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Abstract

An interesting area of research in propulsion sys-
tems is rocket-based combined-cycle systems.
This paper presents the implementation of a ge-
netic algorithm to optimize the geometric con-
figuration of a novel ejector nozzle for a rocket-
based combined-cycle propulsion system. The
genetic algorithm uses an adaptive technique that
shows better performance when compared with
standard techniques. The algorithm allows the
user to easily adjust the fitness function to opti-
mize for one or a combination of the following
criteria: air intake area, flow turning angle, and
shear layer mixing area. The optimized ejector
nozzle shows potential for high entrainment of
atmospheric air and thorough mixing of the air
and rocket stream.

1 Introduction

An active area of research is the development of
advanced space transportation technologies to al-
low more cost effective access to space. In order
to reduce launch costs, more efficient propulsive
systems are being considered. An approach that
incorporates existing rocket technologies that can
increase propulsive efficiency is a rocket-based
combined-cycle (RBCC) propulsion system. A
launch vehicle with this system will operate in
four modes from lift-off to orbit: 1) rocket-
ejector mode, Mach 0-3; 2) ramjet, Mach 3-7; 3)
scramjet, Mach 7-12; 4) pure-rocket, Mach 12-

orbital velocity. A schematic diagram of a poten-
tial RBCC engine is shown in Fig. 1. This paper
focuses on the rocket-ejector mode, which is an
air-augmented rocket cycle. Atmospheric air is
drawn into the engine to be mixed with the rocket
stream, thereby increasing the mass flow through
the system.

Primary Rocket

Air Stream

Rocket Stream

Fig. 1 Schematic Diagram Of A Potential RBCC
Engine.

The performance of an RBCC engine is de-
pendent on the quality of mixing and combus-
tion of the atmospheric air stream and the rocket
stream. Therefore, mixing configuration is a cru-
cial matter. There are two general strategies for
mixing: Diffusion and Afterburning (DAB), and
Simultaneous Mixing and Combustion (SMC).
In the DAB cycle, the inert rocket stream and
atmospheric air stream are mixed and diffused,
then fueled and burned subsonically in an af-
terburner. In the SMC cycle, fuel-rich rocket
stream is continuously mixed and reacted with
the air stream. DAB yields better performance
than SMC at sea-level static conditions, however
the performance converges with increasing alti-
tude and flight speed [1]. The SMC cycle is
less complex than the DAB cycle and requires a
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shorter mixing duct, leading to lower structural
weight.

Other mixing schemes have been considered.
The Independent Ramjet Stream (IRS) cycle has
been considered by NASA’s GTX project [2, 3].
In this cycle, the air stream is fueled upstream
and the rocket plume is used to ignite the fuel-air
mixture. It has been found by Yungster and Tre-
fny that at subsonic speeds the IRS cycle shows
lower performance when compared with other
RBCC engines schemes [4]. The Shielded Pri-
mary Injection (SPI) scheme, developed by Rus-
sell et al [5], is a combination of SMC and DAB
cycles. Fuel is injected upstream in the inert
rocket stream and is shielded from the oxidizing
air stream by the rocket stream. Russell et al have
shown that SPI combines the advantages of DAB
and SMC.

The rocket exhaust profile can affect mix-
ing between rocket and air stream, which affects
the efficiency of the RBCC engine. The Mar-
quardt Corporation developed a correlation for
mixing length as a function of several parame-
ters, including the total number of thrusters in
the duct; the relationship states that the mixing
length is inversely proportional to the number of
thrusters in the duct [6]. It has also been found
that mixing performance improved when an an-
nular rocket exhaust profile is used, allowing for
shorter duct lengths [7]. To take advantage of
shorter duct lengths while avoiding the use of
multiple thrusters, a novel ejector concept that
generates an annular rocket exhaust profile from
a single circular throat has been developed [8].
The flow path of the supersonic portion of the
nozzle is shown in Fig. 2 and 3. A design code
was developed to generate the geometric config-
uration of this supersonic nozzle. The shape is
calculated to yield a pre-specified Mach number
distribution while passing through a "gate" (as
shown in Fig. 2). The position and shape of the
gate, defined by five geometric variables, are used
to manipulate the geometry of the rocket flow
path. A second design code is then used to gener-
ate the contour of the entrained air intake that sur-
rounds the supersonic rocket flow path [9]. The
air intake allows for entrainment of atmospheric

air while minimizing total pressure and mass flow
rate losses. An exploded view of the combined
design, shown in Fig. 4, consists of an axisym-
metric center body, a cowl and nozzle fairings
within which the rocket flow path is housed.
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Fig. 2 Side View Of The Rocket Flow Path.
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Fig. 3 Top View Of The Rocket Flow Path. The
Dashed-Dot Lines Represent Half A Clover.

The purpose of this paper is to outline the
implementation of a genetic algorithm (GA) to
determine the optimal combination of rocket and
air intake geometry such that pre-defined perfor-
mance criteria are achieved. GAs are well es-
tablished optimization techniques and have been
widely used in engineering optimization prob-
lems [10, 11].

2 Implementation

2.1 Rocket Flow Path Geometry

The first step of the optimization process is to
generate an optimal rocket flow path. The posi-
tion and shape of the gate are used to manipulate
the rocket flow path geometry. Fig. 2 and Fig. 3
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Fig. 4 Exploded View Of Ejector Nozzle Air In-
take Design.

show the top view and side view, respectively,
of the rocket flow path of a four clover config-
uration. The position and shape of the gate can
be adjusted by manipulating any of the geomet-
ric variables shown. A complete list of the five
variables to be optimized, and their correspond-
ing bounds are given in Table 1. The bounds
of the geometric variables define the outline of
the search space. It should be noted that not
all possible combinations of the geometric vari-
ables will produce a viable rocket flow path so-
lution. For example, if the gate arc angle,ψg, is
too small there will not be sufficient area for the
rocket mass flow. Non-viable solutions are con-
sidered in the search space, however they are not
assigned a fitness value in the same manner as vi-
able solutions. The shaded area of Fig. 5 shows
where viable solutions lie on a plane given by
nondimensionalized gate radius,rg/re, and gate
depth,zg/ze. This plane represents two dimen-
sions of the five dimensional search space. Note
that in Table 1,re andze are defined by the user,
andχ = 180/ε.

2.2 Genetic Algorithm

The principle of optimization by genetic algo-
rithm, developed by Holland [12], is used in the
present study. A genetic algorithm is character-

Table 1 Nondimensional Geometric Variables
Variable Symbol Bounds

Number of clovers ε 3→ 6
Outlet arc angle ψe/χ 0→ 1
Gate arc angle ψg/χ 0→ 1
Gate depth zg/ze 0→ 1
Gate radius rg/re 0→ 1
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Fig. 5 Shaded Region Shows Viable Solutions
Onzg/ze-rg/re Plane.

ized by the following components: a genetic rep-
resentation of the solution, a population of solu-
tions, an evaluation function, a fitness function,
and genetic operators.

The five variables given in Table 1 represent
the five genes that define an individual. An indi-
vidual is expressed as

xk
i =

[
xk

i,1,x
k
i,2, . . . ,x

k
i, j , . . . ,x

k
i,n

]
(1)

wherek indicates the generation number,i is an
arbitrary individual of the population,j is an ar-
bitrary gene andn is the number of genes that
defines an individual (for this workn = 5).

An initial population of individuals is re-
quired to begin the genetic algorithm. It has been
suggested that larger population sizes show better
performance (avoidance of local maxima), while
smaller population sizes converge in a shorter pe-
riod of time. A reasonable range for population
size is 30–80 individuals [13]. The population is
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expressed as

Xk =
[
xk

1,x
k
2, . . . ,x

k
i , . . . ,x

k
m

]
(2)

andm is the number of individuals in the popula-
tion (for this workm= 30).

The fitness function defines a value by which
all individuals are ranked. The optimal rocket
flow path should have a high inlet area through
which a high mass flow of atmospheric air will be
entrained. The rocket flow path should also have
smooth contours such that the flow within the
nozzle remains close to isentropic. Additionally,
the rocket flow path should have an exhaust pro-
file that has a high shear layer area so that mixing
with atmospheric air will be maximized. A fit-
ness function that allows for the consideration of
each of these criteria, and which can weigh them
accordingly, is expressed by Eq. 3,

F = Ka
A

Amax
+Kb

[
1−

( |φ−φo|

φo

)p
]
+Kc

L
Lmax

(3)

whereKa, Kb, andKc are tunable weights.A is
the calculated air intake area andAmax= πr2

e. The
variableφ is the angle through which the flow
turns at the gate, whileφo = 180o is set as a de-
sirable angle such that the flow within the rocket
nozzle remains close to isentropic.L is the calcu-
lated exit arc length andLmax= 2.1πr2

e. Finally,
p= 0.8 is a penalty parameter used to control the
rate at which the fitness of nozzles that show a
difference betweenφ andφo is reduced. Table 2
shows the tunable weights of the fitness function
that were simulated.

The genetic operators, used to alter the indi-
viduals at each progressive generation, are selec-
tion, cross-over, and mutation. The operators are
tunable by adjusting the selection pressure, cross-
over rate and mutation rate, respectively.

The selection operator is used to choose par-
ents from the population. These parents are se-
lected via the Roulette-Wheel method. Selection
is random, however, more fit individuals have a
higher probability of being selected. The proba-
bility of being selected is expressed by Eq. 4.

P(xk
i ) =

F(xk
i )

σ

m

∑
u=1

F(xk
u)

σ
(4)

whereσ is the selection pressure (for this work,
an adaptive selection pressure is implemented
whereσ varies between 0.8 and 1). Given a pop-
ulation, X1, of 30 individuals, a set of parents
selected for reproduction could bex1

3 and x1
25.

The population size is held constant for each gen-
eration, therefore, a total of 28 sets of parents
are selected for reproduction and the remaining
2 children are selected by an elitist method. This
method passes the top 2 most fit individuals to
the following generation. This ensures that the
GA will never diverge.

The cross-over operator is used to recom-
bine the genetic information of both parents to
produce a child. A non-traditional cross-over
method is used in this work, where the recom-
bination of real-parameter genes is accomplished
one gene at a time. The cross-over rate is set
at 60%, so that there is a 60% chance that the
child will obtain the first gene from the more
fit parent and a 60% chance that the child will
obtain the second gene from the more fit par-
ent, and so on. Using the previous example,
and assuming thatx1

3 is more fit thanx1
25, the

child produced by these two parents could be

x2
1 =

[
x1

3,1,x
1
25,2,x

1
3,3,x

1
3,4,x

1
25,5

]
. In other words,

the first individual of the second generation will
have received gene 1, 3, and 4 from the third in-
dividual of the first generation and gene 2 and 5
from 25th individual of the first generation.

Table 2 Parameters Of Fitness Function (Eq. 3)

Case Ka Kb Kc

A 1 0 0
B 0 1 0
C 0 0 1
D 0.4 0.3 0.3

The first two genetic operators, selection and
cross-over, are capable of exploring the search
space for an optimal solution. However, this
search space is a limited subspace defined by all
possible combinations of alleles that were present
in the initial population (an allele is the numeri-
cal value of a particular real-parameter gene). In
order to search the entire search space a genetic
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operator that introduces new alleles into the pop-
ulation is required. For this purpose the muta-
tion operator is used to create new alleles (for
this work, an adaptive mutation rate is imple-
mented where mutation rate varies between 10%
and 50%). The new allele is randomly selected
but remains within the bound for a given gene
given in Table 1. Continuing the example, a gene
of x2

1 could be mutated such that the individual
is now defined by a new set of alleles:x2

1 =[
x1

3,1,x
1
25,2, x̃

1
3,3,x

1
3,4,x

1
25,5

]
where x̃1

3,3 = x1
3,3 ± λ

(λ is a random mutation). A high mutation rate is
not desirable since this would reduce the genetic
algorithm to a random search algorithm.

3 Results and Discussion

3.1 Convergence of the GA

It is desirable for the GA to converge to the op-
timal solution in the shortest period of time. The
convergence time will be a function of several
factors. The most obvious is the dimension of
the search space; a large search space should re-
quire more time to converge when compared with
a small search space. Let Eq. 5 define the size of
the search space,

S=
n

∑
j=1

xk
i, j |max−xk

i, j |min

∆xk
i, j

(5)

where∆xk
i, j is the step size used to discretize the

jth dimension of the search space. It is not imme-
diately clear how the population size, mutation
rate, cross-over rate, number of elites, or selec-
tion pressure will affect the convergence time. To
make the GA as efficient as possible, sensitivity
analyses are run to determine the best parame-
ters for the genetic operators. A search space of
S= 100·106 is used throughout the analyses. The
metric used to measure convergence time is the
number of individuals that are evaluated while
the algorithm converges (Γ = m·k). Fig. 6 shows
a histogram plot for several population sizes us-
ing a constant mutation rate of 10% and a con-
stant selection pressure of 0.8. Fig. 7 shows a his-
togram plot for several population sizes using an

adaptive mutation rate and selection pressure. In
each case the GA is allowed to reach convergence
100 times (i.e. the sum of all the bars for a given
population size totals 100). In the adaptive tech-
nique, the mutation rate is switched between 10%
and 50% based on the homogeneity of the popu-
lation at a given generation. When the population
is deemed to be too homogeneous, the mutation
rate is increased to 50% in order to increase the
diversity of the population. The selection pres-
sure (σ) is switched between 0.8 and 1 based on
trap situations. When the GA is deemed to be
trapped in a local maximum, the selection pres-
sure is increased to 1 in order to focus the search
toward more fit solutions.
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Γ

Fig. 6 Histogram Of Convergence Metric For
Several Population Sizes Using Constant Muta-
tion and Selection.
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Fig. 7 Histogram Of Convergence Metric For
Several Population Sizes Using Adaptive Muta-
tion and Selection.

Comparing Fig. 6 and Fig. 7 it can be seen
that a constant mutation rate and selection pres-
sure is susceptible to trap situations. The bars
in the Γ = 20000+ bin, indicating long conver-
gence times, are indicative of trap situations. An
adaptive mutation rate and selection pressure is
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less likely to become trapped, as shown by the
absence of bars in the higher bins of Fig. 7. It
can also be seen that for each population size, the
adaptive technique converges in a shorter period
of time when compared with the constant param-
eter technique, as shown by the skewness of bars
on Fig. 7 toward lowerΓ values.

Comparing each population size of Fig. 7, it
can be seen that a population size of 30 individ-
uals is most skewed toward lowerΓ values. For
this reason, a population size of 30 was imple-
mented for this work. Table 3 lists the parameters
of the genetic operators that are used in the GA.

Table 3 Parameters Of The GA
Parameter Value

Population Size 30
Selection Pressure 0.8→1
Crossover Rate 60%
Mutation Rate 10%→ 50 %
Number of Elites 2

3.2 Optimized Rocket Flow Path

Varying the parameters of Eq. 3 will produce a
unique optimal solution. In order to study the ef-
fect of various parameters, four cases were sim-
ulated, as given by Table 2. For test case A, the
first term of Eq 3 is given 100% weight. Thus
the GA produces a rocket flow path that is op-
timized for air intake area. Fig. 8(a) shows the
convergence history of the most fit individual and
the average fitness of the population at each gen-
eration. Convergence is reached withink = 150
generations, which corresponds toΓ = 4500. Re-
ferring to Fig. 7 it can be seen that this conver-
gence metric falls within the expected range of
Γ < 8000 for a population size of 30. Fig. 9(a)
shows the optimized rocket flow path for case
A. Although this solution has a high air intake
area,A= 0.67m2, which will lead to high entrain-
ment of atmospheric air, it is expected that the
low shear layer area of the rocket exhaust profile,
which is related to the exit arc length,L = 1.35m,
will not provide ideal mixing of the rocket and air
stream.
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Fig. 8 Fitness Convergence History (Solid Line
Represents Most Fit Solution, Dotted Line Rep-
resents Average Fitness Of Population).

For test case B, the second term of Eq 3 is
given 100% weight. Thus the GA produces a
rocket flow path that is optimized for flow turning
angle. Fig. 8(b) shows the convergence history
of the most fit individual and the average fitness
of the population at each generation. Fig. 9(b)
shows the optimized rocket flow path for case
B. Although this solution has a desirable flow
turning angle,φ = 180o, it is not an ideal rocket
flow path for an ejector nozzle because the air in-
take area,A = 0.52m2, and the exit arc length,
L = 1.68m, are lower than desirable.

For test case C, the third term of Eq 3 is given
100% weight. Thus the GA produces a rocket
flow path that is optimized for exit arc length.
Fig. 8(c) shows the convergence history of the
most fit individual and the average fitness of the
population at each generation. Convergence is
reached withink = 60 generations (Γ = 1800),
which corresponds to the largest bar of Fig. 7 for
a population size of 30 (i.e. the most likely con-
vergence metric). Fig. 9(c) shows the optimized
rocket flow path for case C. This solution has a
high exit arc length,L = 3.47m, which creates an
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essentially annular exhaust profile, however the
low air intake area,A= 0.46m2, suggests low en-
trainment of atmospheric air. Therefore, it is un-
likely that this rocket flow path would be ideal for
an ejector nozzle.

For test case D, all terms of Eq 3 are given
nearly equal weight. Thus the GA produces a
rocket flow path that is optimized for a combi-
nation of all three criteria. Fig. 8(d) shows the
convergence history of the most fit individual and
the average fitness of the population at each gen-
eration. Convergence is reached withink = 250
generations (Γ = 7500), which falls within the
expected range ofΓ < 8000 for a population size
of 30. Fig. 9(d) shows the optimized rocket flow
path for case D. This solution has a relatively
high air intake area,A = 0.57m2, and a high exit
arc length,L = 3.47m. Thus, it is expected that
this rocket flow path would be well suited for an
ejector nozzle. Table 4 summarizes the results of
the four test cases.

Table 4 Selection Criteria Of The Optimized So-
lutions.

Case ε A(m2) φ(deg) L(m)

A 4 0.67 174 1.35
B 5 0.52 180 1.68
C 6 0.46 151 3.47
D 6 0.57 127 3.47

The optimized rocket flow path of case D is
used to design the air intake geometry of the ejec-
tor nozzle as described by [9]. Fig. 10(a) shows
a 3D view of the air intake geometry. Fig. 10(b)
shows a view frame view of the rocket flow path
(dashed line) housed within the air intake geom-
etry. This design represents the geometry of a
potential RBCC engine upstream of the mixing
duct. It can be seen that the cowl and fairings will
affect the air intake area of the design. Therefore,
future work will consider the air intake geometry
in the fitness function.

(a) Case A (b) Case B

(c) Case C (d) Case D

Fig. 9 Optimized Rocket Flow Path.

(a) 3D view (b) Side view

Fig. 10 Case D Optimal Ejector Nozzle Air In-
take Design.

4 Conclusions

The implementation of a GA to determine the op-
timal rocket flow path configuration for a novel
RBCC propulsion system is illustrated. The GA
uses an adaptive mutation rate and selection pres-
sure technique that shows better performance
when compared with the standard technique of
constant mutation rate and selection pressure.
For the situations tested, the adaptive technique
is able to avoid local traps and is able to converge
in a shorter period of time.

The results show that the GA can produce
a variety of rocket flow path solutions based on
the user’s selection of the tunable weights of the
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fitness function. A nearly even balance of the
tunable weights results in an optimal rocket flow
path solution that will lead to high entrainment
of atmospheric air and that should lead to good
mixing of the rocket and air streams.

Future work will incorporate the geometric
variables of the air intake geometry into the GA.
Consideration will also be given to the design of
the ejector engine as a whole, including the mix-
ing duct downstream of the ejector nozzle.
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