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Abstract

Airfoil optimization frameworks rely on exten-
sive computational resources to provide the most
feasible design for the required flight condition.
Extending the framework to encompass multiple
design criteria adds further complexity due to the
conflicting nature of the design objectives. In this
paper, we propose the integration of designer-
driven preferences into a multi-objective particle
swarm heuristic to efficiently navigate the design
space. This results in a highly accurate and pro-
ficient rate of convergence, since only preferred
regions of the Pareto landscape are explored. The
algorithm is introduced and applied to a typical
transonic airfoil design scenario where the ob-
jective value is provided by a Reynolds-averaged
Navier-Stokes solver. Experimental case-studies
are presented, which highlight the computational
efficiency of the user-preference algorithm.

1 Introduction

Progress in automated optimization and numer-
ical modelling has led to the development of
innovative engineering design frameworks. In
recent times, focus has shifted towards the in-
tegration of multiple disciplines and objectives.
High-fidelity engineering design problems are
not easily managed, since the objective solver is
computationally intensive, and the design land-
scape is generally multi-modal [1]. It may also
prove difficult to screen through all possible
design candidates, due to the conflicting nature
of the objectives. Identifying and screening all

possible candidates can be avoided if the designer
has a reasonable understanding of the preferred
level of compromise between the design objec-
tives. This could be based on the designer’s own
refined knowledge of the problem domain, or
data obtained from existing solutions [2]. This
research draws on the recent progress achieved
in interactive optimization to develop a designer-
driven airfoil aerodynamic design synthesis.

For airfoil shape optimization, intelligent
search algorithms are used to screen through
candidate designs, which are ranked by Compu-
tational Fluid Dynamics (CFD) solvers. Classical
optimization techniques, such as the gradient-
based methods, have been successfully applied
to airfoil design [3, 4]. However, such meth-
ods are restricted since they generally require
that the objective function satisfy continuity and
derivability conditions. Furthermore, since only
one candidate solution is progressed, several runs
are required to generate a set of Pareto-optimal
solutions. By contrast, population-based Evo-
lutionary Multi-Objective (EMO) algorithms are
able to search for all Pareto-optimal solutions
in one single run, providing the designer full
flexibility in selecting the most appropriate so-
lution [5, 6, 7]. In this paper, an optimization
algorithm based on the Particle Swarm Opti-
mization (PSO) heuristic is proposed. PSO is
a fairly recent addition to the existing list of
evolutionary methods, and is derived from the
choreography of bird flock [8]. Particles identify
and exploit promising areas of the design space
by learning from previous experience and emu-
lating the success of other particles. PSO has
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proven to be an effective technique to facilitate
single-objective optimization problems, and has
since gained rapid popularity in multi-objective
optimization [9].

Despite the advantages offered by EMO, they
may become computationally intensive since
they are not guided by the differential landscape
of the objective function. Furthermore, the pro-
cess may converge pre-maturely if the objective
landscape is multi-modal or the design space is
large. Conventional EMO algorithms perform
an ‘unguided’ search of the design space, sub-
sequently providing a feasible set of solutions
to the designer. Interactive methods incorporat-
ing the designer require various levels of user-
input to obtain preferred solutions [10]. These
classical methods are often disregarded since the
required user-inputs (e.g. targets or bias weights)
are generally not known in advance [5, 11].
There has however been increasing interest in
coupling classical interactive methods to EMO
algorithms as an intuitive way of specifying user-
preferences [12, 13, 14]. Such methodologies
focus all computing effort on preferred regions
of the Pareto landscape, to find only solutions of
interest to the designer. Interactive EMO have
proven to be highly proficient in comparison to
conventional EMO, especially in dealing with
many objectives or multi-modality [2, 15]. This
hybrid methodology is viewed as an improve-
ment over traditional hybrid or memetic algo-
rithms [16, 17], since additional function evalua-
tions are not required to promote an accurate and
accelerated rate of convergence.

In this paper, we present the framework of
the user-preference module and discuss its in-
tegration into a multi-objective PSO algorithm
(UP-MOPSO). The parameterization scheme and
flow solvers adopted are described. A mod-
ified Hyper-Volume (HV) metric is utilized to
highlight the convergence proficiency of the UP-
MOPSO algorithm over a conventional unguided
MOPSO algorithm. Conclusions are presented
and avenues for future research are proposed.
Future endeavours will concentrate on the adap-
tation of the framework to encompass multiple
disciplines and surrogate assistance.

2 Direct Optimization Framework

An efficient strategy for the Direct Numeri-
cal Optimization (DNO) of transonic airfoils in
cruise is presented (see Fig. 1). In transonic op-
timization, emphasis is placed on limiting shock
drag losses and reducing shock-induced bound-
ary layer separation at the desired operating con-
dition. This generally occurs at the expense of
excessive pitching moments due to aft loading
and poor performance under off-design condi-
tions. To improve on each of these design crite-
ria, requires the formulation of a Multi-Objective
Problem (MOP). In mathematical terms, a MOP
is defined as:

min
~x∈X

f (~x) = { f1(~x), . . . , fm(~x)} (1)

where m is the number of objectives, and the
solution~x = {x1, . . . ,xn} is in then-dimensional
hypercubeX ∈ R

n, where X is the feasible
search space. Solutions to Eq. 1 are classified
Pareto-optimal, each providing a specific level of
compromise between the objectives. To mathe-
matically establish this concept, let two sets of
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Fig. 1 Preference-based optimization framework
for direct airfoil shape optimization
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decision vectors,~a,~b ∈ X . The decision vector~a
strictly dominates~b (denoted by~a ≺~b) if,

∀i ∈ (1, . . . ,m) fi(~a) ≤ fi(~b)

and ∃i : fi(~a) < fi(~b)
(2)

It follows that a feasible solution~a∗ is Pareto-
optimal if there is no other feasible solution~a∈X
such thatf (~a)≺ f (~a∗). The set of Pareto-optimal
solutions is called the Pareto front.

The simplest way of determining the most
‘preferred’ solution is to aggregate the objectives
into a single scalar through weights. However,
this requires knowledge of the weight terms a
priori which is often not possible. Furthermore,
aggregation will not necessarily guarantee com-
plete equivalence to the actual Pareto-optimal
solution [11]. Alternatively, using the dominance
criteria, a set of Pareto-optimal solutions can be
determined in one single run.

2.1 UP-MOPSO Algorithm

The User-Preference Multi-Objective Particle
Swarm Optimization (UP-MOPSO) algorithm
applies the dominance criteria to explore the
permissible design space, and identify the region
of the global Pareto front. A reference point
is projected on to the Pareto landscape by the
designer to guide the search towards solutions of
interest. This is an intuitive method to express the
designer’s preferred level of compromise, which
could be based on some existing airfoil design.
This results in a spread of ‘preferred’ Pareto-
optimal designs which offer the most resem-
blance in compromise to the reference point. The
additional guidance provided by the reference
point constitutes a highly proficient convergence
rate, coupled with greater precision in the ex-
ploitation of solutions, due to the locally focused
search effort.

2.1.1 Particle Flight

The (MO)PSO heuristic utilizes a swarm of par-
ticles which are ‘flown’ throughX ∈ R

n. The
ith particle of the swarm is represented by the
n-dimensional vectors~xi and~vi, which are the

particle position and velocity respectively. In
this paper, the global best PSO by Clerc and
Kennedy [18] has been adopted. Theith particle
is accelerated towards its personal best position,
~pi and the global best position,~pg of the swarm.
The velocity vector at timet +1 is a resultant of
these two acceleration components.

~vi,(t+1) = χ [~vi + c1r1(~pi −~xi)+ · · ·

· · ·c2r2(~pg −~xi)]t
(3)

~xi,(t+1) =~xi,(t) +~vi,(t+1) (4)

Where the acceleration coefficientsc1 = c2 =
ϕ/2 andϕ = 4.1. r1 andr2 are uniform random
numbersU(0,1) and provide the stochastic ele-
ment of the algorithm. The constriction factor
χ applies a dampening effect as to how far the
particle explores within the search space, given
asχ = 2/|2−ϕ −

√

ϕ2−4ϕ|.

2.1.2 Global Repository

Pareto-optimal solutions are all classified as
equally optimal, hence there are several global
best solutions or swarmleaders. At each time-
step, the best representative front found by the
particles is stored within an elitist archive. Solu-
tions in the archive are non-dominated and have
no record of constraint violation. To avoid over-
population of the archive, a limited number of
solutionsNb are permitted for entry. Each solu-
tion within the archive is identified as a possible
global leader.

2.1.3 Mutation

Despite its favourable convergence rate, the per-
formance of PSO may deteriorate when con-
fronted with a highly multi-modal problem [11,
9]. This could lead to pre-mature convergence
as a result of the swarm being trapped within
a local front. In this algorithm, a non-uniform
Gaussian mutation operator is applied to par-
ticles in the archive, with a 10% dimensional
probability. To ensure that the mutation is non-
destructive, mutated particles are cross-validated
against existing non-dominated solutions. The
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mutation operator comes to effect when non-
dominated solutions are not regularly updated.
The percentage of mutated particles reduces as
the size of the archive→ Nb.

2.1.4 Integrating User-Preferences

To provide additional guidance in selecting can-
didates for global leadership from the elitist
archive (see section 2.1.2), the reference point
method is adopted, following the work of Wick-
ramasinghe and Li [12]. This directs the swarm
towards preferred regions of the Pareto front. A
reference point ¯z is used to construct a distance
metric which is to be minimized overX ,

minimizedz = max
i=1:m

{wi ( fi (~x)− z̄i)} (5)

where ¯zi is the ith component of the reference
point or the aspiration value to theith objective.
The termwi is the weight value for theith fixed at
one for the proceeding case studies. Reference
points can ideally be placed in any feasible or
infeasible region, since the designer generally has
no prior knowledge of the Pareto front.

2.1.5 Algorithm Pseudo-Code

The UP-MOPSO algorithm combines the search
strategy of (MO)PSO with the interactive ref-
erence point method. UP-MOPSO applies the
dominance criteria concurrently with Eq. (5) to
find a feasible set of Pareto-optimal solutions
near the reference point. The spread of solutions
along the Pareto front is controlled byδ . This
parameter is defined as the maximum variance of
the solutions’ distance metricσ(dz). The extent
of the solution spread is directly proportional
to the variance and evidently, as the value of
δ escalates, the influence of the reference point
location nullifies.

Solutions that are highly ranked according
to Eq. (5) are selected as candidates for global
leaders and assigned randomly to each particle
in the population. If the solution limit of the
repository is breached, lowest ranked solutions
become candidates for replacement. Once the
spread of solutions satisfiesσ(dz) ≤ δ , a crowd-
ing metric is used to select candidates for global

leadership to promote an evenly distributed set of
solutions. Particles in sparsely populated areas
of the preferred region then become candidates
for global leadership. Similarly, particles in
densely populated areas become candidates for
replacement.

The UP-MOPSO pseudo-code is presented in
Fig. 2 below:

Initialize~x
Initialize~v
for i = 1 : Swarm Population,Ns do

Calculate objectivefi

Calculate constraintci

Calculate distancedz

end for
Initialize~xi =~x
Insert non-dominated solutions into archive
Sort archive according to minimumdz

Initialize t = 0

while t < tmax do
t = t +1
Assign global leaders from 10% of archive
Update~v using Eq. 3
Update~x using Eq. 4
for i = 1 : Ns do

Calculate objectivefi

Calculate constraintci

Calculate distancedz

end for
Update archive
if size(archive) < Nb then

Replace with maxdz

end if
if Mutationthen

Re-Update archive
end if
if σ(dz) > δ then

Sort archive according to minimumdz

else if σ(dz) ≤ δ then
Sort archive according to crowding

end if
end while

Fig. 2 UP-MOPSO algorithm pseudo-code

Figs. 3 and 4 demonstrate the UP-MOPSO
algorithm applied to benchmark mathematical
test functions. The ZTD3 [19] test function has
a discontinuous Pareto landscape, which is repre-
sentative of aerodynamic design problems. The
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Fig. 3 UP-MOPSO on ZTD3 test problem
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Fig. 4 UP-MOPSO on DTLZ2 test problem

DTLZ2 [20] test function is multi-modal and has
a concave Pareto surface. A population of 100
particles is flown for 100 time-steps, withδ =
5×10−2. It is clearly observed that only particles
which are closest to the preferred regions reside
on the Pareto fronts.

2.2 Computational Flow Solver

The finite volume code Fluent [21] is utilized to
assign objective values. A pressure-based numer-
ical procedure is adopted with third-order spatial
discretization. The momentum equations and
pressure-based continuity equation are solved
concurrently, with the Courant-Friedrichs-Lewy
(CFL) number set at 200. The Spalart-Allmaras
closure equation [22] is applied assuming turbu-
lent flow over the entire airfoil.
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Fig. 5 RANS grid for transonic optimization

A C-type grid, stretching 25 chord lengths
aft and normal of the airfoil section is used for
the Fluent simulation. Resolution of the C-grid
is 460×65 providing an affordable mesh size of
approximately 30,000 elements. The first grid-
point is located 2.5×10−4 units normal to the
airfoil surface, resulting in an abverage y-plus
value of 120. A Full MultiGrid (FMG) Initial-
ization scheme is employed, with coarsening of
the grid to 30 cells. In the FMG initialization
process, the Euler equations are solved using
a first-order spatial discretization to obtain an
approximation of the flowfield before submitting
to the full iterative calculation.

2.3 Shape Representation

Shape representation is perhaps the most im-
portant contributing factor to an optimization
framework, since it effectively defines the multi-
modality and topology of the design space [23].
In this research, we have opted for the use
of the PARSEC method [24]. This method
has the advantage of providing strict control
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Fig. 6 PARSEC airfoil representation
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over the airfoil geometry for imposing shape
constraints. Illustrated in Fig. 6 are the basic
eleven parameters that are used to completely
define the profile geometry. They include the
leading edge radiusrLE , the upper and lower
crest locations(xup,zup,xlo,zlo) and curvatures
(zxxup ,zxxlo), trailing edge coordinatezT E and
thickness∆zT E , trailing edge directionαT E and
wedge angleβT E . The trailing edge coordinate
zT E and thickness variable∆zT E are equal to zero
and have been omitted.

The PARSEC method has been modified to
include an additional trailing edge variable,δαT E .
Additional control over the trailing edge curva-
ture is beneficial in order to reduce the proba-
bility of downstream boundary layer separation,
giving rise to increased drag values. Further
details of this modification are available in the
original paper by Jahangirian and Shahrokhi [25].

Given the designer’s refined knowledge about
the occurring flow phenomena, the PARSEC
parameters may be restricted to conform to a
specific family of airfoils. This is achieved
through inverse mapping of benchmark profiles
that have been developed (either by experimental
or computational methods) to perform favourably
in transonic flow. Parameter ranges were de-
termined (see Table 1) from a statistical sample
of the benchmark profiles. Defining the airfoil
boundaries through inverse mapping as opposed
to arbitrarily selecting boundaries is advanta-
geous to bypass poorly performing areas of the
design space [26]. A thickness constraint is
explicitly defined through the parameter ranges

Index Variable Upper Lower
1 rLE 0.0063 0.0151
2 αT E 0.2405(-) 0.0026(-)
3 βT E 0.0655 0.2618
4 xup 0.3170 0.5250
5 zup 0.0497 0.0683
6 zxxup 0.5135(-) 0.2393(-)
7 xlo 0.2835 0.3418
8 zlo 0.0603(-) 0.0478(-)
9 zxxlo 0.2535 0.8405
10 δαT E 0.0080(-) 0.3696

Table 1 PARSEC ranges for transonic optimization

as approximately 9.75% of chord.
The ability to conform to transonic airfoils

is best visualized by comparing resultant pres-
sure distributions. The PARSEC method with
additional trailing edge control, ˆz was used to
conform to the transonic RAE2822 airfoil,z.
The PARSEC conformed airfoil was then sub-
sequently analysed using the Fluent solver de-
scribed in section 2.2. The Fluent simulation
was compared to the experimental pressure dis-
tribution for the flight condition of M = 0.73,
α = 3.19◦ (corrected to 2.79◦ for wind-tunnel
effects) and Re = 6.5×106. This corresponds to
case 9 of Cook et al. [27].

From visual inspection of Fig. 7, the error
(z2− ẑ2) is very small in magnitude, particularly
in the vicinity of the trailing edge. However,
slight deviations in the airfoil geometry are am-
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plified when comparing theCp distributions, as
shown in Fig. 8. Despite the location of the
shock shifting upstream, a reasonable agreement
is obtained at the leading edge and trailing edge.
Errors in theCp distributions may also arise due
to the fidelity of the solver, albeit both methods
have been regarded as suitable for design opti-
mization studies.

3 Experiments and Results

We present a series of airfoil design case studies.
Firstly, experiments are conducted using a low-
fidelity Euler solver with and without reference
point specification. We hereby refer to the
MOPSO algorithm with no reference point as the
‘unguided’ algorithm. The Euler solver is com-
putationally inexpensive yet still able to capture
important shock-flow phenomena. An example
high-fidelity transonic case study adopting the
Fluent RANS solver is then presented, for robust
aerodynamic performance.

3.1 Performance Metric

There are several popular performance metrics
that are used to monitor the solution spread and
accuracy of EMO algorithms [19]. To moni-
tor convergence and solution spread the Hyper-
Volume (HV) metric described in Wickramas-
inghe, et al. [2] is used. The HV metric gives
the total volume bounded by the points on the
solution front and the nadir point. At the nadir
point, all objectives are at their worst values si-
multaneously. When comparing the performance
of two algorithms, the one which provides a bet-
ter HV value is considered more proficient. Each
experiment is repeated two times and the HV
curve is a representation of the average progress
of each algorithm. The HV metric provides a
measurement on both the spread and closeness of
the solution to the Pareto front.

3.2 Two-Objective Example

A swarm population of 100 is flown for 200 time-
steps. The objectives are to minimizef1 = Cd for
M = 0.75,Cl ≥ 0.70 and f2 = Cd for M = 0.79,

Cl ≥ 0.40. An additional two decision variables
are introduced for this problem, which are the
anglesα f1,α f2 ∈ [−1◦,1◦]. A constraint on the
moment coefficient is imposed asC2

m ≤ 0.04 for
both operating conditions. The reference point
is given as ¯z = (0.0062,0.0033) with a solution
spread ofδ = 0.001.
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It is observed from Fig. 9 that both algorithms
have arrived to global Pareto front. However,
the UP-MOPSO algorithm has a far superior
convergence rate and provides a more precise set
of solutions, as shown in Fig. 10.
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Fig. 10 Multi-point design HV curves

3.3 Three-Objective Example

A swarm population of 100 is flown for 200 time-
steps. The objectives are given asf1 = Cd/C2

l
and f2 = C2

m for the design Mach number of M

7



R. CARRESE, H. WINARTO, J. WATMUFF

= 0.80. Additionally, the algorithm is required
to find solutions which do not exhibit a high drag
rise with an abrupt change in velocity, wheref3 =
∂Cd/∂ (10·M) for ∆M = 0.03. The angleα is
varied within the range[−1◦,1◦]. The reference
point is given as ¯z = (0.025,0.014,0.012) with a
solution spread ofδ = 1×10−2.
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It is clearly shown that the benefits of adopt-
ing the UP-MOPSO algorithm are apparent for
three-objective problems. The unguided algo-
rithm explores all regions of the Pareto land-
scape, and has converged pre-maturely to a sub-
optimal front. On the contrary, the UP-MOPSO
arrives at the global Pareto front (despite the
infeasible location of ¯z) within the allocated num-
ber of time-steps. Since the HV metric (see
Fig. 12) is a measure of both convergence and
solution spread, the small increments in the HV

value ast → 200 are accredited to improvements
in solution uniformity and spread.

3.4 High-Fidelity Design

We now apply the high-fidelity solver and the
UP-MOPSO algorithm to a typical transonic de-
sign scenario. The algorithm is applied to the
re-design of the NASA-SC(2) 0410 reference
airfoil [28] for an abrupt change in flow velocity.
The objectives are stipulated asf1 =Cd×104 and
f2 = C2

m for M = 0.79, Cl ≥ 0.4, and the drag-
rise gradientf3 = ∂Cd/∂ (10·M) for an abrupt
change in∆M of 0.03. The abrupt change in
velocity does not considerCl correction. The
angleα is varied within the range[−1◦,1◦]. The
aspiration values are obtained using the Fluent
solver, given as ¯z = (85.1,0.0106,0.0297).

The simulation is performed with 10 cores us-
ing the Tango cluster of the Victorian Partnership
for Advanced Computing (VPAC). Each compute
node has two AMD Barcelona 2.3GHz quad core
processors. The average computational time re-
quired per time-step is approximately 1.25 hours.
The optimization sequence was terminated after
t = 125 time-steps, since no collective improve-
ment in the 75 obtained solutions was recorded.
Fig. 13 shows the progress of the Pareto front
over a number of time-steps. Solutions were not
recorded to enter the preferred region untilt = 35.

For the purposes of this paper, the most ‘pre-
ferred’ solution is ideally selected as the highest
ranked solution according to Eq. (5). The concept
of the solution spread offers flexibility to the
designer if they were otherwise slightly inclined
towards a specific objective. For this problem,
the algorithm was successful in obtaining a solu-
tion which exhibits improvement over all three
objectives compared to the reference solution
(i.e. z̄ is dominated). The preferred airfoil
geometry is shown in figure 14 in comparison
with the NASA(SC) 0410. The preferred airfoil
has a thickness of 9.81% chord, and maintains a
moderate curvature over the entire upper surface.
There is relatively no aft curvature on the lower
surface and trailing edge, which results in the
improvedCm value.
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Fig. 13 Progress of Pareto front for robust single-point transonic design

The airfoil requires an angleα = 0.812◦

to satisfy the lift constraint. Values for the
objective functions are given in table 2. The
preferred airfoil has a significantly weaker shock
in comparison to the 0410, highlighted by the
Cp distributions of Fig. 15, and the static pres-
sure contours of Fig. 16. This is predominantly
due to the upper surface curvature, which does
not produce excessive flow acceleration. An
improvement of 4.1%, 30.7%, and 11.1% is
recorded over the respective aspiration values.
Fig.16(b) demonstrates the drag rise curves for
the preferred solution compared with the 0410.
Also shown is the solution which provides the
most robust design (i.e. minf3). The most robust
design is clearly not obtained at the expense of
poor performance at the design condition. The
concept of the preferred region ensures that only
solutions which slightly deviate from the com-
promise provided by ¯z are identified.
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Fig. 14 Final preferred airfoil geometry

4 Conclusion

In this paper, we have presented a novel strategy
to incorporate designer-driven preferences into
a multi-objective particle swarm algorithm for
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(a) Cp distribution forM = 0.79,Cl = 0.4
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(b) Drag rise curves for abrupt changes in M
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Fig. 15 Comparison between optimized airfoil and NASA-SC(2) 0410 airfoil

(a) NASA-SC(2) 0410 reference airfoil (b) Preferred airfoil

Fig. 16 Static pressure contours for M = 0.79 design condition

Airfoil M Cl Cd ×104 Cm ∂Cd/∂ (10·M)
Preferred 0.79 0.40 81.7 -0.0713 0.0264 at∆M = 0.03

NASA-SC(2) 0410 0.79 0.40 85.1 -0.103 0.0297 at∆M = 0.03

Table 2 Preferred airfoil results for robust single-point transonic design

airfoil design. The user-preference module func-
tions as a guidance mechanism for the swarm,
by selecting candidates for global leaders based
on an inexpensive reference point distance met-
ric. This results in a final set of Pareto-optimal
designs which provide the most resemblance in
compromise to the reference point.

It was demonstrated through a series of direct
optimization case-studies that the design frame-

work is proficient in handling multi-modal land-
scapes with at least three conflicting objectives.
The user-preference optimizer is observed to
overcome problems that generally plague evolu-
tionary multi-objective heuristics such as conver-
gence over large design spaces and the exploita-
tion of individual solutions. This is viewed as
an improvement over traditional hybrid method-
ologies, since no additional function evaluations

10
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are required to promote an accurate and proficient
rate of convergence. A high-fidelity experiment
was performed in parallel incorporating a RANS
solver. Results were observed to offer significant
improvement over the reference airfoil. The
adaptation of the reference point method to in-
corporate a solution spread offers the designer
flexibility in selecting a solution which is more
favourably inclined towards a specific design
objective.

The next focus of this research is to adapt the
framework for surrogate-assisted optimization.
The user-preference module may establish an
effective criterion for training response surface
methods to model preferred regions of the ob-
jective landscape. This technique offers promise
towards managing airfoil multi-disciplinary op-
timization problems which are restricted by a
computational budget.
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