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Abstract  

With the improving capabilities of 
Computational Fluids Dynamics (CFD) on 
predicting aerodynamic performance, these 
tools are now being increasingly used for 
aerodynamic design optimization in the 
aerospace industry. In this paper, an automated 
optimization framework is presented to address 
inviscid aerodynamic design problems. Key 
aspects of this framework include the use of the 
continuous adjoint methodology to make the 
computational requirements independent from 
the number of design variables and Computer 
Aided Design (CAD) based shape 
parameterization, which uses the flexibility of 
Non-Uniform Rational B-Splines (NURBS) to 
handle complex configurations. 

1 Introduction  
The Advisory Council for Aeronautics Research 
in Europe (ACARE) asked, in the document 
VISION 2020 [1], for a reduction of fuel 
consumption by 50% in 2020 compared to the 
data in 2000. For achieving this objective, 
several disciplines will have to deploy all their 
current capabilities and introduce innovative 
concepts and automatization into their 
processes. 
 
In the aerodynamics field, the use of integrated 
tools for shape optimization has grown in 
importance for the preliminary design of an 
aircraft, where mainly inviscid flow 
computations are performed due to the severe 
computational time required to obtain more 
accuracy. Within a gradient-based optimization 

approach, the use of the adjoint methodology 
[2-7] has been introduced during the last decade 
and it has demonstrated to be an efficient 
method to compute the gradients of a cost 
function. 
 
Using the adjoint methodology, the sensitivities 
are calculated on each grid point. One of the 
main problems of using the grid points directly 
as design variables is the occurrence of surface 
bumps during the optimization process. The 
effect of these bumps produces an optimized 
geometry for a specific flight condition, but 
behaves very poorly if that condition changes.  
In order to solve these problems, a higher-level 
parameterization should be considered. The use 
of NURBS has been suggested [8-10] as an 
efficient and flexible parameterization, able to 
represent complex configurations while 
preventing the formation of local bumps.  
 
The main advantages of the approach proposed 
in this paper for shape optimization are: 
 

 The use of the Adjoint Methodology for fast 
gradient computation. It provides 
independence from the number of design 
variables.    

 The use of Computer Aided Design (CAD) 
based parameterization; meaning NURBS. 

 
The structure of the paper is as follows: First a 
brief introduction to the TAU code is presented. 
Next, the proposed CAD-based aerodynamic 
shape optimization process is described to 
introduce all the steps involved. In the third 
section, the NURBS parameterization and the 
approach employed for the so called inversion 
point problem are explained. The continuous 
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adjoint formulation and how the gradients are 
referred to the control points of the NURBS are 
briefly described in the fourth section. Finally, 
the optimization framework is applied to both 
2D and 3D configurations and the results are 
shown. 

2 The unstructured TAU code 
The fluid flow over the object of interest is 
simulated with the TAU code [11]. The 
unsteady TAU code solves the compressible, 
three-dimensional Reynolds-Averaged Navier-
Stokes equations using a finite volume 
formulation and based on hybrid unstructured 
grid approach.  
 
A dual-grid approach with an edge based data 
structure is used in order to make the flow 
solver independent from the cell types used in 
the initial grid. The TAU code consists of 
several different modules, including: 
 

 The Grid Partitioner, which splits the 
primary grid into n number of subgrids for n 
processors. 

 The Preprocessor module, which uses the 
information from the initial grid to create a 
dual-grid and secondly coarser grids for 
multi-grid. 

 The Solver module, which performs the 
flow and adjoint calculations on the dual-
grid. 

 The Adaptation module, which refines and 
derefines the computational grid with 
different indicator functions. 

 The Deformation module, which propagates 
the deformation of the surface grid points to 
the surrounding volume grid. 

 The Postprocessing module, which is used 
to convert results into formats usable by 
popular visualization tools. 

 
Together all modules are available with Python 
interfaces for computing complex application, 
e.g. unsteady cases, complete force polar curves 
or fluid-structure couplings in an automatic 
framework. Furthermore, it eases the usage on 
highly massive parallel computers to execute 
applications. 

3 Introduction to the CAD-based 
aerodynamic shape optimization process 

As it has been mentioned above, the proposed 
approach is a combination of the continuous 
adjoint methodology for gradient computation 
and the NURBS definition of the geometry for 
parameterization.  
 
The CAD-based shape optimization process 
comprises the following steps:  
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Fig. 1: CAD-based optimization process 
 
3.1 CAD geometry 
 
The original geometry is an input to the process, 
and it can be obtained directly from CAD 
applications, as for example, CATIA (in IGES 
format). 

 
3.2 Selection of the Design Variables. 
Parameterization 
 
The parameterization is represented with a 
NURBS which describes the surface of the 
desired geometry. The design variables are the 
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coordinates (x,y,z) and weights of the NURBS 
control points, so for each control point there 
are four design variables. The main advantage 
of using NURBS is that it provides a global 
parameterization with a smooth surface and a 
control of the curvature while still maintaining 
the locality in the deformation. In addition, the 
optimized surface at the end of the process has 
the correct format to feed directly the CAD and 
grid generation applications.  
 

 
 14 control points = 56 DV 

 
Fig. 2: RAE2822 unstructured grid (left) and 

NURBS parameterization (right) 
 
With the possibility to handle different NURBS 
patches for each part of an aircraft, as for 
example the wing and fuselage, this 
parameterization is able to represent almost 
every kind of surface. This feature allows 
different levels of optimization; but working 
with several NURBS patches requires a correct 
treatment of the intersections and special 
considerations related to the continuity between 
patches.  
 
In practice, the NURBS description provided 
directly by CAD tools is not usually 
appropriated for an optimization process and 
should be modified, for example, by modifying 
the order of the NURBS or setting an evenly 
distribution of the control points, to improve the 
chances for a good optimization.  

 
3.3 Grid generation 
 
The grids used for simulations in this paper 
were created with the hybrid grid generation 
software Centaur, developed by Centaur Soft 
[12]. 
 

3.4 Objective Functions and Constraints 
definition 
 
The most common objective functions, as, for 
instance, minimize drag coefficient maintaining 
constant lift coefficient, are implemented in the 
optimization framework. An analysis of the 
efficiency of each objective function has been 
performed and the results will be displayed in 
section 6. 
 
During the optimization, the following 
constraints can be applied: 

 Fixed control points in all directions. 
 Fixed control points in one direction (x,y,z). 
 Fixed control points for weights. 

 
For a wing section, the most common 
constraints are to fix the control point located on 
the trailing edge and to maintain the chord 
length constant. Volumetric and other geometric 
constraints can also be applied, but the objective 
function of such problems is strongly non-
linear, so that the optimizer most likely 
converges towards a local minimum that is not 
too far from the original configuration. 
 
3.5 TAU Flow and Adjoint solver 
 
The flow and adjoint solver modules are 
executed to obtain the sensitivities values for the 
selected cost function over the surface grid 
points. It is important to remark that the 
computation of the sensitivities, using a 
continuous adjoint approach, depends only on 
the surface values (how a change of a design 
variable affects the considered cost function). 
 

 
Flow conditions:  

M=0.729, AoA=2.31º 
C-drag Sensitivity 

 
Fig. 3: Mach number (left) and sensitivity value 

(right) along the RAE2822 profile 
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As it will be shown later, the computation of the 
flow and adjoint solution consumes most of the 
required computational time in the whole 
process. 
 
3.6 Gradient computation over the NURBS 
control points 
 
The functional sensitivities over the surface grid 
points obtained from the continuous adjoint 
solution are combined now with the geometric 
sensitivities (how a movement of a design 
variable affects the surface grid) [18]. 
 
The gradients are then calculated on each 
control point of the NURBS using the following 
formulation 
 

dsnxjJ
S

)··( δδδ ∫=  (1) 

 
where δj is an adjoint solution calculated on 
each vertex of the computational grid, δx are the 
geometric sensitivities that are analytically 
calculated from the NURBS equations, n is the 
surface normal and ds is the element surface 
area. This formulation does not consider tangent 
deformations of the surface because its effect is 
considered negligible, in most cases, but the 
leading edge and the trailing edge could require 
a special treatment that includes tangential 
derivatives. Additionally, this formulation 
works if the normal is correctly calculated, 
which sometimes it is not the case at the trailing 
edge due to a discontinuity of the curvature. 
 
3.7 Optimization 
 
A simple steepest descent optimization 
algorithm has been implemented into the 
framework for testing purposes. 
 
3.8 Surface and volume deformation 
 
The surface deformation is performed by the 
modification of the NURBS control points and 
the regeneration of the surface grid using the 
parametric coordinates calculated from the 
inversion point algorithm. This guarantees that 
the vertices are always on the NURBS surface.  

The same parametric values are used during the 
whole optimization; therefore the inversion 
point step has only to be done once and its 
computational time requirements do not affect 
to the process. The design variables are the 
control point coordinates, which can move 
freely in all x, y, z directions and the weight, 
although in practice the weight is not used. 
Variations of the knots distribution and basis 
function are not considered. Additionally, a 
good practice could involve a movement of the 
control points in an average normal direction. 
 
Once the new surface grid is obtained, the 
volume grid is deformed with an advancing 
front algorithm, using the TAU deformation 
module.  
 

 
  

 
 

 
Fig. 4: RAE2822 surface (left)  
and volume deformation (right) 

4 Shape parameterization 

4.1 Introduction to shape parameterization 
into an optimization framework  

The geometry parameterization is crucial in an 
automatic aerodynamic optimization problem. 
NURBS have demonstrated to be able to 
accurately represent a large family of airfoils; 
furthermore, they are also the standard of 
geometry format definition in IGES 
(International Graphics Exchange 
Specification). In addition, from a practical 
point of view, using the same CAD format 
significantly reduces the integration effort 
necessary to carry out multidisciplinary design 
of complex configurations.  
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This parameterization ensures good smoothness 
properties [10], reducing the risk of numerical 
noise, while the parameterization is still local, 
which means that when a control point is 
moved, only a portion of the surface is 
modified, leaving the rest intact, and gives 
enough freedom for the optimizer to converge to 
an optimal design.  

4.2 Brief mathematical background of Non 
Uniform B-Splines (NURBS) 

From a mathematical point of view, NURBS 
surfaces are defined as: 
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where C are the control points spatial 
coordinates, w are the control points weights, 
and U and V are the basis functions which are 
calculated using the following expression: 
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The basis coefficients are calculated from the 
knots vectors U and V which is a sequence of 
real numbers that frequently have the form: 
 

{}1,...,1,,...,,...,0,...,0{
1

1

1 +
+

+

=
p

Iip

p

uuuU 321
 

(4)

 
Basis functions are equal to zero everywhere 
except for an interval delimited by the order of 
the NURBS, defining the area of influence of 
each control point. A more extended reference 
for NURBS can be found in [13]. 

4.3 Point Inversion Algorithm 
Any vertex of the computational grid on the 
surface should be mapped onto the original                          
CAD geometry which is stored as a set of 
NURBS. During the optimization process, using 

the parametric coordinates },{ ηξ , it is easy to 
map the vertices of the computational grid onto 
the deformed NURBS surface and obtain the 
new spatial coordinates. The process to 
transform space coordinates into the parametric 
coordinates of the NURBS is usually referred as 
the point inversion problem. That is 

},{},,{ 23 ηξℜ→ℜ zyx  
 
The parametric values are not provided by the 
grid generator application and therefore the 
point inversion is necessary. NURBS are 
rational polynomial expressions with normally 
middle or high degree, and therefore, the 
problem of finding the parametric coordinates 
analytically becomes from hard to impossible as 
the NURBS order increases.  
 
Some iterative algorithms have been considered 
to obtain these parametric coordinates: Hu & 
Wallner [14], Ma & Hewitt [15], Selimovic 
[16], also grid scan and quads, Redondo [17], 
which is essentially a variant of the bisection 
method. All these methodologies suffer from the 
same problem: they perform the task well only 
if an appropriated interval or initial value is 
provided. For making the problem even harder, 
the vertices of the grid not always match the 
NURBS surface, and the presence of 
discontinuities, intersections and kinks are also 
frequent.  
 
In order to obtain a valid initial value, the 
implemented method is based on three 
assumptions:  
 

 the normal of the vertex is known or can be 
reasonably calculated; 

 the vertex does not need to be on the 
NURBS surface but very close; 

 the parametric coordinates calculated for a 
low order NURBS are reasonably accurate 
for a higher order NURBS.  

 
With these assumptions, the intersection of a 
second order NURBS with the normal 
associated to the vertex can be calculated and 
the parametric values obtained.  
The expression of a second order NURBS is: 
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where U and V are the basis functions and G are 
the control point coordinates multiplied by its 
correspondent weight to drop it out of the 
equation.   
 

jijiji wCG ,,, =  (6) 
 
In equation (5), the right term is the parametric 
equation of a line defined by the normal N and 
the vertex P which is multiplied by the term φ; 
this term is the denominator that always appears 
in the NURBS equation which is basically 
constant if the weights are the same. 
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After expanding the above equation, a second 
order equation system is obtained in the form: 
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Solving this system for all possible combination 
of pairs {i,j}, several candidates of parametric 
values ξij and ηij are obtained. Between all those 
possible candidates, the final ones are selected 
by using a search of minimum distance and 
fulfil a condition to be valid parametric values:  
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where σu

* and σv
* are relaxation factors, which 

virtually extends the coverage of the NURBS 
out of its boundaries and kinks; e.g., 
σu

*=0.5(Ui+1-Ui). The parametric values 
calculated for a second order NURBS are close 
to the real values, or at least close enough to be 
valid initial values to be used in iterative 
methods. Additionally it provides several 
candidates if the first one fails to converge. 

4.4 NURBS for the optimization process 
In general, NURBS provided directly by the 
CAD applications are designed to accurately 
describe the geometry, but they are not the most 
appropriate ones as the initial parameterization 
in an optimization process. For example, a large 
density of control points is frequently found on 
zones with large curvature, while very sparse 
control points are found on flat zones.  
 
In order to improve the chances of a good 
optimization, it could be necessary to transform 
these NURBS into more suitable ones that fulfil 
some requirements.  For example, the optimizer 
works better with a reduced number and evenly 
distributed control points with a low order 
NURBS. By increasing the number of control 
points, the optimization could be slightly 
improved, as increases the possible shapes; but 
in this case if the order of the NURBS is still 
low, it could lead to a loss of smoothness and 
undesired bumps could appear during the 
optimization. So, there is a trade-off between 
the number of control points and the order of the 
NURBS.  

5 Fast computation of the gradients 

5.1 Continuous adjoint methodology  
The computation of the gradients or sensitivity 
derivatives of the cost function, such as drag 
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and aerodynamic efficiency, are calculated 
using the adjoint formulation [18] for normal 
deformations. 
 
The total derivative of a cost function J due to a 
design variable D can be written as: 
 

D
W

W
J

D
J

dD
dJ

∂
∂

∂
∂

+
∂
∂

=
 

(15)

 
The first term is often referred as the 
sensitivities of a functional J. Upon deformation 
of the surface, the cost function varies due to a 
variation of the geometry. In aerodynamic 
optimization problems, suitable cost function 
examples include aerodynamic coefficients like 
drag and lift, which are directly calculated from 
the pressure distribution over the aerodynamic 
surface S.  

∫= s
dsWfJ )(

 (16)

 
It is assumed that the cost function f is 
differentiable, although this assumption may not 
be valid in the presence of shock waves or other 
discontinuities, numerical dissipation in the 
implementation can mitigate this effect and 
provide an approximate solution. 
 
In this case, f has no dependency from the time 
or from the time derivatives of the flow 
variables W. So the expression can be written 
as: 
 

ds
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The equation above includes a term related to 
the geometric variation and a second term 
related to the flow variation. Cost functions as 
drag and lift are composed of terms that involve 
non geometric and geometric quantities such as 
the surface normal n. So the first term can be 
expanded containing three terms [18][19]: 
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(18) 

 

The notation δ stands for the deformation, with 
respect to the design variables D. The term δX 
denotes the deformation of the points that define 
the aerodynamic surface S, δn is the variation of 
the normal and δdS is the variation of the 
surface element upon deformation.  

The term 
dSf

S
δ∫  is usually referred as the 

curvature term [20] with the form: 
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where k and Hm are the curvature profile and 
mean curvature of the surface respectively.  
 
For the flow variation term, the adjoint 
equations are defined by introducing the 
Lagrange multiplierΛ , also referred as the 
adjoint vector or state, to the corresponding 
linearized Euler equations subject to the adjoint 
equations: 
 

0· =Λ∇⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ T

T

W
F

 
(20) 

 
where F is the inviscid flux vector. With the 
appropriate adjoint boundary conditions on S so 
as to allow the computation of the flow 
variation term [4][6][18]. Optimization is 
possible in this case with respect to any 
functional that depends on the distribution of the 
pressure on the aerodynamic surface.  
 
For drag and lift optimization problems the 
functional is defined with the following 
expression: 
 

⎩
⎨
⎧
−

== ∫ )(}cos,sin{
)(}sin,{cos
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drag
ddsdnCJ

S p αα
ααr

 
(21) 

 
where Cp is the pressure coefficient, d is the 
force direction vector and α is the angle of 
attack. By defining  
 

54321 ψρψρψρψρρψ Hwvu ++++=Ψ  (22) 



M. Martín, E. Andrés, M. Widhalm, P. Bitrián, C. Lozano 
  

8 

 
where ρ is the density, u, v, w are the Cartesian 
velocities of the fluid, H is the enthalpy, ψi are 
the adjoint variables, and by separating the 
normal and tangent parts of the deformation, 
compact expressions result for the drag and lift 
coefficients [18]: 
 

dstvvCdJ
S tgp∫ Ψ∂+Ψ∇+∇= αδ ))·()·(·(

 (23) 

 
where n and t are the normal and tangent vectors 
to the surface element respectively, and v is the 
velocity vector of the fluid. 
 
The TAU code provides the flow solution and 
the surface sensitivities. By knowing the 
parametric coordinates of the computational 
grid, it is possible to translate the surface 
sensitivities onto the control points of the 
NURBS using equation (1). 
 
The geometric derivatives δx to a displacement 
of the position of the control point through a 
Cartesian direction ek are exactly the basis 
coefficients. 

kqjpi eVUx r
,,=δ  (24) 

 
while the geometric derivative related to the 
weight of the control point is calculated with the 
following expression: 
 

)(,, ijqjpi CPVUw −=δ  (25) 
 
where P and Cij are the spatial coordinates of 
the surface element and control point 
respectively.  

5.2 Validation using finite differences  
For validation purposes, the gradients have been 
also calculated using the finite differences 
approach. The gradients obtained should be 
similar to those computed with the adjoint 
methodology. However, insufficient grid 
resolution and inaccurate normal calculation 
may degrade the solution leading to a fail in the 
optimization process.  
 

As it can be observed in the figures 6, 7 and 8, 
the gradients are similar, although there are 
important discrepancies in the gradients of the 
design variables located on the trailing edge 
(design variable number 46), where the 
definition of the normal vector is not clearly 
calculated, because of a discontinuity of the 
curvature, and the tangential component of the 
sensitivity is not considered. The deformation of 
this design variable is displayed in figure 5. 
 

 
Fig. 5: Surface deformation for design 

variable number 46 
 
 

 
 

Fig. 6: NACA0012 Adjoint (red) vs. finite 
differences gradients (green) for lift (left) and 

drag (right) coefficients 
 
 

 
 

Fig. 7: RAE2822 Adjoint (red) vs. finite 
differences gradients (green) for lift (left) and 

drag (right) coefficients 
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Fig. 8: ONERAM6 adjoint (red) vs. finite 
differences gradients (green)  

 
These discrepancies on the trailing edge are not 
of much concern, because during the 
optimization process the control point located 
there is fixed. However, an alternative method 
for calculating normal vectors in areas with 
discontinuities of the curvature and a 
formulation that considers the tangential 
component of the derivatives should be 
considered in the near future. 

6 Application to aerodynamic shape 
optimization  

In this section, the methodology is applied to the 
inviscid aerodynamic optimization of 2D 
NACA0012 and RAE2822 profiles and both 3D 
ONERAM6 wing and DLR F6 wing-fuselage 
configurations. The results are displayed and 
commented. 

6.1 Optimization of a 2D NACA0012 profile  
The design optimization is applied to a 
NACA0012 airfoil as initial design at M=0.8, 
AoA=1.25º. The NURBS curve, figure 9, has 18 
control points and is capable to represent the 
shape with reasonable accuracy.  
 

 
5.9k points, 5.7k elements 

 
18 Control Points = 72 DV 

 
Fig. 9: NACA0012 grid (left) and NURBS 

parameterization (right) 

The current study is an inviscid case, which 
accurately predicts wave shocks in a transonic 
flow regime. The design optimization problem 
selected is the minimization of the drag 
coefficient maintaining the lift coefficient into a 
range of 10% from the original. 
 

})(·10·4{

})({
3

4

o
LLLd

o
LLd

CCcc

CCaCMin

−+−=

−+

&&δ
 (26) 

 
where CD and CL are the drag and lift 
coefficients respectively, cd and cl are the 
normalized values of drag and lift coefficients 
and CL

T is the initial value of the lift coefficient.  
 
The optimization algorithm employed is a 
simple descent method in which small steps are 
taken in the gradient direction [21]. During the 
whole optimization process the maximum 
deformation is maintained constant, 
approximately 1% of the camber.  
 
During the process, the following constraints are 
applied: 
 

 The control points situated on the leading 
and trailing edge are fixed in order to 
maintain the chord line and angle of attack.  

 All control points are fixed in weight. 
 The chord is maintained constant. 

 
We can observe that the optimization process 
has reduced the wave drag by preventing rapid 
acceleration of the flow at the leading edge. As 
it can be observed in the following figures the 
shock has almost disappeared.  
 
The efficiency, in figure 10, means the lift 
coefficient divided by the drag coefficient. All 
the coefficients values are normalized with their 
initial value. 
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Fig. 10: Convergence history of the 
optimization using a NACA0012  

as initial design 
 

After 70 optimization cycles the drag coefficient 
has been reduced by more than 70% of its initial 
value, while the lift coefficient is kept constant 
in the desired range. 
 

 
 

Fig. 11: Change of airfoil shape (left) and 
pressure distribution (right) after the 

optimization process 
 
The optimization significantly reduces the 
strong shock on the upper side of the profile. 
 

 
 

Fig. 12: Distribution of the Mach number 
before (left) and after (right) the optimization 

The weak shock that appears near the leading 
edge, after the optimization, could be a 
consequence of the sensitivity formulation used. 
This fact will be further studied, and the 
tangential component of the derivatives will be 
included in the formulation to improve the 
solution. 

6.2 Optimization of a 2D RAE 2822 profile 
 
The methodology is also applied to a RAE 2822 
at M=0.729, AoA=2.31º airfoil as initial design, 
described as a NURBS curve with 14 control 
points. The grid and NURBS used for this 
optimization can be observed in figure 13. 
 

 
10.6 kpoints, 10.5kelements 14 control points = 56 DV 

 
Fig. 13: RAE2822 unstructured grid (left) 

 and NURBS (right) 
 
The objective function selected is the same as 
before: minimization of the drag coefficient 
maintaining the lift coefficient into a range of 
10% from the original. 
 
During the optimization, the following 
constraints are applied: 
 

 The control point situated on the trailing 
edge is fixed in all directions.  

 All control points are fixed in X and Y 
directions, only Z movements are allowed. 

 All control points are fixed in weight. 
 The chord is maintained constant. 

 
The convergence of lift and drag coefficients 
over the optimization steps are displayed in 
picture 14. 
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Fig. 14: Convergence history of the 
optimization using a RAE 2822 as initial design 
 
 
After 35 optimization cycles the drag coefficient 
has been reduced by 60% of its initial value, 
while the lift coefficient is kept constant in the 
desired range. 
 

  
 

Fig. 15: Change of airfoil shape (left) and 
pressure distribution (right) after the 

optimization process 
 

  
 

Fig. 16: Distribution of the Mach number 
before (left) and after (right) the optimization 

 
As it can be observed in figures 15 and 16, the 
shock has almost disappeared after the 

optimization process; however a new weak 
shock has appeared near the leading edge. 

6.3 Optimization of a 3D ONERA M6 wing 
The methodology is also applied to optimize a 
three dimensional inviscid ONERA M6 wing at 
M=0.8395 and AoA=3.06º, described as a 
NURBS surface (for both upper and lower 
surface) using 25 x 18 control points.  
 

 
40k points, 205k elements 

 
25x18 Control points 

 
Fig. 17: Grid (left) and NURBS (right) 

 

 
 

Fig. 18: Convergence history of 
optimization using an ONERA M6 wing as 

initial design 
 

As constraint, the control points located on the 
trailing edge are kept fixed in all directions. 
 
In this case, after 35 optimization cycles the 
drag coefficient has been reduced by 15% of its 
initial value, while the lift coefficient is only 
reduced by 1% (figures 18, 19 and 20).  
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Fig. 19: Airfoil shape (left) and pressure 
distributions (right) for an ONERA M6 wing  

 

 
 

Fig. 20: Distribution of the Mach number 
before (left) and after (right) the optimization. 

 
The lambda shock has been considerably 
weakened after the optimization process. 
 

6.4 Optimization of a 3D DLR F6 wing-
fuselage configuration 

To complete the study a more complex test is 
chosen for optimization. The selected one is the 
DLR F6 configuration, which is a simplified 
wing-fuselage geometry that has been used in 
the past for validation of CFD codes at the 

second [22] and third [23] AIAA sponsored 
Drag Prediction Workshops. The computational 
grid has 218 kpoints and 1.2 mill. elements. The 
flow conditions are a free-stream Mach number 
of 0.8 and a fixed angle of attack at 0 degree. 
 
For the wing optimization problem, a NURBS 
surface is defined over the F6 wing using 33 x 
21 control points (figure 21).  
 

 
218k points, 1200k elements 

 
33x21 Control points 

 
Fig. 21: DLR F6 Euler grid (left) and 

NURBS parameterization of the wing (right) 
 
 

 
 

Fig. 22: Convergence history of the 
optimization using a DLR F6 wing  

fuselage as initial design 
 

The control points located on the trailing and 
leading edge are kept fixed in all directions. In 
addition, the rows of control points close to the 
fuselage are kept constant too, in order to handle 
the intersection. 
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In this case, we used a high optimization step in 
order to reduce the required computational time. 
After 12 optimization cycles the drag coefficient 
has been reduced by 10% of its initial value, but 
the lift coefficient is also reduced by 8% 
(figures 22, 23 and 24).  

 

 

 

 
 

Fig. 23: Sections of the airfoil shape (left) and 
pressure distributions (right) after the 

optimization process 
 

 
 

Fig. 24: Distribution of the Mach number 
before (left) and after 10 optimization cycles 

(right). 
 
The shock wave presented in the initial 
configuration has been slightly decreased as can 
be observed in the Cp distribution along the 
wing. 

However, the results obtained in this 
configuration are not as good as expected, and 
further work will be necessary to improve 
different steps. In particular, the location of the 
control points over the wing can considerably 
affect the optimization process, and therefore, 
different distributions of control points over the 
wing surface will be further investigated. 
 

6.5 Execution time considerations 
 
In order to measure the efficiency of the 
proposed methodology in terms of 
computational time, a profiling has been 
performed for an optimization cycle in the 
ONERA M6 wing configuration. 
 
The results are displayed in the following table: 
 

STEP TIME 
(seconds) 

% 

Point Inversion 
(only needed 1 

time in the whole 
process) 

142  

 
Preprocessing 1 0.18 % 
Flow Solver 314 58.97% 

Adjoint solver for 
drag coefficient 

110 20.66% 

Adjoint solver for 
lift coefficient 

106 19.90% 

Gradient 
computation 

0.5 0.1% 

Surface 
deformation 

0.01 <0.01% 

Volume 
deformation 

1 0.18 % 

TOTAL per cycle 532.51  
 

As it can be concluded from the table above, the 
most time consuming steps are the flow and 
adjoint solver execution. The rest of the process 
is almost negligible in terms of computational 
requirements. 
 
For the flow solver the residual density 
magnitude has been decreased until 10-11, while 

y=0.25 y=0.25 

y=0.5 y=0.5 

y=0.75 y=0.75 
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for the adjoint solver it has been decreased only 
until 10-3, because it has been observed that it is 
enough for a good quality of the gradients [24]. 
 

The total execution time using 50 cycles for the 
optimization of the 2D NACA0012 profile was 
3000 seconds (50 min.), while the optimization 
of the 3D ONERA M6 wing took 26.000 
seconds (~7h), using a sequential run on a Linux 
x86 computer. 
 

6.6 Comparison of three different objective 
functions for the 2D NACA0012 profile 

optimization 
The objective function employed in equation 
(26) is very specific for the optimization 
problems performed in this paper, and the 
arbitrary parameter a has been designed to be 
very restrictive with the lift. Having strong 
constraints, there is a possibility that the 
optimization stagnates without converging to 
any optimal profile. For completeness purposes, 
different objective functions have been selected 
to analyze how the optimization performs.  
 
These objective functions have the form: 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
M

o
L

T
LL

N

o
d

d

C
CCa+

C
CMin  (27) 

 
and 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
M

o
L

T
LL

N

L

d
o

d

o
L

C
CCa+

C
C·

C
CMin  (28) 

 
The objective function of equation (27) is in fact 
a generalization of the objective function of 
equation (26). On the other hand, equation (28) 
means the maximization of the efficiency with a 
target lift CL

T. In these objective functions, the 
drag and lift coefficients are normalized with 
the initial values CL

o and CD
o to create more 

general functions. In the following cases, the 
arbitrary parameter a is taken as 1. By 
increasing a the function will be more restrictive 
with the lift.  
 

The first objective function is taking N=1, and 
M=2. 
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(29) 

 
The evolution of the drag, lift and efficiency 
during the optimization process is shown in 
figure 25. 
 

 
Evolution of the lift (green) and drag (red) coefficients and efficiency 

(blue) during the optimization process 

 
Fig. 25: Optimization results  
for the objective function (29) 

 
 

The second objective function is taking N=2, 
M=2.  
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(30) 

 
The evolution of the drag and lift coefficients is 
displayed in figure 26. 
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Evolution of the lift (green) and drag (red) coefficients and efficiency 

(blue) during the optimization process 

 
Fig. 26: Optimization results for  

the objective function (30) 
 
The third objective function is taken from 
equation (28) with N=1, and M=2. 
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(31) 

 

 
Evolution of the lift (green) and drag (red) coefficients and efficiency 

(blue) during the optimization process 

 
Fig. 27: Optimization results  
for the objective function (31) 

 

In these examples, the optimization does not 
stop when a maximum efficiency is achieved, 
because typically the lift should also be into a 
range, which could be 10% from the original 
lift.  
 
All optimizations lead to a similar profile and 
there are no noticeable differences in the 
optimized geometry obtained using the 
described objective functions. All simulations 
converge to a maximum efficiency at similar 
times, and the drag is quickly reduced to about 
80%. But the behavior of the optimizations with 
respect the lift is different.  
 
In the optimization performed by equation (29) 
the drag is quickly reduced but it took some 
cycles to recover the lift into the required range. 
On the other hand, using the deformation 
function in equation (30), the drag sensitivities 
are multiplied by the actual drag coefficient, so 
there is potentially a better correction of the lift 
coefficient as the drag value decreases.  
 
Nevertheless, it seems that in these objective 
functions the arbitrary parameter should be 
manipulated to force the lift into a range. Finally 
the optimization performed by equation (31) 
behaves better than the previous ones, obtaining 
a higher efficiency while the final lift coefficient 
is close to its original value. 

7 Conclusions and future work 
This work has presented an efficient tool for 
CAD based shape aerodynamic design in 
inviscid configurations. This tool is fully 
integrated with the TAU code and is capable to 
optimize by considerably weakening the shock 
wave. Next short-term step is to include the 
tangential components to the sensitivity 
formulation expecting to increase the accuracy 
of the gradients.  
 
Future work will extend the framework to 
viscous configurations and analyze the influence 
of the distribution of the NURBS control points 
in order to improve the convergence on the 
pursuit of finding a global optimal design. In 
addition, the point inversion algorithm will be 
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further studied to improve its efficiency. On the 
other hand, aspects related to the curvature, 
volume and mechanical constraints will be 
applied to avoid unrealistic profiles.   
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