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Abstract  

This paper attempts to design a guidance law 

using bifurcating potential fields for a swarm of 

autonomous Unmanned Aerial Vehicles (UAVs). 

We consider an autonomous flight system that 

can create different swarming patterns so as to 

guarantee obstacle and vehicle collision 

avoidance. The guidance law, which is derived 

from a steering and repulsive potential field, can 

express variable geometric patterns for a 

formation flight of UAVs. The system can 

transition between different formation patterns 

by way of a simple parameter change. 

!umerical simulation is performed to verify the 

validity of the proposed guidance law. 

1 Introduction 

A flight system using multiple Unmanned 

Aerial Vehicles (UAVs) has recently attracted 

interest for applications such as scientific data 

collection and reconnaissance for civil or 

military purposes. Flight control systems have 

been studied [1-5] in order to achieve more 

advanced applications that cannot be achieved 

by means of a single UAV. However, guidance 

and control laws become more complex as the 

number of UAVs increases. 

Artificial potential fields have been applied 

to the design of controllers for swarming 

systems [5-11]. The basic concept behind this 

theory is to create a workspace in which each 

UAV is attracted toward an equilibrium state, 

the stability of which is generally guaranteed by 

Lyapunov’s second method. However, the 

control system may become complex for the 

case in which the goal state is allowed to vary 

during a mission. Bennet and McInnes have 

applied classical bifurcation theory to the 

potential field to overcome this problem [4, 5]. 

Their method, which is simple and can be 

quickly executed, can allow for different 

configurations to be formed through a simple 

parameter change of the potential function. 

Several methods using artificial potential 

fields have been proposed in recent years with 

regard to formation control [12-15]. Most of 

these methods use artificial potential fields 

simply to avoid collisions and for guidance to a 

desired position. In the present paper, we expand 

the previous guidance method using bifurcating 

potential field so as to be able to achieve a 

three-dimensional flight configuration by 

applying a new technique for using artificial 

potential. The goal of the present study is to 

develop a guidance method for a mission, such 

as three-dimensional formation flying of UAVs, 

and to verify the validity of the newly developed 

guidance method through numerical simulations.  

2 Formation Flying 

2.1 Guidance Law 

Figure 1 shows the inertial coordinate 

system o-xyz and position vectors of the UAVs. 

 Fig. 1. Definition of position vectors 
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We consider a swarm of homogeneous 

UAVs, which are treated as particles, each of 

which interacts via a velocity field vi (i =1, …, 

n) using a steering potential F
S
 and a repulsive 

potential F
R
 governed by the following equation: 
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The desired command speed, heading angle, 

and pitch angle of each UAV are then obtained 

as follows: 
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where vx,i, vy,i, and vz,i are the axial components 

of the desired command speed vd,i.  
The desired roll angle command φd,i is 

defined as follows: 

( )idiid K ,, ψψφ ψ −= , (5) 

where Kψ is the gain of the roll angle command, 

and ψ  is the heading angle.  

The steering potential [4] F
S
 is defined as 

follows:  
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where Ch represent the amplitude of the 

hyperbolic potential function, µ  is the 

bifurcation parameter, Ce and Le represent the 

amplitude and length scales, respectively, of the 

exponential potential function, and ρ  and σ are 

the parameters of the desired formation pattern, 

as denoted by subscript d. We define ρi so as to 

be able to form a ring or line formation and σi so 

as to be able to form a three-dimensional 

formation by the following equations: 
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where a, b, and c represent the vector 

components of σi.. 

Three-dimensional formation flying can be 

achieved by manipulating parameters a, b, and c 

which can change the angle of the formation 

pattern. If a = 1, b = 0, and c = 0, then a 

formation pattern that is parallel to the y-z plane 

is generated. In the case of a = 1, b = 1, and c = 

1, a formation pattern that is inclined at an angle 

of 45 degrees to the x-y, y-z, and z-x planes is 

generated. 

Depending on the value of µ, the steering 

potential can change the positions of stationary 

points and take on various forms. Figures 2(a) 

and 2(b) show examples of the velocity field 

when µ is negative and positive, respectively. 

 
In particular, the steering potential has one 

state of dynamical equilibrium at a desired 

distance ρd, as shown in Fig. 2(a) when the 
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parameter µ is negative. On the other hand, 

when µ is positive, the steering potential has two 

stationary states, as shown in Fig. 2(b). 

    These results imply that the formation 

pattern can be changed easily through 

manipulation of the parameters µ , ρ, a, b, and c.
 

The repulsive potential [16] is defined in as 

follows: 
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where Cr and Lr represent the amplitude and 

length scales of the repulsive potential function, 

respectively, and | rij | = | ri – rj |.  

The total repulsive bound velocity on the i
th

 

UAV is dependent on the position of the other 

(n-1) UAVs in the formation. The repulsive 

potential is therefore used to ensure that the 

UAVs do not collide with each other as they are 

steered toward the goal state. 

In applying the proposed methods, it is 

important that the stability of the system be 

determined in order to ensure that the described 

behaviors will occur. In order to determine the 

stability of the system, we consider two methods, 

namely, Lyapunov’s Second Theorem and an 

eigenvalue analysis of the linearized equations 

of motion. [4, 5] The results of this analysis 

indicate that the system can always be 

considered to be stable.  

2.2 Control Law 

In order to achieve steady-state flight, we 

use a robust controller for a linear time-invariant 

multi-variable system [17]. We can express the 

state and output equations for longitudinal and 

lateral motions, which are linearized around the 

equilibrium point, as follows: 

)()()( ttt BuAxx +=& , (10) 

)()( tt Cxy = . (11) 

First, we define the error e (t) between output y 

and input yd (see Fig. 3), as shown in the 

following equation: 
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By differentiating Eq. (10), we obtain  
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In order to stabilize this system, we consider the 

rank of the matrix in the following equation:  
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(16) 

where n is the order of matrix A, and p is the 

number of outputs. Accordingly, we can control 

only two variables for both the longitudinal and 

lateral equations, and we choose U and θ for 

longitudinal motion, and φ and ψ  for lateral 

motion to control speed and attitude. The control 

input u for longitudinal and lateral motions of 

this system is given by the following equation: 

yd +  

-K1 

B 

+ 

+ 

K2 C 

A 

s

I
 

－ 

+ 

+ 

y x u 

Fig. 3. Block diagram of the controller of the linear time-invariant multi-variable system 
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∫−−=
t

dtttt
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where K1 and K2 are the feedback gains of this 

controller. 

In addition, if the system is in transition, 

dy&  
is not constant. However, we can control the 

system toward input yd, because the poles of the 

system never change, despite dy& ≠ 0.  

 

3 �umerical Simulations 

3.1 UAV Dynamics 

Figure 4 shows the block diagram of the 

entire system using proposed guidance and 

control laws. To simulate swarm control of the 

UAVs, we used a model [18] for the UAV that is 

linearized about straight and level flight 

conditions with a forward speed of 12.5 m/s and 

θ 0 = 0.00 rad. Equations (18) and (19) show the 

longitudinal and lateral equations of motion, 

respectably. Figure 5 shows the definitions of 

the state variables and control inputs. 
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where U, V, W, p, q, r,  φ, θ, and ψ  are variables 

and, δt, δa, δr, and δe are deflections of moving 

surfaces from trim conditions. Tables 1 and 2 

show the linearized parameters of longitudinal 

and lateral motions, respectively. The subscripts 

denote the partial derivatives with respect to the 

parameters.  
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3.2 Simulation Results  

   A numerical simulation is performed to 
verify the validity of the proposed guidance and 
control laws. We can generate different 
formations, single line, double line, single ring, 
double ring, and cluster formations in any plane 
by using the potential functions. The line and 
ring formations position UAVs along a line and 
on a circumference of the circle. The double line 

formation lines up the UAVs in a row, and the 
double ring formation positions UAVs in 
concentric circles. These formations can be 
formed with different dimensions by changing a 
parameter of hyperbolic and exponential 
potential function. The cluster formation 
positions the UAVs equidistantly based on the 
parameters of the repulsive potential. 
Three-dimensional formation flying can be 
achieved by manipulating parameter σ. 

Table. 1. Linearized parameters 

for longitudinal motion 

XU [s
-1

]  -0.13 

XW [s
-1

]  0.14 

ZU [s
-1

]  -3.17 

ZW [s
-1

]  -13.06 

Zq [m s
-1

]  1.37 

Uo [m]  12.5 

MU [m
-1

s
-1

]  -1.95 

MW [m
-1

s
-1

]  -17.41 

Mq [s
-1

]  -21.86 

Xδe [m s
-2

]  0 

Xδt   [kg
-1

]  2.32 

Zδe [m s
-2

]  -7.73 

Zδ t [kg
-1

]  0 

Mδe [s
-2

]   -205.25 

Mδ t [s
-2

]  0 

                                                                              

Table. 2. Linearized parameters 

 for lateral motion 

YV  [s
-1

]  -0.68 

Yp [m s
-1

]  -0.11 

Yr [m s
-1

]  -12.20 

LV [m
-1

 s
-1

]  -32.17 

Lp [s
-1

]  -56.38 

Lr [s
-1

]  19.30 

!V [m
-1

 s
-1

]  7.89 

!p [s
-1

]  -3.13 

!r [s
-1

]  -4.00 

Yδa [m s
-2

]  -3.34 

Yδr [m s
-2

]  22.99 

Lδa [s
-2

]  -26.88 

Lδr [s
-2

]  -6.80 

!δa [s
-2

]   58.46 

!δ r [s
-2

]  -226.79 
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Fig. 7. Double line (t = 50) 

   Fig. 8. Single line (t = 100) 

Table. 3. Parameters of potential functions (line) 

t 0-50  50-100 

µ 1 0 

ρd 0 0 
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Figures 6 through 12 show the transition of 
a formation of nine UAVs flying with no wind. 
Figures 6 through 8 show the transition of a line 
formation. Figures 9 to 12 show the transition of 
a ring formation. The poles of the controller are 
placed at -5.5, the simulation parameters are set 
to Cr = 2, Lr = 4, Ch = 1, Ce = 6, Le = 6, a = 0, b 
= 0, c = 1, and the values of the other parameters 
of the potential functions F

S
 are listed in Tables 

3 and 4. Figure 6 shows the case in which the 
system changes from a double line to a single 
line. In addition, Fig. 9 shows the case in which 
the system changes from a double ring to a 
single ring to a cluster every 50 s, whereby each 
UAV attains the desired position. This is 
achieved through a simple parameter change and 
is one of the advantages of using a bifurcation 
equation as the basis for the artificial potential 
functions, because we do not need to control 
each UAV individually. 

Figures 13 through 18 show the three- 

dimensional transition of a formation of nine 

UAVs. The poles of the controller are placed at 

-5.5, and the simulation parameters are set to Cr 

= 2, Lr = 2, Ch = 1, Ce = 6, Le = 6, µ = 0, and ρd 

= 10. Through this numerical simulation, we 

changed parameters a, b, and c, as shown in 

Table 5, every 50 s. Figures 14 through 18 show 

that the formation transitions from a ring in the 

x-y plane to a ring in y-z plane by rotating the 

formation 45 degrees. 
Figure 19 shows the UAVs speed, the 

angular velocity, the Euler angles, and the 
control inputs throughout the three-dimensional 
transition. The saturation limits for the aircraft 
control surfaces are δe = ±0.35 rad and δa, δr = 
±0.79 rad, and the thrust range is -0.35<δt <5.45 
N. The controller is within its limits because the 
maximum control velocity was determined using 
a hyperbolic potential function. 

Figure 20 shows the time responses of the 
controlled variables of the UAV. These results 
reveal that each variable followed the commands 
satisfactorily. 
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Table. 4. Parameters of potential functions (ring) 

t 0-50  50-100 100-150 

µ 1 0 0 

ρd 10 10 0 
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Fig. 15. Formation pattern (t = 100) 

Fig. 17. Formation pattern (t = 200) Fig. 14. Formation pattern (t = 50) 

Fig. 16. Formation pattern (t = 150) 

Fig. 18. Formation pattern (t = 250) 

Table. 5. Parameters of potential functions 

t 0-50 50-100 100-150 150-200 200-250 

a 0 0 0 1 1 

b 0 1 1 1 0 

c 1 1 0 0 0 
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4 Conclusions  

In the present paper, we have described a 

newly proposed guidance law that uses a new 

approach involving an artificial potential field 

and the bifurcation theory. The proposed 

guidance law can change formation patterns 

three-dimensionally through simple parameter 

changes. Numerical results verified the validity 

of the guidance and control law based on the 

potential function method for formation flying of 

UAVs.  
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