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Abstract

The transition to turbulence process in a rotating
boundary layer is numerically investigated. In
particular we will show that, when the Reynolds
number based on the forced throughflow is in-
creased above a threshold value, an impulsive
perturbation gives birth to a self-sustained sat-
urated wave which caracteristics identify as a
global elephant mode as described by [1]. This
saturated wave is itself absolutely unstable with
zero Floquet number, and this secondary insta-
bility leads to a very unorganized state, which
can be labelled as incipient turbulence. This sce-
nario relies on low incoming noise upstream of
the primary front, and a sufficiently strong im-
pulsive perturbation as the first global bifurcation
is known to be subcritical [2]. For the first time
it confirms the possibility of a direct transition to
turbulence through the elephant cascade.

1 Introduction

The flow encountered above an infinite rotating
disk is an academic example of three dimensional
boundary layers, and is used to examplifie the
crossflow instability of inflexional velocity pro-
files. When a second rotating disk is added paral-
lel to the first one, the configuration models, for
example, the cavity between the disks holding the
blades of a turbine or compressor. Moreover the
presence in the boundary layer of both azimuthal
flow and radial crossflow makes its stability prop-

erties similar to those of swept wing boundary
layers. For infinite disks in rotor-stator configu-
ration, the theoretical analysis of the laminar flow
has been done by [3], and [4]. For co-rotating
disks of finite extent with a forced inflow, early
results were obtained by [5] who made an exper-
imental and analytical investigation. He showed
that the base flow is made of four parts: an in-
flow and an outflow zones framing a quasi-solid-
body rotating core sandwiched by two thin Ek-
man boundary layers. Later work by [6] have
confirmed these results for the stationary flow,
and added measurements of Ekman-layers insta-
bilities. A review of the subject can be found in
[7]. As for the transitional régime, recent numer-
ical work by [2] has demonstrated the similarity
between the flow over a single rotating disk, and
the boundary layer encountered at the wall in an
annular cavity with a forced radial inflow. The
local stability properties of the velocity profiles
were found to be the same, as soon as the bound-
ary layer thickness is small compared to the gap.
The global instability was shown to be subcriti-
cal, which accomodates both the linear results of
[8] and the nonlinear dynamics proposed by [9].
Linear stability analysis has revealed that the flow
above the single infinite rotating disk is subject
to two generic types of instability. An inviscid
instability, due to the inflexional nature of the ve-
locity profile, is labelled type I, whereas type II is
due to the combined action of viscous and Cori-
olis effects. Early results were obtanined by [10]
and a recent review can be found in [11].
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As far as the single disk is concerned, the
matter of the transition scenario is currently much
debated. This debate began with the discovery
[12] that the type I inflexional instability under-
goes a transition from convective to absolute be-
haviour at a Reynolds number just below the
value repeatedly found for transition to turbu-
lence in the experiments. Nevertheless [8] argued
that when non-parallel effects are taken into ac-
count the flow is linearly globally stable. A later
study by [13] showed how, in the context of a
model equation, detuning arising from the radial
variation of absolute frequency might be stabiliz-
ing enough to enforce linear global stability over
absolute instability. However, nonlinearities can
counterbalance this stabilizing effect when they
are present, and lead to a nonlinear global mode,
even in the case of linear global stability [14]. In
this case, the presence of an absolutely unstable
region of finite extent is a sufficient condition for
the existence of a nonlinear global mode, which
for weakly non-parallel flows, takes the form of
a steep front located at the position of transition
from convective to absolute instability and sep-
arating upstream evanescent perturbations from
a downstream saturated wave. This mode was
first described in [15]. This opened the possibil-
ity for a direct route toward turbulence, and fur-
ther investigations were made by [9]. This au-
thor proposed that an elephant nonlinear global
mode develops as a consequence of the absolute
instability, and investigated the local stability of
the saturated type I wave that should be present
downstream of the transition point between con-
vective and absolute instability. This nonlinear
wave proved to be itself absolutely unstable as
soon as it formed, adding credit to the direct route
scenario. Still the existence of the primary non-
linear global mode had not been confirmed.

For the particular case of the rotating cav-
ity with throughflow, we have shown the exis-
tence of a subcritical global bifurcation toward
an elephant mode of azimuthal wave number 68,
nonlinearities compensating the stabilizing effect
of non-parallelism. The present paper further
adresses the question of the stability of the re-
sulting saturated wave with respect to secondary

perturbations. In this prospect, the computa-
tional domain downstream of the front has to be
long enough to feed a would-be secondary front.
Moreover, some computations have been per-
formed in a cavity of angular extent 2π/68, thus
enforcing the sole computation of mode number
68 and its harmonics.

The configuration is detailed in §2, which
highlights in which way it differs from the well-
documented single disk case. Section 3 presents
the numerical method, with particular stress on
key points such as boundary conditions, artificial
selective damping and how local stability analy-
sis is conducted. Primary instability, in the form
of a steep fronted global mode, and secondary in-
stability are the subject of §4. The competition
between this mechanism and other routes to tur-
bulence is further discussed in §5.

2 Configuration

The incompressible fluid motion is governed by
the Navier–stokes equations, written in the ro-
tating frame, and with dimensional quantities
stared.
The present configuration is made of two co-
rotating disks of finite radial extent, having same
axis and angular velocity ( ∗

d = Ω∗
dez). The cav-

ity is open at both inner and outer radius, and a
flow is forced at the hub which exits at the rim.
The two disks are separated by a gap of height
h∗ and their radial extent goes from R∗in = R∗2 to
R∗out = R∗1. As the gap h∗ is large with respect
to the Ekman boundary layer scale δ∗ =

√
ν/Ω∗

d
the flow at any radial station is made up of a
core locally in solid body rotation between two
thin Ekman layers. The mass flow rate Q∗ is
imposed at the hub through the use of Dirich-
let boundary conditions on the velocity. Thus
the geometry is defined by two control parame-
ters, the curvature Rm = (R∗2 + R∗1)/∆R∗ and as-
pect ratio L = ∆R∗/h∗, while the flow itself is
governed by two other global control parame-
ters, the system rotation rate Ω̃∗ and the non-
dimensional mass flow rate Cw = Q∗/(νR∗1), ν
being the kinematic viscosity. The system rota-
tion rate [12] is defined by Ω̃∗ = (Ω∗

f +Ω∗
d)/4+
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Fig. 1 Sketch of the annular cavity. Velocity vec-
tor field in the (r,z)-plane depicts the radial base
flow.

√
((Ω∗

f +Ω∗
d)/4)2 +(∆Ω∗)2/2 where Ω∗

f is the
fluid core rotation velocity and ∆Ω∗ = Ω∗

f −Ω∗
d .

The value of Ω∗
f is local and unknown, and there-

fore so is Ω̃∗.
In the limit of high rotation rates, Ekman’s

linearity assumption holds, as nonlinear effects
are negligeable compared the Coriolis force, and
an asymptotic solution for the flow in the cavity
can be obtained by matching linear Ekman solu-
tions for two single infinite disks. Such a match-
ing had been suggested in [16], and was shown to
describe accurately the flow for low values of Cw
in [17]. Indeed, for high rotation rates (controled
by Ω̃) the Coriolis effects are strong, whereas for
high mass flow rates (controled by Cw) the advec-
tion terms are important (and so are the nonlin-
ear effects). In the case of such a matched solu-
tion, the azimuthal component of the velocity in
the core stands for the geostrophic velocity in the
classical Ekman solution, and will be hereafter
labelled V ∗

g and keep the name of geostrophic
velocity. A convenient global Reynolds num-
ber can be extracted from the ratio of the Ek-
man length scale (δ∗ =

√
ν/Ω∗

d) and the cav-
ity height (h∗). The Reynolds number thus ob-
tained, Reh = (δ∗/h∗)2 has the advantage to rep-
resent the thinness of the boundary layer, and
control the mean velocity gradient. Local sta-
bility properties are controled by local parame-
ters, the Rossby number (Ro = ∆Ω/Ω̃) and the
local Reynolds number (Reδ = (V ∗

g δ∗)/ν). The
Rossby number acts on the shape of the veloc-
ity profiles (which are subject to inflectional in-
stability), and the local Reynolds number control

the magnitude of the velocity, as it is proportional
to the geostrophic velocity. The Rossby number
influences the critical value of the Reynolds num-
ber Rec, and so the stability condition Reδ > Rec
depends on both local (Reδ and Ro)control pa-
rameters. The system is made non-dimensional
using the following scales for time, length, ve-
locity, pressure and mass flow rate respectively:

tre f = Ω∗−1

d , lre f = h∗, Vre f = Ω∗
dh∗, Pre f =

1
2ρ∗Ω∗2

d R∗2

1 , and Qre f = h∗3Ω∗
d .

The asymptotic solution for high rotation
rates, written in the rotating frame of reference
reads then:

u(r,z) = −Vg(r)

[
exp

(
− z+ 1

2
δ

)
sin

(
z+ 1

2
δ

)
− exp

(
z− 1

2
δ

)
sin

(
z− 1

2
δ

)]

v(r,z) = Vg(r)

[
1− exp

(
− z+ 1

2
δ

)
cos

(
z+ 1

2
δ

)
− exp

(
z− 1

2
δ

)
cos

(
z− 1

2
δ

)]

Note that axial velocity in the core (w(r,0) =
δ
rVg(r)) is proportional to δ/r and is asymptoti-
cally smaller than u or v, when δ/r goes to zero,
which is why it is usually taken to be zero. The
geostrophic velocity can then be obtained from
this asymptotic solution through mass flow rate
conservation:

Q =
∫ 1/2

−1/2
2πru(r,z)dz⇒Vg(r) =

−Q
2πrδ

=
−CwνR1

2πrδ
(1)

And the local control parameters can now be
written explicitly:

Reδ =
−V ∗

g δ∗

ν
=

R1Cw

2πr
Ro =− Reδ

r
√

Reh
(2)

These analytical formulations are based on the
asymptotic solution and give only approximate
values of Reδ and Ro when nonlinear effects be-
come important. More accurate values were used
in the course of our investigation, which were
computed based on the nonlinear DNS solution.
In this prospect the geostrophic velocity is mea-
sured in the midplane of the cavity, as well as
the mass flow rate, and the Rossby number is
computed following Ro = Vg/r and the Reynolds
number following Reδ =−Ror

√
Reh.

This configuration differs from the single infi-
nite rotating disk mainly because of the way lo-
cal control parameters vary with r. Indeed, for-
mer investigations [2, ] have shown that confine-
ment does not affect local instability properties
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compared to the single-disk case, when the two
boundary layers are well separated. For the ra-
dial inhomogeneity one must note that for the
single-disk case, the local Reynolds number in-
creases outward like r, whereas here equation 2
shows that it decreases like 1/r. Moreover, for
the single-disk case, the Rossby number is cho-
sen once and for all, and is a global control pa-
rameter. On the contrary, in the cavity configura-
tion, the Rossby number is a local parameter, de-
creasing outward like 1/r2 and causing the crit-
ical Reynolds number Rec associated to the dif-
ferent thresholds (convective instability, absolute
instability, turbulence) to decrease faster than the
actual local Reynolds number (Reδ).

3 Numerics

3.1 Spatial and time discretizations

The numerical solution is based on a pseudospec-
tral collocation-Tchebyshev method in the non-
homogeneous radial and axial directions (r,z)
and a Fourier-Galerkin method in the 2π -
periodic tangential direction.. The Tchebyshev
approximation is associated with Gauss-Lobatto
collocation points (r̂i, ẑ j),k = 0, ...,K − 1 and
m = 0, ...,M − 1 defined in the square [−1,1].
The natural gathering of these points near the
boundaries is well adapted to the description of
the thin boundary layers which develop at the
walls. Then, for each of the N Fourier modes, the
solution (U, p) is approximated by Tchebyshev
polynomials of degree at most equal to K− 1 in
the radial direction and to M− 1 in the axial di-
rection. We note that N/2 is the cut off frequency
of the Fourier series.
This pseudo-spectral discretization ensures expo-
nential convergence of the solution, see [18].
Owing to the decomposition on a Fourier basis,
it is straightforward to impose the chosen period-
icity β = 68 in the azimuthal direction, by con-
centrating the mesh points in a sectorial cavity
of angular extent 2π/68. Some additionnal com-
putations have been done using β = 4 to check
that the obtained results were not dependent of
the imposed periodicity.

The temporal discretization is a projection
scheme, based on backwards differencing in time
[18]. The projection scheme requires the solution
of a pressure Poisson equation to (approximately)
maintain solenoidality of the velocity.
The equations are discretized in time using a
second-order semi-implicit scheme which com-
bines an implicit treatment of the diffusive term
and an explicit Adams-Bashforth extrapolation
for the non-linear convective terms. The unsteady
term is approximated by a second-order back-
ward Euler finite-difference scheme. Its good sta-
bility properties for an advection-diffusion equa-
tion have been shown before by[19].
The computation of the non-linear terms is per-
formed using a pseudo-spectral technique with
calculations of the derivatives in each direction
in the spectral space while the products are cal-
culated in the physical space. A FFT algorithm
is used to connect the spectral and the physical
spaces. On the other hand, the implicit diffusive
term is evaluated through spectral differentiation
matrices.
Finally, each time step involves successive solu-
tion of three uncoupled Helmohltz equations for
the pressure predictor, the velocity and the pres-
sure corrector, respectively. A direct solver is
used for each Fourier mode, based on the full di-
agonalization technique [18].

For a long cavity defined by L = 10 and
Rm = 5, the number of points has been kept to 10
in the azimuthal direction. Resolution-test com-
putations have been carried with twice as many
points (20), and have demonstrated that solutions
are strictly unaffected in the linear régime, and
that the pic amplitude of the wave paquet vary
by less than 5% in the nonlinear one. In the two
inhomogeneous directions, the number of mesh
points has been progressively increased up to a
final size of 649×65 points in the radial and ax-
ial directions respectively. For the broad domain
computations, discussed in section 5 and carried
in a quarter of circle, the azimuthal number of
point has ben set to 170. The associated time
step was δt = 2.10−5. The expected inertial range
of the turbulent cascade has been estimated using
measurements of the size and associated veloc-
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ity of the primary rolls (corresponding to type I
saturated vortices of the primary global mode),
and an estimate of the Kolmogorov length scale
has been done for this particular flow. Based on
this estimate the resolution of the final mesh is
approximately ten Kolmogorov length scales at
its coarsest in the radial direction, and approxi-
mately six Kolmogorov length scales at its coars-
est in the axial direction.

As the base flow is symmetric with respect to
the plane at mid-height, and the gap between the
disks is large enough to prevent any confinement
effect, computational effort has been spared by
reducing the computed domain to the upper half
of the cavity (z ∈ [0;1/2]), thus simulating a sin-
gle boundary layer. This reduction of the compu-
tational domain has been extensively validated in
shorter cavities, by comparison between simula-
tions ran in full and half cavities.

3.2 Boundary conditions

At the disk, usual no-slip boundary conditions are
applied, and stress-free conditions at the lower
plane, enforcing the symmetry with respect to the
middle of the cavity.
At the outflow, convective boundary conditions
(Sommerfeld type) were used in order to prohibit
reflections of the wave packets. Such conditions
implemented through a local explicit discretiza-
tion with a constant advection velocity proved
to be best suited here [2]. So at each time step
n + 1 the three components imposed at the out-
flow are updated following the equation un+1

j =
un

j −C δt
δr (u

n
j −un

j−1) where C is the chosen outlet
convection velocity.
At the inflow, pre-computed velocity profiles,
picked up from the computations of the axisym-
metric flow in a shifted cavity overlapping the
present one were imposed [2]. This inlet bound-
ary condition imposes a balanced flow matching
the nonlinear subsequent base flow and forces the
desired mass flow rate. If the usual Poiseuil pro-
file were imposed at the inlet, it would produce
an entry zone preceeding the establishment of the
Ekman layer, as shown by [5], wich may be un-
stable [20] and contaminate the the rest of the

flow. Nevertheless, very slight imperfections in
the imposed velocity profiles are at the origin of
amplified convective axisymmetric type II rolls.
These are known to be convective and leave the
cavity. But, even for very low initial amplitude,
exponential growth occuring during the transit
through a long cavity may lead them to finite am-
plitude before reaching the outflow. So that a fil-
tering or damping have to be applied to prevent
them from modifying the intrinsic dynamics of
the downwind half of the cavity. Being axisym-
metric they cannot be filtered in the azimuthal
direction, and a frequency criteria must be cho-
sen. A buffer zone is placed at the inlet, where
possible oscillations of the zero azimuthal wave
number are damped using the selective frequency
damping, as proposed by [21].

3.3 Local analysis

The DNS code can be used to conduct a local
stability analysis, following the method proposed
by [22]. Toward this end, velocity profiles cor-
responding to any chosen radial position can be
extracted from the converged mean flow, and ex-
tended to the whole radial extent of the compu-
tational domain to create a new strictly parallel
base flow. This base flow being invariant by ro-
tation, all the azimuthal wave numbers are inde-
pendant, thus the impulse response may be com-
puted independantly for each wave number. In
this procedure the axisymmetric flow which cor-
respond to the base flow is kept constant. The
computation is done in a sectorial cavity of angu-
lar extent 2π/β, β being the azimuthal wavenum-
ber whose stability is investigated. At each time
step both amplitude (Aβ(r, t)) and phase (Φβ(r, t))
are recorded at every station and defined as:

Aβ(r, t) = r

√∫ 1/2

0
|ŵ2(r,β,z, t)|dz

Φβ(r, t) = arg ŵ(r,β,z0, t)

where ŵ(r,β,z, t) is the spectral coefficient corre-
sponding to azimuthal wave number β, at height
z and on the circle of radius r, computed at time
t, for the axial velocity taken as the wavepaquet
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marker. Figure 2(a) gives an example of such
a recording for the amplitude, in a case where
the analysed profile is slightly absolutely unsta-
ble. The upwing propagation of the trailing edge
can already be seen. A more rigorous criteria
is obtained when, as in figure 2(b), the loga-
rythm of the amplitude at different time inter-
val ti is plotted as function of (r− r0)/(ti− t0),
r0 and t0 being the origin of the perturbation in
space and time respectively. The common inter-
sections of the curves mark the edges of a well
formed wavepaquet, and the group velocity can
be read on the x-axis. Time and space differenti-
ation of A and Φ yields the temporal and spatial
growth rates, as well as the absolute frequency.
The radial position at which the velocity pro-
file is taken to generate the parallel flow is then
varied. When the group velocity of the trailing
edge of the wavepaquet vanishes, or equivalently
when the growth rate measured at the impulse
location is nil, the corresponding parallel flow
is marginally absolutely unstable, and the corre-
sponding station marks the limit of the absolutely
unstable domain. This approach yielded results
fully in agreement with those extrapolated from
the single-disk flow analysis by [12] for the po-
sition, slope and frequency of the primary front
as already shown in the case of a shorter (L = 5)
cavity [2, ].

4 Results

The global Reynolds number has been kept con-
stant (Reh = 780) during all the computations,
and the mass flow rate has been increased up to
the value Cw = 2500 which according to a former
study must place the transition from convective to
absolute instability in the first half of the cavity,
and still away from the entry zone. Axisymmet-
ric stationary base flow has been reached through
the use of the selective frequency damping, tuned
to suppress the type II axisymmetric rolls. The
nonlinear dynamics of the flow has been anal-
ysed by superimposing an initial spatially local-
ized perturbation during a single time step at the
begining of the computations. The perturbation
velocity field is a Stokes flow over a hemispher-

Fig. 2 Spatiotemporal recording corresponding
to the impulse response of a parallel base flow
made of a velocity profil slightly absolutely un-
stable. (a) Time evolution of the enveloppe of
the wave paquet represented by the axial pertur-
bation velocity. (b) Wavepaquet representation
extracted from the data of figure 2(a). The x-axis
figures group velocity, and the y-axis is the loga-
rythm of the perturbation amplitude.

ical roughness of radius Rp/h = 0.008 located at
the wall near the hub. The radius Rp had formerly
been shown to be sufficient to induce a nonlin-
ear response of the flow. Azimuthaly periodic
perturbations of particular azimuthal wave num-
bers were achieved by repeating the obstacle at
the same radial station a number of time equal to
the aimed wavenumber. The impulse response
was then monitored by recording the value of
the axial velocity for a single azimuth and height
(z = 0.49h) as a function of radial location and
time. Such a data set provides spatiotemporal di-
agram as shown on figure 4 (a) where the flow
asymptotes in time a self-sustained finite ampli-
tude solution evidencing a well-defined upstream
front, characteristic of so-alled elephant mode.
Characteristics of this nonlinear global mode at
the final reported on figure 4(a) are computed by
integrating the perturbation kinetic energy as de-
fined in equation 3 and plotting it as a function of
the radius (figure 3).

E(r) = 2πr
∫ 2π

0

∫ 1/2

−1/2

1
2
(u

′2 + v
′2 +w

′2)dzdθ

(3)
(u

′
, v

′
and w

′
) representing the perturbation ve-

locity with respect to the axisymmetric base flow.
From the E(r) profile thus obtained, the posi-
tion and slope of the front can be precisely de-
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termined.
Present results match the predictions of non-

linear global mode theory. The global mode is
made of an upstream region where the amplitude
of perturbations stays very low compared to the
level in the saturated region downstream of the
front. Between the two is a front region where the
amplitude of the perturbations grows exponen-
tially. This structure is typical of a steep-fronted
global mode as described by [15], the so-called
elephant mode. The global mode theory predicts
that the exponential growth should take place at
the station of transition from convective to abso-
lute instability rCA, and that its spatial growth rate
should match the local absolute spatial growth
rate k0,i. In the present computations local anal-
ysis yields a position rCA/h = 24 for the tran-
sition, to be compared with figure 3 where the
front is between r/h = 23.5 and r/h = 25, and
a corresponding absolute growth rate k0,i = 3.41,
in excellent agreement with a measured slope of
3.2. Moreover, analysis of the spiraling arms us-
ing gliding FFT to extract a spatial spectrum as
a function of the radius, shows that their radial
wavelength shifts from λ = 30δ in the upstream
part of the front (r/h ∈ [23.5;24.5]) to λ = 18δ
in its downstream part (r/h ∈ [24.5;26]). This
shift is also visible in the physical space, on fig-
ure 4(b). These values are in agreement with [9]
study of the type I absolute instability, showing
that the value of the absolute mode radial wave-
length is λ = 30δ and should shift to λ = 20δ , the
wave length of the saturated parallel wave beat-
ing at the global frequency ωG = ω0,r(RCA). And
last, the spiraling arms shown on figure 4(b) have
a spiral pitch of ε = 31◦, to be compared with the
theoretically predicted value of ε = 30◦. There-
fore we can conclude that the nonlinear solution
shown in figures 3 and 4(b) is an elephant mode
due to the type I absolute instability.

On the spatio-temporal diagram (figure 4(a))
the regular stripes corresponding to the primary
spiralling mode are followed, for a r larger than
about 26, by scrambled lines. This eratic pat-
tern corresponds to the development of secondary
instabilities and it is quite remarkable that their
amplitude becomes large enough to scramble the

Fig. 3 Log-linear amplitude of the global
mode as a function of the radial coordinate, for
Cw = 2500, Reh = 780 (Reδ ∈ [330;491], Ro ∈
[−0.9;−0.45]).

primary pattern at a well defined steady radius
25.5 < r/h < 26 downstream of the saturation of
the primary wave at r/h = 25. This very short
interval between the two fronts suggests that the
primary saturated wave is already absolutely un-
stable when it forms. The top view in the phys-
ical space, figure 4(b), shows the uniform steady
base state at the center, followed by the 68 spiral-
ing arms of the primary global mode, itself giv-
ing way to a flow featuring small disorderd scales
evoking a turbulent state.
This secondary instability is associated to Flo-
quet number zero, since simulations are con-
ducted in a sectorial cavity of angular extent
2π/68, where only wavenumbers 0, 68 and har-
monics are simulated. Moreover, the time at
which it appears on figure 4 (a) is exactly the
same as the time at which the axisymmetric wave
number of the axial velocity in the computational
domain stops to be perfectly stationary, as shown
on figure 4(c)). And last, the solution in the phys-
ical space, filtered to retain only the axisymmet-
ric components, exhibits axisymmetric rolls only
downstream of position r/h = 25.5, which is ap-
proximately the position of the secondary front
seen on figure 4(a). It must be noted that the se-
lective frequency damping was kept active in the
foremost part of the cavity, prior to the primary
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Fig. 4 Impulse response: (a) spatiotemporal
recording of the axial velocity for given azimuth
θ = 0 and height z = 0.49 in the rotating disk
boundary layer. Globally unstable flow exhibit-
ing a secondary front (r ' 26) downwind of the
primary (r ' 24). (b) Thresholding of axial ve-
locity in an horizontal plane, featuring the front
between r = 23.5 and r = 25, the change of radial
wavelength from λ = 30δ to λ = 18δ correspond-
ing to the saturation of the type I absolute mode
is clearly visible. (c) Time history of the value
of the spectral coefficients corresponding to az-
imuthal wave numbers 0 (rightmost black curve),
68 (middle black curve) and 136 (gray curve) in
the whole domain.

front, to make sure that such zero-wavenumber
perturbations were not incoming with the inflow,
but were locally created. The radial wave length
of this secondary rolls has been measured and
found equal to λ/δ = 5.5, to be compared to
the values associated to type I convective, type
II convective, and type I absolute instabilities,
equal to 13, 22, 29 respectively [2, ]. Lastly,
computations were carried with the selective fre-
quency damping applied on mode number zero
to the whole domain, and the secondary insta-
bility was not affected. This tends to prove that
its time frequency is much lower than the cutoff
(ωc = 1/∆ = 10), and consequently much lower
than the measured frequencies corresponding to
type II axisymmetric instability in this configura-
tion (ω = 18).

This secondary instability leads to a very per-
turbated state, as seen on figure 4, containing
very small scales. These small scales creates a
slight aliasing, eventually leading to simulation
blow-up, after more than 10 non-dimensionnal
time units of rotation. This remains true even
though the spatial resolution is quite fine, the or-
der of ten Kolmogorov length scale, showing that
at least most of the inertial range is filled. Both
the time and radial wavelength spectra become
broadband at radius r/h = 25.5. Figure 5 shows
the three most energetic time frequencies, mea-
sured at every radius, extracted from the data of
figure 4(a).Using the spectral vanishing viscosity
technics of [23] it was possible to prevent alias-
ing, and the simulation could be continued up
to 15 non-dimensionnal time units, to be com-
pared to the 3.5 time units needed to saturates
both primary and secondary fronts, and did not
exhibit any change in the flow pattern. Therefore
we estimate that the flow has reached an equilib-
rium state, corresponding to the level of turbu-
lence that can be expected close to the transition
threshold.

5 Discussion and conclusion

Without artificial damping, numerical noise in
the entry zone generates convective axisymmet-
ric rolls. Due to the length of the cavity, they
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Fig. 5 Time frequencies measured in the data
presented on figure 4(a). At every radial station
the three most energetic frequencies are plotted
using a +, a o and a diamond in decreasing order.
Downwind of r/h = 26 there is a sudden change
in the spectrum.

eventually reach finite amplitude before being
advected out of the computational domain, thus
modifying the base flow. This modification can
be the cause of a change of stability downstream,
even to the point of inducing a transition from ab-
solute to convective behaviour. In the case where
this A/C transition happens too shortly after the
first C/A transition, the absolute zone may be too
short to feed the primary front. Results of lo-
cal analysis have confirmed this scenario, demon-
strating the link between un-damped convective
rolls, a short absolutely unstable zone, and global
convective behaviour. So that further computa-
tions have been done using specific frequency
damping in the first part of the cavity, priori to
the position of the primary front. Such a situ-
ation is likely to arise in a natural environment,
where the noise level can be expected to be higher
than the machine noise in the simulations. In this
case the transition scenario may be dominated by
convective instabilities, or similar to the one ob-
served in our computations but delayed further
downstream, after a second C/A transition.

Computations conducted in a broader cavity,
of angular extent 2π/4, and after having intro-
duced a strong secondary perturbation of non-
zero azimuthal wavenumber exhibit the same be-
haviour, they are secondary unstable with Flo-

Fig. 6 Iso surfaces of axial velocity in a quarter
of cavity, for a given height z/h = 0.49 in the ro-
tating disk boundary layer. From the hub to the
rim are successive zones of undisturbed flow, spi-
raling vortices, and turbulent flow.

quet number zero. This tends to show that Flo-
quet number zero is the most unstable, and may
hint that having grown first, it forbides the growth
of non-zero instabilities, having destroyed their
base flow. The top view in the physical space
of the resulting flow, seen on figure 6, exhibits
the 68 spiraling primary vortices upstream of a
highly perturbated area, exactly as in the nar-
row cavity. But the time history of the spectral
coefficients during this computation shows that
mode number 1 is rapidly increasing, indicating
the breaking of the 2π/68 periodicity.
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