack
values start to decrease, as in the previous study.
Again, as observed in the previous cases,αeq still
decreases with the increase in̄U , but, for a fixed
Ū , results indicate smallerαeqvalues as the Mach
number increases.

For comparison purposes, results for the cal-
culations atM∞ = 0.86, Ū = 1.5 andα0 = 1.0◦,
shown in Figs. 14 and 15, are also presented in
Table 2. As previously discussed in the present
work, linear and nonlinear structural models have
obtained similar equilibrium angle-of-attack be-
havior with variations of the freestream Mach
number. However, equilibrium angle-of-attack
positions considering linear and nonlinear struc-
tural models for the same variations ofM∞ have
presented different values.

Table 2Equilibrium angle forŪ = 1.5.

Mach number Eq. angle Eq. angle
( f (α) = α) (Eq. (13))

0.3 1.1110 1.2020
0.4 1.1160 1.2080
0.5 1.1260 1.2170
0.6 1.1420 1.2320
0.7 1.1850 1.2640
0.8 1.0300 1.0740
0.86 0.7503 0.7090
0.9 0.9589 0.9060
0.92 0.9670 0.9217

Concluding Remarks

Time-marching analyses are compared to direct
calculations of Hopf bifurcation points for lin-
ear and nonlinear structural case presented in [9],
where the results agree well. Torsional poly-
nomial nonlinearities considered in the present
work have shown significant effects on the aeroe-
lastic responses and that yield limit cycle oscil-
lations can occur below the linear flutter speed.
For the time-marching computations performed,
aeroelastic responses for the linear structural
model have presented the same behavior with the
variation of initial incidences. However, when
increasing the initial incidences, the system also
exhibits increased oscillation amplitudes. Aeroe-
lastic responses of the nonlinear structural mod-
els, with increasing initial incidences, have pre-
sented limit cycle oscillation with the same inter-
val amplitude.

Finally, equilibrium angle-of-attack positions
with variations of Mach number and reduced ve-
locity for α0 = 1.0◦ have indicated different val-
ues. Subsonic flowfield Mach numbers have in-
creasingαeq, while at transonic flowfield condi-
tions the NACA 0012 airfoil pitches down to a
new equilibrium position, considering linear and
nonlinear structural model. However, linear and
nonlinear structural model responses have ob-
tained different equilibrium angle-of-attack posi-
tions for the same variations of Mach number and
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at fixedŪ .
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